RESUMO
Aberrant cell cycle progression is a hallmark of solid tumors. Therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. In this chapter, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique, combined with mathematical modeling, allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.
Assuntos
Melanoma , Humanos , Melanoma/patologia , Ciclo Celular , Divisão Celular , Diagnóstico por Imagem , Técnicas de Cultura de Células em Três Dimensões , Esferoides Celulares/metabolismoRESUMO
The non-targeted effects of radiation have been known to induce significant alternations in cell survival. Although the effects might govern the progression of tumor sites following advanced radiotherapy, the impacts on the intercellular control of the cell cycle following radiation exposure with a modified field, remain to be determined. Recently, a fluorescent ubiquitination-based cell-cycle indicator (FUCCI), which can visualize the cell-cycle phases with fluorescence microscopy in real time, was developed for biological cell research. In this study, we investigated the non-targeted effects on the regulation of the cell cycle of human cervical carcinoma (HeLa) cells with imperfect p53 function that express the FUCCI (HeLa-FUCCI cells). The possible effects on the cell-cycle phases via soluble factors were analyzed following exposure to different field configurations, which were delivered using a 150 kVp X-ray irradiator. In addition, using synchrotron-generated, 5.35 keV monochromatic X-ray microbeams, high-precision 200 µm-slit microbeam irradiation was performed to investigate the possible impacts on the cell-cycle phases via cell-cell contacts. Collectively, we could not detect the intercellular regulation of the cell cycle in HeLa-FUCCI cells, which suggested that the unregulated cell growth was a malignant tumor. Our findings indicated that there was no significant intercellular control system of the cell cycle in malignant tumors during or after radiotherapy, highlighting the differences between normal tissue and tumor characteristics.
Assuntos
Ciclo Celular , Corantes Fluorescentes/química , Síncrotrons/instrumentação , Ubiquitinação , Neoplasias do Colo do Útero/patologia , Sobrevivência Celular , Feminino , Células HeLa , Humanos , Microscopia de Fluorescência , Raios XRESUMO
Among the methods for detecting cell cycle kinetics in tumor cells, fluorescent ubiquitination-based cell cycle indicator (Fucci) is innovative because it allows observation in live cells without losing spatiotemporal information. We succeeded in using the Fucci system to visualize radiation-induced G2 arrest in tumor cells with deficient p53 function. Here we describe protocols for establishing Fucci-expressing cell lines and analyzing radiation-induced G2 arrest kinetics in three different models: monolayer cell cultures, spheroids, and xenografted solid tumors in mice.
Assuntos
Técnicas de Cultura de Células/métodos , Ciclo Celular/efeitos da radiação , Neoplasias/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Transplante de Neoplasias , UbiquitinaçãoRESUMO
The purpose of the current study was to investigate the biological effects of protons and photons in combination with cisplatin in cultured cells and elucidate the mechanisms responsible for their combined effects. To evaluate the sensitizing effects of cisplatin against X-rays and proton beams in HSG, EMT6 and V79 cells, the combination index, a simple measure for quantifying synergism, was estimated from cell survival curves using software capable of performing the Monte Carlo calculation. Cell death and apoptosis were assessed using live cell fluorescence imaging. HeLa and HSG cells expressing the fluorescent ubiquitination-based cell cycle indicator system (Fucci) were irradiated with X-rays and protons with cisplatin. Red and green fluorescence in the G1 and S/G2/M phases, respectively, were evaluated and changes in the cell cycle were assessed. The sensitizing effects of ≥1.5 µM cisplatin were observed for both X-ray and proton irradiation (P < 0.05). In the three cell lines, the average combination index was 0.82-1.00 for X-rays and 0.73-0.89 for protons, indicating stronger effects for protons. In time-lapse imaging, apoptosis markedly increased in the groups receiving ≥1.5 µM cisplatin + protons. The percentage of green S/G2/M phase cells at that time was higher when cisplatin was combined with proton beams than with X-rays (P < 0.05), suggesting more significant G2 arrest. Proton therapy plus ≥1.5 µM cisplatin is considered to be very effective. When combined with cisplatin, proton therapy appeared to induce greater apoptotic cell death and G2 arrest, which may partly account for the difference observed in the combined effects.
Assuntos
Ciclo Celular/efeitos da radiação , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Cisplatino/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Tolerância a Radiação , Radioterapia/métodos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Cricetinae , Relação Dose-Resposta à Radiação , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes , Células HeLa , Humanos , Camundongos , Método de Monte Carlo , Fótons , Terapia com Prótons , Reprodutibilidade dos Testes , Ubiquitina/química , Raios XRESUMO
CHK1 and WEE1 play pivotal roles in G2/M checkpoint following exogenous DNA damage and regulation of DNA replication under normal cellular conditions. Here, we monitored and compared the cell cycle kinetics of mitosis-associated events after CHK1 and WEE1 inhibitor treatments in a human tongue cancer cell line (SAS). A fluorescent ubiquitination-based cell cycle indicator (Fucci) that reflects SCFSKP2 and APCCDH1 E3 ligase activities was used to monitor cell cycle progression. Numerous γH2AX-positive cells were observed within the S phase population of cells following CHK1 inhibitor treatment, and polyploid cells exhibiting DNA damage emerged via abortive mitosis (endomitosis) at 24 h post treatment. While WEE1 inhibitor-treated cells exhibited similar polyploidy via endomitosis at later time points, they possessed fewer γH2AX foci during S phase, and polyploid cells exhibiting DNA damage were scarce. Instead, mitosis duration greatly extended and was accompanied by an abnormal emission of Fucci red fluorescence. Kinetic analysis of Fucci fluorescence revealed that abnormal emission occurred at early M phase in a manner independent of green fluorescence degradation as a marker of APCCDH1 activation. When an inhibitor of the essential spindle checkpoint factor MPS1 was co-treated with a WEE1 inhibitor, the elongated mitosis duration and abnormal red fluorescence were abrogated, and WEE1-induced reduction of clonogenic survival was offset. We demonstrate novel differential effects on mitosis-associated events following CHK1 and WEE1 inhibitor treatments.
Assuntos
Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/genética , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Genes Reporter , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Mitose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Fase S/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Imagem com Lapso de TempoRESUMO
The effects of CHK1 inhibitor on cell cycle kinetics have not been fully investigated yet. In this study, we closely analyzed this kinetics using a CHK1 inhibitor (PF00477736) in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci). This system allowed us to visualize cell cycle progression following CHK1 inhibitor treatment in real-time. FACS analysis showed that high levels of DNA damage as determined by γH2AX immunostaining was induced in S phase and that polyploid cells harboring the same levels of DNA damage appeared thereafter. Surprisingly, time-lapse imaging of Fucci fluorescence revealed that many cells entered M phase at once and exhibited prolonged mitosis; eventually progressing to G1 phase not accompanied by cytokinesis; this is an endomitosis-like event. Most of these cells then underwent S/G2 phases at least once, which corroborated the appearance of polyploid cells. However, a small fraction of cells with 2â¯N DNA content still remained 24â¯h after the treatment. When co-treated with MAD2 inhibitor, a core factor constituting spindle checkpoint, the 2â¯N DNA cell fraction disappeared and almost all cells exhibited endomitosis, leading to enhanced sensitivity. Detailed cell cycle analysis revealed that induction of an endomitosis-like event might be associated with CHK1 inhibitor-induced cell death in HeLa cells.
Assuntos
Benzodiazepinonas/farmacologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular , Dano ao DNA , Fluorescência , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas Mad2/antagonistas & inibidores , Proteínas Mad2/metabolismo , Fosforilação/efeitos dos fármacos , Poliploidia , Imagem com Lapso de TempoRESUMO
We present a suite of experimental data showing that cell proliferation assays, prepared using standard methods thought to produce asynchronous cell populations, persistently exhibit inherent synchronization. Our experiments use fluorescent cell cycle indicators to reveal the normally hidden cell synchronization, by highlighting oscillatory subpopulations within the total cell population. These oscillatory subpopulations would never be observed without these cell cycle indicators. On the other hand, our experimental data show that the total cell population appears to grow exponentially, as in an asynchronous population. We reconcile these seemingly inconsistent observations by employing a multi-stage mathematical model of cell proliferation that can replicate the oscillatory subpopulations. Our study has important implications for understanding and improving experimental reproducibility. In particular, inherent synchronization may affect the experimental reproducibility of studies aiming to investigate cell cycle-dependent mechanisms, including changes in migration and drug response.
Assuntos
Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Biológicos , Linhagem Celular Tumoral , Fluorescência , HumanosRESUMO
Insulin-like growth factor I receptor (IGF-IR) plays pivotal roles in various biological events, including cell growth, transformation, survival, and DNA repair. In this study, we explored its possible involvement in cell cycle checkpoints, using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). We found that IGF-IR inhibitor delayed release from radiation-induced G2 arrest, as demonstrated by FACS and pedigree analysis of Fucci fluorescence. Elongated G2 arrest was also induced by inhibitors of phosphatidylinositol-3 kinase (PI3K) and AKT, but not by inhibitor of MEK, which are two major IGF-IR downstream signaling pathways. Double-strand break (DSB) repair kinetics were not affected by IGF-IR inhibitor. CHK1 inhibitor abrogated radiation-induced G2 arrest, whereas radiation-induced phosphorylation of CHK1 at Ser 345 or Ser 296 was decreased by the IGF-IR inhibitor. However, radiation-induced nuclear localization of CHK1 was prolonged in IGF-IR inhibitor-treated cells in comparison with cells that received radiation alone; in the latter, CHK1 returned to the original diffuse distribution in conjunction with release from G2 arrest. We conclude that IGF-IR directly regulates the G2/M checkpoint via the PI3K/AKT pathway without influencing DSB repair, in part by controlling CHK1 localization between the nucleus and cytoplasm.
Assuntos
Fluorescência , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Receptor IGF Tipo 1/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Quinase 1 do Ponto de Checagem/metabolismo , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
OBJECTIVE: The objective of this study was to characterize the DNA damage response in two human oral cancer cell lines following X-irradiation. DESIGN: To visualize radiation-induced cell cycle alterations, two human oral cancer cell lines, HSC3 and HSC4, expressing fluorescent ubiquitination-based cell cycle indicator (Fucci) were established in this study. G2 arrest kinetics following irradiation were obtained from two-color flow cytometric analysis and pedigrees of Fucci fluorescence. DNA double strand break repair kinetics were obtained from immunofluorescence staining for phosphorylated histone H2AX, p53-binding protein 1, phosphorylated DNA-dependent protein kinase catalytic subunit, and breast cancer susceptibility gene 1. RESULTS: Both cell lines showed apparent G2 arrest after 10â¯Gy of irradiation, but it was more enhanced in the HSC3-Fucci cells. Radiosensitivity was higher in the HSC3-Fucci cells than in HSC4-Fucci cells. Pedigree analysis of Fucci fluorescence revealed that the HSC3-Fucci cells exhibited a significantly longer green phase (normally indicating S/G2/M phases, but here reflective of G2 arrest) when irradiated in the red phase (G1 phase) than HSC4-Fucci cells irradiated in either red or green phases. Non-homologous end joining was marginally suppressed during the G1 phase and markedly more likely to be impaired during the S/G2 phases in HSC3-Fucci cells. When G2 arrest was abrogated by checkpoint kinase 1 or Wee1 inhibitors, only HSC4-Fucci cells exhibited radiosensitization. CONCLUSIONS: We characterized DNA damage response in HSC3-Fucci and HSC4-Fucci cells following irradiation and the former demonstrated inefficient non-homologous end joining, especially during the S/G2 phases, resulting in enhanced G2 arrest. These findings may have clinical implications for oral cancer.
Assuntos
Ciclo Celular/fisiologia , Ciclo Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Neoplasias Bucais/radioterapia , Raios X/efeitos adversos , Carcinoma de Células Escamosas/radioterapia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos da radiação , Linhagem Celular Tumoral/fisiologia , Linhagem Celular Tumoral/efeitos da radiação , Quinase 1 do Ponto de Checagem/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteína Quinase Ativada por DNA , Relação Dose-Resposta à Radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Histonas/metabolismo , Histonas/efeitos da radiação , Humanos , Cinética , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas/metabolismo , Proteínas/efeitos da radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , UbiquitinaçãoRESUMO
Aberrant cell cycle progression is a hallmark of solid tumors; therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. Here, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.
Assuntos
Ciclo Celular , Imageamento Tridimensional/métodos , Melanoma/patologia , Modelos Biológicos , Linhagem Celular Tumoral , Fluorescência , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Esferoides Celulares/citologia , Esferoides Celulares/patologia , UbiquitinaçãoRESUMO
The multicellular spheroid model partly mimics tumor microenvironments in vivo and has been reported in plenty of studies regarding radiosensitivity. However, clear isolation of quiescent and proliferating cells in live conditions has been quite difficult owing to technical limitations; therefore, comprehensive characterization could not be done thus far. In this study, we succeeded in separately isolating different cell types using a fluorescent ubiquitination-based cell cycle indicator (Fucci) and determining their radiosensitivities. Unexpectedly, proliferating cells were more radioresistant than quiescent cells due to the contact effect when spheroids were disaggregated immediately after irradiation. However, the radiosensitivity of quiescent cells was not influenced by mild hypoxia (hypoxia-inducible factor-1α-positive but pimonidazole-negative), but their radioresistance became similar to that of proliferating cells due to potentially lethal damage repair when disaggregated 24 h after irradiation. The Fucci system further allowed long-term observation of cell kinetics inside of the spheroid following irradiation using real-time confocal fluorescence scanning. Repeated cycles of recruitment from the quiescent to the proliferating phase resulted in cell loss from the outside of the spheroid toward the inside, causing gradual shrinkage. Interestingly, the central region of the spheroid entered a dormant stage approximately 40 days after irradiation and survived for more than 2 months. Using the Fucci system, we were able to comprehensively characterize the radiosensitivity of spheroids for the first time, which highlights the importance of cell cycle kinetics after irradiation in determining the radiosensitivity under tumor microenvironments.
Assuntos
Proliferação de Células/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Esferoides Celulares/efeitos da radiação , Microambiente Tumoral/efeitos da radiação , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Citometria de Fluxo , Fluorescência , Células HEK293 , Humanos , Microscopia Confocal , Neoplasias/metabolismo , Neoplasias/patologia , Imagem com Lapso de Tempo/métodos , UbiquitinaçãoRESUMO
The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches.
Assuntos
Ciclo Celular , Melanoma/metabolismo , Melanoma/terapia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/terapia , Antineoplásicos/farmacologia , Terapia Combinada , Progressão da Doença , Sistemas de Liberação de Medicamentos , Humanos , Imageamento Tridimensional , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Esferoides CelularesRESUMO
Hypoxia induces G1 arrest in many cancer cell types. Tumor cells are often exposed to hypoxia/reoxygenation, especially under acute hypoxic conditions in vivo. In this study, we investigated cell-cycle kinetics and clonogenic survival after hypoxia/reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci). Hypoxic treatment halted cell-cycle progression during mid-S to G2 phase, as determined by the cell cycle-regulated E3 ligase activities of SCF(Skp2) and APC/C(Cdh1), which are regulators of the Fucci probes; however, the DNA content of the arrested cells was equivalent to that in G1 phase. After reoxygenation, time-lapse imaging and DNA content analysis revealed that all cells reached G2 phase, and that Fucci fluorescence was distinctly separated into two fractions 24h after reoxygenation: red cells that released from G2 arrest after repairing DNA double-strand breaks (DSBs) exhibited higher clonogenic survival, whereas most cells that stayed green contained many DSBs and exhibited lower survival. We conclude that hypoxia disrupts coordination of DNA synthesis and E3 ligase activities associated with cell-cycle progression, and that DSB repair could greatly influence cell-cycle kinetics and clonogenic survival after hypoxia/reoxygenation.
Assuntos
Ciclo Celular , Corantes Fluorescentes/análise , Hipóxia/metabolismo , Oxigênio/metabolismo , Ubiquitinação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células HeLa , Humanos , Cinética , Microscopia de Fluorescência , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The effect of ionizing radiation on cell cycle kinetics in solid tumors remains largely unknown because of technical limitations and these tumors' complicated structures. In this study, we analyzed intratumoral cell cycle kinetics after X-irradiation of tumor xenografts derived from HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci), a novel system to visualize cell cycle kinetics in vivo. Cell cycle kinetics after X-irradiation was examined by using tumor sections and in vivo real-time imaging system in tumor xenografts derived from HeLa cells expressing Fucci. We found that G2 arrest was remarkably prolonged, up to 5 days after 10-Gy irradiation, in contrast to monolayer cultures where G2 arrest returned within 24 h. Cells isolated from tumors 5 days after irradiation exhibited a higher surviving fraction than those isolated immediately or one day after irradiation. In this study, we clearly demonstrated unusual post-irradiation cell cycle kinetics in tumor xenografts derived from HeLa-Fucci cells. Our findings imply that prolonged G2 arrest occurring in tumor microenvironments following irradiation may function as a radioresistance mechanism.
Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Microambiente Tumoral/efeitos da radiação , Animais , Dano ao DNA , Células HeLa , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Radiação Ionizante , Transplante HeterólogoRESUMO
Markers of cell cycle stage allow estimation of cell cycle dynamics in cell culture and during embryonic development. The Fucci system incorporates genetically encoded probes that highlight G1 and S/G2/M phases of the cell cycle allowing live imaging. However the available mouse models that incorporate Fucci are beset by problems with transgene inactivation, varying expression level, lack of conditional potential and/or the need to maintain separate transgenes-there is no transgenic mouse model that solves all these problems. To address these shortfalls we re-engineered the Fucci system to create 2 bicistronic Fucci variants incorporating both probes fused using the Thosea asigna virus 2A (T2A) self cleaving peptide. We characterize these variants in stable 3T3 cell lines. One of the variants (termed Fucci2a) faithfully recapitulated the nuclear localization and cell cycle stage specific florescence of the original Fucci system. We go on to develop a conditional mouse allele (R26Fucci2aR) carefully designed for high, inducible, ubiquitous expression allowing investigation of cell cycle status in single cell lineages within the developing embryo. We demonstrate the utility of R26Fucci2aR for live imaging by using high resolution confocal microscopy of ex vivo lung, kidney and neural crest development. Using our 3T3 system we describe and validate a method to estimate cell cycle times from relatively short time-lapse sequences that we then apply to our neural crest data. The Fucci2a system and the R26Fucci2aR mouse model are compelling new tools for the investigation of cell cycle dynamics in cell culture and during mouse embryonic development.
Assuntos
Ciclo Celular , Expressão Gênica , Genes Reporter , Integrases/metabolismo , Especificidade de Órgãos , Células 3T3 , Animais , Proliferação de Células , Sobrevivência Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fase G1 , Humanos , Rim/embriologia , Proteínas Luminescentes/metabolismo , Pulmão/embriologia , Camundongos , Mitose , Morfogênese , Fatores de Tempo , Imagem com Lapso de Tempo , Proteína Vermelha FluorescenteRESUMO
Solid cancers are composed of heterogeneous zones containing proliferating and quiescent cells. Despite considerable insight into the molecular mechanisms underlying aberrant cell cycle progression, there is limited understanding of the relationship between the cell cycle on the one side, and melanoma cell motility, invasion, and drug sensitivity on the other side. Utilizing the fluorescent ubiquitination-based cell cycle indicator (FUCCI) to longitudinally monitor proliferation and migration of melanoma cells in 3D culture and in vivo, we found that invading melanoma cells cycle actively, while G1-arrested cells showed decreased invasion. Melanoma cells in a hypoxic environment or treated with mitogen-activated protein kinase pathway inhibitors remained G1-arrested for extended periods of time, with proliferation and invasion resuming after re-exposure to a more favorable environment. We challenge the idea that the invasive and proliferative capacity of melanoma cells are mutually exclusive and further demonstrate that a reversibly G1-arrested subpopulation survives in the presence of targeted therapies.
Assuntos
Melanoma/patologia , Invasividade Neoplásica , Animais , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Corantes Fluorescentes/química , Fase G1 , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Ubiquitina/químicaRESUMO
Chk1 inhibitor acts as a potent radiosensitizer in p53-deficient tumor cells by abrogating the G2/M checkpoint. However, the effects of Chk1 inhibitor on the duration of G2 arrest have not been precisely analyzed. To address this issue, we utilized a cell-cycle visualization system, fluorescent ubiquitination-based cell-cycle indicator (Fucci), to analyze the change in the first green phase duration (FGPD) after irradiation. In the Fucci system, G1 and S/G2/M cells emit red and green fluorescence, respectively; therefore, G2 arrest is reflected by an elongated FGPD. The system also allowed us to differentially analyze cells that received irradiation in the red or green phase. Cells irradiated in the green phase exhibited a significantly elongated FGPD relative to cells irradiated in the red phase. In cells irradiated in either phase, Chk1 inhibitor reduced FGPD almost to control levels. The results of this study provide the first clear information regarding the effects of Chk1 inhibition on radiation-induced G2 arrest, with special focus on the time dimension.
Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Microscopia de Fluorescência/métodos , Proteínas Quinases/metabolismo , Quinase 1 do Ponto de Checagem , Inativação Gênica , Células HeLa , Humanos , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Doses de Radiação , Fatores de TempoRESUMO
In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of â¼500 µm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 µm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions.