Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
1.
Bioresour Bioprocess ; 11(1): 78, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095685

RESUMO

Astaxanthin biosynthesis in Haematococcus pluvialis is driven by energy. However, the effect of the flagella-mediated energy-consuming movement process on astaxanthin accumulation has not been well studied. In this study, the profiles of astaxanthin and NADPH contents in combination with the photosynthetic parameters with or without flagella enabled by pH shock were characterized. The results demonstrated that there was no significant alteration in cell morphology, with the exception of the loss of flagella observed in the pH shock treatment group. In contrast, the astaxanthin content in the flagella removal groups was 62.9%, 62.8% and 91.1% higher than that of the control at 4, 8 and 12 h, respectively. Simultaneously, the increased Y(II) and decreased Y(NO) suggest that cells lacking the flagellar movement process may allocate more energy towards astaxanthin biosynthesis. This finding was verified by NADPH analysis, which revealed higher levels in flagella removal cells. These results provide preliminary insights into the underlying mechanism of astaxanthin accumulation enabled by energy reassignment in movement-lacking cells.

2.
Methods Mol Biol ; 2828: 79-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147972

RESUMO

Bacteria can propel themselves by rotating a flagellum or a flagellar bundle. To image this thin structure in motile bacteria, the flagella can be vitally stained with fluorophores. This chapter describes a flagellar staining protocol with the additional possibility of visualizing the cell body. It offers the opportunity to track conformational changes of flagella and simultaneously track the positions of the cell bodies. The additional use of a filter increases the number of motile cells and improves the signal-to-noise ratio of images. The flagellar staining requires a prior introduction of a surface-exposed cysteine, which is not covered in this chapter.


Assuntos
Bactérias , Flagelos , Corantes Fluorescentes , Coloração e Rotulagem , Flagelos/metabolismo , Flagelos/ultraestrutura , Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Bactérias/metabolismo , Microscopia de Fluorescência/métodos
3.
Trends Microbiol ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39153868

RESUMO

Actinobacterial species are mostly thought to be nonmotile. Recent studies have revealed the degenerate evolution of flagella in this phylum and different flagellar rod compositions from the classical model. Moreover, flagella-independent motility by various means has been reported in Streptomyces spp. and Mycobacterium spp., but the underlying mechanisms remain elusive.

4.
ISME J ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113613

RESUMO

Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in sub-optimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, nitrate or metal concentrations is underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimes of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse pH (3.5 to 5) and nitrate levels (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptation to survive and grow at low pH. Biofilms intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation warranting further investigation. Through RB-TnSeq, proteomics, use of specific mutants and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed absence of flagella and chemotaxis genes, and presence of putative Type VI secretion system in the high biofilm-forming strain FW021-MT20. This study identifies genetic determinants associated with biofilm growth in a predominant environmental genus, Rhodanobacter, under metal stress and identifies traits aiding survival and adaptation to contaminated subsurface environments.

5.
Mol Microbiol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096095

RESUMO

FliL is a bacterial flagellar protein demonstrated to associate with, and regulate ion flow through, the stator complex in a diverse array of bacterial species. FliL is also implicated in additional functions such as stabilizing the flagellar rod, modulating rotor bias, sensing the surface, and regulating gene expression. How can one protein do so many things? Its location is paramount to understanding its numerous functions. This review will look at the evidence, attempt to resolve some conflicting findings, and offer new thoughts on FliL.

6.
Sci Rep ; 14(1): 17750, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085460

RESUMO

Serratia marcescens is an opportunistic human pathogen that produces a vibrant red pigment called prodigiosin. Prodigiosin has implications in virulence of S. marcescens and promising clinical applications. We discovered that addition of the virulent flagellotropic bacteriophage χ (Chi) to a culture of S. marcescens stimulates a greater than fivefold overproduction of prodigiosin. Active phage infection is required for the effect, as a χ-resistant strain lacking flagella does not respond to phage presence. Via a reporter fusion assay, we have determined that the addition of a χ-induced S. marcescens cell lysate to an uninfected culture causes a threefold increase in transcription of the pig operon, containing genes essential for pigment biosynthesis. Replacement of the pig promoter with a constitutive promoter abolished the pigmentation increase, indicating that regulatory elements present in the pig promoter likely mediate the phenomenon. We hypothesize that S. marcescens detects the threat of phage-mediated cell death and reacts by producing prodigiosin as a stress response. Our findings are of clinical significance for two main reasons: (i) elucidating complex phage-host interactions is crucial for development of therapeutic phage treatments, and (ii) overproduction of prodigiosin in response to phage could be exploited for its biosynthesis and use as a pharmaceutical.


Assuntos
Bacteriófagos , Prodigiosina , Regiões Promotoras Genéticas , Serratia marcescens , Serratia marcescens/metabolismo , Serratia marcescens/genética , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Bacteriófagos/genética , Bacteriófagos/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/metabolismo
7.
Microorganisms ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065061

RESUMO

Vibrio harveyi is a normal flora in natural marine habitats and a significant opportunistic pathogen in marine animals. This bacterium can cause a series of lesions after infecting marine animals, in which muscle necrosis and ulcers are the most common symptoms. This study explored the adaptation mechanisms of V. harveyi from the seawater environment to host fish muscle environment. The comprehensive transcriptome analysis revealed dramatic changes in the transcriptome of V. harveyi during its adaptation to the host fish muscle environment. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, flagellar assembly, oxidative phosphorylation, bacterial chemotaxis, and two-component systems play crucial roles in V. harveyi's adaptation to host fish muscle. A comparison of biological phenotypes revealed that V. harveyi displayed a significant increase in flagellar length, swimming, twitching, chemotaxis, adhesion, and biofilm formation after induction by host fish muscle, and its dominant amino acids, especially bacterial chemotaxis induced by host muscle, Ala and Arg. It could be speculated that the enhancement of bacterial chemotaxis induced by amino acids plays a key role in the adaptation of V. harveyi from seawater to the muscle of the host fish.

8.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062822

RESUMO

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Assuntos
Flagelos , Simbiose , Sistemas de Secreção Tipo III , Flagelos/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Xenorhabdus/metabolismo , Xenorhabdus/genética , Xenorhabdus/fisiologia , Regulação Bacteriana da Expressão Gênica , Photorhabdus/metabolismo , Photorhabdus/patogenicidade , Photorhabdus/genética , Photorhabdus/fisiologia , Nematoides/microbiologia , Nematoides/metabolismo , Biofilmes/crescimento & desenvolvimento
9.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062905

RESUMO

The proper functioning and assembly of the sperm flagella structures contribute significantly to spermatozoa motility and overall male fertility. However, the fine mechanisms of assembly steps are poorly studied due to the high diversity of cell types, low solubility of the corresponding protein structures, and high tissue and cell specificity. One of the open questions for investigation is the attachment of longitudinal columns to the doublets 3 and 8 of axonemal microtubules through the outer dense fibers. A number of mutations affecting the assembly of flagella in model organisms are known. Additionally, evolutionary genomics data and comparative analysis of flagella morphology are available for a set of non-model species. This review is devoted to the analysis of diverse ultrastructures of sperm flagellum of Metazoa combined with an overview of the evolutionary distribution and function of the mammalian fibrous sheath proteins.


Assuntos
Cauda do Espermatozoide , Espermatozoides , Masculino , Animais , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura , Espermatozoides/fisiologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Humanos , Axonema/ultraestrutura , Axonema/metabolismo , Motilidade dos Espermatozoides/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38963606

RESUMO

PURPOSE: To identify novel variants in ACTL9 and new phenotypes responsible for male infertility. METHODS: Genomic DNA was extracted from peripheral blood samples for whole-exome sequencing (WES). Computer-assisted sperm analysis (CASA) was used to test the motility of spermatozoa. The ultrastructure of flagella and the mitochondrial sheath were assessed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Immunostaining was used to validate the localization and expression of ACTL9 and ACTL7A. An Actl9-mutated mouse model was used to validate the phenotypes by CASA and TEM. RESULTS: We identified novel homozygous variants in ACTL9 in two independent Chinese families. Spermatozoa with ACTL9 mutations showed decreased CASA parameters and a higher proportion of spermatozoa with abnormal morphology, exhibiting coiled flagella and a thickened midpiece. The spermatozoa were characterized by chaotic or irregular '9+2' structures and irregular mitochondrial sheath arrangements in the flagellum. Actl9 knock-in mice also showed abnormal CASA parameters and irregular '9+2' structures in flagella. CONCLUSIONS: Our study expands the mutation spectrum and phenotypic spectrum of ACTL9.

11.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948722

RESUMO

Flagella are highly complex rotary molecular machines that enable bacteria to not only migrate to optimal environments but to also promote range expansion, competitiveness, virulence, and antibiotic survival. Flagellar motility is an energy-demanding process, where the sum of its production (biosynthesis) and operation (rotation) costs has been estimated to total ~10% of the entire energy budget of an E. coli cell. The acquisition of such a costly adaptation process is expected to secure short-term benefits by increasing competitiveness and survival, as well as long-term evolutionary fitness gains. While the role of flagellar motility in bacterial survival has been widely reported, its direct influence on the rate of evolution remains unclear. We show here that both production and operation costs contribute to elevated mutation frequencies. Our findings suggest that flagellar movement may be an important player in tuning the rate of bacterial evolution.

12.
Chemosphere ; 363: 142928, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39048048

RESUMO

Extracellular cellular adhesins facilitate microbial aggregation; however, most of the information about extracellular adhesins is based on pure culture studies. In this study, we characterized the hydrophobic characteristics and distribution of the extracellular adhesins in environmental biofilms and flocs. The hydrophobic characteristics of the extracellular adhesins were studied by sonicating the microbial aggregates to disperse the cells and by fractionating them using the microbial adhesion to the hydrocarbon method. Furthermore, we probed environmental biofilms and flocs using immunohistochemistry coupled with confocal laser scanning microscopy for reimaging the microbial aggregates based on extracellular adhesins. Small flocs have a relatively dispersed distribution of extracellular adhesins (flagella, fimbriae, pili, and amyloid adhesins). The stratified distribution of extracellular adhesins was observed in environmental biofilms. It was observed that the pili and amyloid adhesins were predominantly present in the core of biofilms, whereas flagella and fimbriae were present in the outer layer of the microbial aggregates. The dispersion of microbial aggregates is one of the limiting factors that challenge the sustainable application of wastewater treatment processes. Greater attention to the components of extracellular protein (such as the adhesins) is required to understand the aggregation of dispersible environmental microbial aggregates.


Assuntos
Biofilmes , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Fímbrias Bacterianas/metabolismo
13.
Fish Shellfish Immunol ; 151: 109752, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977112

RESUMO

Pseudomonas plecoglossicida is a vital pathogen that poses a substantial risk to aquaculture. Small RNAs (sRNAs) are non-coding regulatory molecules capable of sensing environmental changes and modulating virulence-associated signaling pathways, such as the assembly of flagella. However, the relevant researches on P. plecoglossicida are an urgent need. Here, we report a novel sRNA, sRNA562, which has potential to regulate the post-transcriptional of fliP, a key component of the lateral flagellar type III secretion system. In this study, the effects of sRNA562 on the virulence of P. plecoglossicida and its role in regulating the pathogenic process were investigated through the use of a constructed sRNA562 deletion strain. The deletion of sRNA562 resulted in an up-regulation of fliP in P. plecoglossicida, and leading to increased swarming motility and enhanced the ability of biofilm formation, adhesion and chemotaxis. Subsequent artificial infection experiment demonstrated that the deletion of sRNA562 increased the virulence of P. plecoglossicida towards hybrid grouper, as evidenced by a reduction in survival rate, elevation of tissue bacterial load, and the exacerbation of histopathological damage. Further studies have found that the deletion of sRNA562 lead to an up-regulation of fliP expression during hybrid grouper infection, thereby enhancing bacterial swarming ability and ultimately heightening pathogenicity, leading to a dysregulated host response to infection, tissue damage and eventually death. Our work revealed a sRNA that exerts negative regulation on the expression of lateral flagella in P. plecoglossicida, thereby impacting its virulence. These findings provide a new perspective on the virulence regulation mechanism of P. plecoglossicida, contributing to a more comprehensive understanding in the field of pathogenicity research.


Assuntos
Doenças dos Peixes , Flagelos , Regulação Bacteriana da Expressão Gênica , Pseudomonas , Pequeno RNA não Traduzido , Pseudomonas/patogenicidade , Pseudomonas/genética , Pseudomonas/fisiologia , Virulência/genética , Animais , Doenças dos Peixes/microbiologia , Pequeno RNA não Traduzido/genética , Flagelos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Bacteriano/genética , Sistemas de Secreção Tipo III/genética , Bass , Infecções por Pseudomonas/imunologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38899546

RESUMO

Motile cilia have a so-called "9 + 2" structure, which consists of nine doublet microtubules and a central pair apparatus. The central pair apparatus (CA) is thought to interact mechanically with radial spokes and to control the flagellar beating. Recently, the components of the CA have been identified by proteomic and genomic analyses. Still, the mechanism of how the CA contributes to ciliary motility has much to be revealed. Here, we focused on one CA component with a large molecular weight: FAP47, and its relationship with two other CA components with large molecular weight: HYDIN, and CPC1. The analyses of motility of the Chlamydomonas mutants revealed that in contrast to cpc1 or hydin, which swam more slowly than the wild type, fap47 cells displayed wild-type swimming velocity and flagellar beat frequency, yet interestingly, fap47 cells have phototaxis defects and swim straighter than the wild-type cells. Furthermore, the double mutant fap47cpc1 and fap47hydin showed significantly slower swimming than cpc1 and hydin cells, and the motility defect of fap47cpc1 was rescued to the cpc1 level with GFP-tagged FAP47, indicating that the lack of FAP47 makes the motility defect of cpc1 worse. Cryo-electron tomography demonstrated that the fap47 lacks a part of the C1-C2 bridge of CA. Taken together, these observations indicate that FAP47 maintains the structural stiffness of the CA, which is important for flagellar regulation.

15.
Antibiotics (Basel) ; 13(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38927143

RESUMO

In order to combat resistance, it is necessary to develop antimicrobial agents that act differently from conventional antibiotics. Fluorothiazinone, 300 mg tablet (The Gamaleya National Research Center), is an original antibacterial drug based on a new small molecule T3SS and flagellum inhibitor. A total of 357 patients with complicated urinary tract infections (UTIs) were divided into two groups and given Fluorothiazinone 1200 mg/day or a placebo for 7 days to evaluate the efficacy and safety of the drug. Additionally, all patients were given Cefepime 2000 mg/day. Fluorothiazinone with Cefepime showed superiority over placebo/Cefepime based on the assessment of the proportion of patients with an overall outcome in the form of a cure after 21 days post-therapy (primary outcome), overall outcome in cure rates, clinical cure rates, and microbiological efficacy at the end of therapy and after 21 days post-therapy (secondary outcomes). In patients who received Fluorothiazinone, the rate of infection recurrences 53 and 83 days after the end of the therapy was lower by 18.9%, compared with patients who received placebo. Fluorothiazinone demonstrated a favorable safety profile with no serious unexpected adverse events reported. The results showed superiority of the therapy with Fluorothiazinone in combination with Cefepime compared with placebo/Cefepime in patients with cUTIs.

16.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906839

RESUMO

Vibrio parahaemolyticus utilizes a polar flagellum for swimming in liquids and employs multiple lateral flagella to swarm on surfaces and in viscous environments. The VPA0961 protein is an LysR family transcriptional regulator that can regulate the swimming and swarming motility of V. parahaemolyticus, but the detailed regulatory mechanisms are not yet fully understood. Herein, we designated the protein as AcsS, which stands for activator of swimming and swarming motility. Our data provided evidence that deleting the acsS gene significantly reduced both swimming and swarming motility of V. parahaemolyticus. Furthermore, AcsS was found to activate the expression of both polar (flgA, flgM, flgB, and flgK) and lateral (motY, fliM, lafA, and fliD) flagellar genes. Overexpression of AcsS in Escherichia coli induced the expression of flgA, motY, and lafA, but did not affect the expression of flgB, flgK, flgM, fliM, and fliD. Interestingly, His-tagged AcsS did not bind to the upstream DNA regions of all the tested genes, suggesting indirect regulation. In conclusion, AcsS positively regulated the swimming and swarming motility of V. parahaemolyticus by activating the transcription of polar and lateral flagellar genes. This work enriched our understanding of the gene expression regulation within the dual flagellar systems of V. parahaemolyticus.


Assuntos
Proteínas de Bactérias , Flagelos , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/fisiologia , Flagelos/genética , Flagelos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
17.
J Cell Sci ; 137(13)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853670

RESUMO

Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.


Assuntos
Chlamydomonas reinhardtii , Cílios , Dineínas , Flagelos , Cinesinas , Proteômica , Cílios/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Proteômica/métodos , Cinesinas/metabolismo , Cinesinas/genética , Dineínas/metabolismo , Flagelos/metabolismo , Transporte Biológico
18.
J R Soc Interface ; 21(214): 20240046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774961

RESUMO

Many microorganisms propel themselves through complex media by deforming their flagella. The beat is thought to emerge from interactions between forces of the surrounding fluid, the passive elastic response from deformations of the flagellum and active forces from internal molecular motors. The beat varies in response to changes in the fluid rheology, including elasticity, but there are limited data on how systematic changes in elasticity alter the beat. This work analyses a related problem with fixed-strength driving force: the emergence of beating of an elastic planar filament driven by a follower force at the tip of a viscoelastic fluid. This analysis examines how the onset of oscillations depends on the strength of the force and viscoelastic parameters. Compared to a Newtonian fluid, it takes more force to induce the instability in viscoelastic fluids, and the frequency of the oscillation is higher. The linear analysis predicts that the frequency increases with the fluid relaxation time. Using numerical simulations, the model predictions are compared with experimental data on frequency changes in the bi-flagellated alga Chlamydomonas reinhardtii. The model shows the same trends in response to changes in both fluid viscosity and Deborah number and thus provides a possible mechanistic understanding of the experimental observations.


Assuntos
Chlamydomonas reinhardtii , Elasticidade , Modelos Biológicos , Chlamydomonas reinhardtii/fisiologia , Viscosidade , Flagelos/fisiologia , Reologia
19.
Proc Natl Acad Sci U S A ; 121(22): e2317264121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781211

RESUMO

The phagotrophic flagellates described as "typical excavates" have been hypothesized to be morphologically similar to the Last Eukaryotic Common Ancestor and understanding the functional ecology of excavates may therefore help shed light on the ecology of these early eukaryotes. Typical excavates are characterized by a posterior flagellum equipped with a vane that beats in a ventral groove. Here, we combined flow visualization and observations of prey capture in representatives of the three clades of excavates with computational fluid dynamic modeling, to understand the functional significance of this cell architecture. We record substantial differences amongst species in the orientation of the vane and the beat plane of the posterior flagellum. Clearance rate magnitudes estimated from flow visualization and modeling are both like that of other similarly sized flagellates. The interaction between a vaned flagellum beating in a confinement is modeled to produce a very efficient feeding current at low energy costs, irrespective of the beat plane and vane orientation and of all other morphological variations. Given this predicted uniformity of function, we suggest that the foraging systems of typical excavates studied here may be good proxies to understand those potentially used by our distant ancestors more than 1 billion years ago.


Assuntos
Flagelos , Flagelos/fisiologia , Animais , Eucariotos/fisiologia , Modelos Biológicos , Evolução Biológica , Hidrodinâmica
20.
Microbiol Spectr ; 12(6): e0054424, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38651876

RESUMO

Many neutralophilic bacterial species try to evade acid stress with an escape strategy, which is reflected in the increased expression of genes coding for flagellar components. Extremely acid-tolerant bacteria, such as Escherichia coli, survive the strong acid stress, e.g., in the stomach of vertebrates. Recently, we were able to show that the induction of motility genes in E. coli is strictly dependent on the degree of acid stress, i.e., they are induced under mild acid stress but not under severe acid stress. However, it was not known to what extent fine-tuned expression of motility genes is related to fitness and the ability to survive periods of acid shock. In this study, we demonstrate that the expression of FlhDC, the master regulator of flagellation, is inversely correlated with the acid shock survival of E. coli. We encountered this phenomenon when analyzing mutants from the Keio collection, in which the expression of flhDC was altered by an insertion sequence element. These results suggest a fitness trade-off between acid tolerance and motility.IMPORTANCEEscherichia coli is extremely acid-resistant, which is crucial for survival in the gastrointestinal tract of vertebrates. Recently, we systematically studied the response of E. coli to mild and severe acidic conditions using Ribo-Seq and RNA-Seq. We found that motility genes are induced at pH 5.8 but not at pH 4.4, indicating stress-dependent synthesis of flagellar components. In this study, we demonstrate that motility-activating mutations upstream of flhDC, encoding the master regulator of flagella genes, reduce the ability of E. coli to survive periods of acid shock. Furthermore, we show an inverse correlation between motility and acid survival using a chromosomal isopropyl ß-D-thio-galactopyranoside (IPTG)-inducible flhDC promoter and by sampling differentially motile subpopulations from swim agar plates. These results reveal a previously undiscovered trade-off between motility and acid tolerance and suggest a differentiation of E. coli into motile and acid-tolerant subpopulations, driven by the integration of insertion sequence elements.


Assuntos
Ácidos , Proteínas de Escherichia coli , Escherichia coli , Flagelos , Regulação Bacteriana da Expressão Gênica , Mutação , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos/metabolismo , Ácidos/farmacologia , Flagelos/genética , Flagelos/metabolismo , Estresse Fisiológico/genética , Transativadores/genética , Transativadores/metabolismo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA