Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Health Sci Eng ; 21(2): 513-532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869602

RESUMO

This present study depicts the successful employment of fixed-bed column for total chromium removal from tannery wastewater in dynamic mode using sodium alginate-powdered marble beads (SA-Marble) as adsorbent. The SA-Marble composite beads prepared were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Brunauer, Emmett and Teller (BET) method. The adsorption process performance of this bio-sorbent was examined in batches and columns for real effluent (tannery wastewater). After 90 min, the total chromium removal efficiency could be kept above 90% in the batch experiment. The adsorption kinetics fit better with the pseudo-second-order model, indicating the chemisorption process and the adsorption capacity of about 67.74 mg g-1 at 293 K (C0 = 7100 mg L-1) was obtained. Additionally, dynamic experiments indicate that the total chromium removal efficiency could be maintained above 90% after 120 min at 293 K and 60 min at 318 and 333 K; it's an endothermic but rapid process. The effects of two adsorption variables (Temperature and time) were investigated using central composite design (CCD), which is a subset of response surface methodology (total Cr, COD, sulfate, and total phosphorus percentage removal). This work paves a new avenue for synthesizing SA-Marble composite beads and provides an adsorption efficiency of total chromium removal from tannery wastewater.

2.
Environ Pollut ; 335: 122319, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544401

RESUMO

Extensive production and utilization of plastic products have resulted in the generation of microplastics (MPs), subsequently polluting the environment. The efficiency of biochars (BCs) derived from jujube (Ziziphus jujube L.) biomass (300 °C and 700 °C) for nylon (NYL) and polyethylene (PE) removal from contaminated water was explored in fixed-bed column trials. The optimum pH for the removal of both MPs was found 7. Both of the produced biochars demonstrated >99% removal of the MPs, while the sand filter exhibited a maximum of 78% removal of MPs. BC produced at 700 °C (BC700) showed 33-fold higher MPs retention, while BC produced at 300 °C (BC300) exhibited 20-fold higher retention, as compared to sand filters, indicating the higher efficiency of BC produced at higher pyrolysis temperature. Entrapment into the pores, entanglement with flaky structures of the BCs, and electrostatics interactions were the major mechanism for MPs retention in BCs. The efficiency of MPs-amended BCs was further explored for the removal of Pb(II) and Cd(II) in fixed-bed column trials. BC700 amended with PE and NYL exhibited the highest 50% breakthrough time (2114.23 and 2024.61 min, respectively, for Pb(II) removal and 2107.92 and 1965.19 min, respectively, for Cd(II) removal), as compared to sand filters (38.07 and 60.49 min for Pb(II) and Cd(II) removal, respectively). Thomas model predicted highest adsorption capacity was exhibited by BC700 amended with PE (584.34 and 552.80 mg g-1, for Pb(II) and Cd(II) removal, respectively), followed by BC700 amended with NYL (557.65 and 210.59 mg g-1 for Pb(II) and Cd(II) removal, respectively). Therefore, jujube waste-derived BCs could be used as efficient adsorbents to remove PE and NYL from contaminated water, while MPs-loaded BCs can further be utilized for higher adsorption of Pb(II) and Cd(II) from contaminated aqueous media. These findings suggest that BC could be used as an efficient adsorbent to remove the co-existing MPs-metals ions from the environment on a sustainable basis.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Ziziphus , Microplásticos , Plásticos , Cádmio , Água , Chumbo , Carvão Vegetal/química , Nylons , Adsorção , Polietilenos , Poluentes Químicos da Água/química
3.
Polymers (Basel) ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299216

RESUMO

In recent decades, hydrogels, as adsorption materials, have received important attention due to their characteristics and properties, such as mechanical strength, biocompatibility, biodegradability, swellability, and stimuli sensitivity. In the actual framework of sustainable development, it has been imperative to develop practical studies of hydrogels in the treatment of actual industrial effluents. Accordingly, the current work has, as its objective, to make evident hydrogels' applicability in the treatment of actual industrial effluents. For this purpose, a bibliometric analysis and systematic review based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method were conducted. The relevant articles were selected from the Scopus and Web of Science databases. Some important findings were that: (1) China is the leading country when it comes to hydrogel application in actual industrial effluents, (2) the motor studies are focalized on the treatment of wastewater by hydrogels, (3) the fixed-bed columns are suitable unit equipment for the treatment of industrial effluents of using hydrogels, and (4) the hydrogels show excellent adsorption capacities of ion and dye contaminants present in industrial effluents. In summary, since the implementation of sustainable development in 2015, the progress of practical hydrogel applications in the treatment of industrial effluent has been receiving more attention, and the selected studies demonstrate the implementation viability of these materials.

4.
Chemosphere ; 330: 138591, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037352

RESUMO

Acetaminophen (ACT), sulfapyridine (SPY), ibuprofen (IBP) and docusate (DCT) are pharmaceuticals with widespread usage that experience incomplete removal in wastewater treatment systems. While further removal of these pharmaceuticals from wastewater effluent is desired prior to beneficial reuse, additional treatment technologies are often expensive and energy intensive. This study evaluated the ability of biochar produced from cotton gin waste (CG700) and walnut shells (WS800) to remove four pharmaceuticals (ACT, SPY, IBP, and DCT) from aqueous solution. Physico-chemical properties of the biochars were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and zeta potential. The increased pyrolysis temperature during the production of WS800 led to an increase in the specific surface area and increased dehydration of the biochar represented by the loss of the OH-group. Fixed-bed column experiments were performed to determine the difference in removal efficiency between the biochars and elucidate the effects of biochar properties on the adsorption capacity for the pharmaceuticals of interest. Results showed that CG700 had a greater affinity for removing DCT (99%) and IBP (50%), while WS800 removed 72% of SPY and 68% of ACT after 24 h. Adsorption was influenced by the solution pH, surface area, net charge, and functional groups of the biochars. The mechanisms for removal included pore filling and diffusion, hydrophobic interactions, hydrogen bonding, and π-π electron donor acceptor interactions. To conduct predictive modeling of the column breakthrough curves, the Thomas, Adams-Bohart, and Yoon-Nelson models were applied to the experimental data. Results demonstrated that these models generally provided a poor fit for the description of asymmetrical breakthrough curves. Overall, the results demonstrate that biochars from cotton gin waste and walnut shells could be used as cost-effective, environmentally friendly alternatives to activated carbon for the removal of pharmaceuticals from aqueous solutions.


Assuntos
Juglans , Poluentes Químicos da Água , Carvão Vegetal/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Sulfapiridina , Preparações Farmacêuticas , Adsorção , Poluentes Químicos da Água/análise , Cinética , Soluções
5.
Environ Sci Pollut Res Int ; 28(32): 43483-43506, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33835343

RESUMO

Novel functionalized polymeric beads have been prepared by a simple phase inversion technique and its potential as an effective sorbent for reactive dyes is studied. Polyacrylonitrile was used as the base polymer for the beads that were further functionalized using diethylenetriamine. Scanning electron microscopy, FTIR spectroscopy, BET technique, TGA analysis, and zeta potential measurement were used for characterization of the functionalized beads. The adsorption characteristics of the beads were analyzed through adsorption isotherms. A first-principle-based pore diffusion-adsorption model was employed to study adsorption process of the functionalized beads and to determine various mass transfer parameters, i.e., mass transfer coefficient and effective pore diffusivity, in both single and multicomponent cases. For different reactive dyes, the beads have adsorption capacities in the range of 170-230 mg/g. Effects of different operating parameters, i.e., inlet concentration of solute, influent rate, and bed depth were studied to determine the breakthrough performance of the columns prepared with the beads. Industrial dye effluent, containing four reactive dyes at different initial concentrations, was used to study multicomponent adsorption in the columns. The regeneration efficiency of the beads was determined using aqueous cationic surfactant solution. Finally, scaling up of the fixed bed columns was carried out using a first principle-based transport model based on pore diffusion-adsorption processes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Corantes , Cinética , Têxteis
6.
Sci Total Environ ; 563-564: 1095-104, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27241205

RESUMO

Fixed-bed column experiments were performed to investigate the effect of influent concentration, flow rate, and adsorbent bed depth on ammonium adsorption from anaerobically digested swine slurry using three types of biochar made from corncobs (MCB), hardwood (WB), and mixed sawdust pellets (MSB). WB performed better than the other two biochar types with a maximum sorption capacity of 67-114mg/g due to its superior surface area and larger pore volume. Ammonium adsorption kinetics and dynamics depended on the influent NH4(+)-N concentration, applied inflow flow rate, and the depth of the fixed bed. Maximum sorption capacities under influent NH4(+)-N concentration of 500mg/L, were identified to be 114.2mg/g, 108.9mg/g, and 24.7mg/g at inflow rate of 15mL/min for WB, MCB, and MSB, respectively. The data shows that using deeper beds and applying lower flow rates could be a better strategy to increase ammonium adsorption in biochar-fixed beds. Moreover, three kinetic models (Thomas, Adams-Bohart (BDST), and Yoon-Nelson) were applied to the experimental data to predict breakthrough curves and determine characteristic adsorption parameters for process design. The applied models fitted data in the order: Thomas (R(2)=0.971)>BDST (R(2)=0.960)>Yoon-Nelson (R(2)=0.940). It was concluded that ammonium adsorption in biochar-fixed beds could be an effective method for routine cyclic treatment of slurry. However, further effluent polishing is required to meet discharge requirements.


Assuntos
Compostos de Amônio/química , Carvão Vegetal/química , Fezes/química , Sus scrofa , Eliminação de Resíduos Líquidos/métodos , Adsorção , Anaerobiose , Animais , Cinética , Modelos Teóricos
7.
J Sep Sci ; 37(8): 927-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24510747

RESUMO

Fructooligosaccharides (FOS), a well-known prebiotic product, are obtained by enzymatic synthesis and consist of a mixture of mono- and disaccharides. In this work, a methodology for their separation and purification was developed using a zeolite fixed-bed column. The effects of column temperature (40-60°C), eluent flow rate (0.10-0.14 mL/min), injected to bed volume percent ratio (2.6-5.1%), and ethanol concentration in the eluent (40-60%, v/v) were investigated using a fractionary factorial design (2(4-1)), having the separation efficiency and purity as target responses. Additional experiments were performed as well, where the temperature and ethanol concentration were studied in a central composite design (2(2)). In this work, the zeolite fixed-bed column was shown to be a good alternative for FOS purification, allowing a FOS purity of 90% and separation efficiency of 6.86 between FOS and glucose, using an eluent at 45°C with 60% ethanol concentration.


Assuntos
Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Zeolitas/química , Adsorção , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA