Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Antibodies ; 32(3): 139-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875028

RESUMO

BACKGROUND: Staphylococcus hominis is an opportunistic pathogen that expresses surface proteins, which are adhesive proteins that play a major role in biofilm formation. Biofilm is a protective layer that provides S. hominis bacteria with greater antibiotic resistance and promotes its adherence to biomedical surfaces, facilitating its entry into the bloodstream. OBJECTIVE: This research aimed to investigate the activity of Salicylic Acid (SA) and its effect on the gene expression of biofilm genes (FnbA and FnbB genes). METHODS: A total of 150 blood specimens were collected from patients. The specimens were cultured in broth media of the BacT/ALERT® system and subcultured on blood and chocolate agar. Bacteria were detected using the VITEK2 system. FnbA and FnbB genes were detected using PCR. The broth microdilution method performed the minimum inhibitory concentration (MIC) of Salicylic acid (SA) on S. hominis isolates with both genes. Detection of the gene expression levels of FnbA and FnbB genes was assessed using Real-Time PCR(RT-PCR). RESULTS: The results showed that out of the 150 specimens collected, 35 were S. hominis. The detection of S. hominis bacteria was performed by PCR amplification of two genes FnbA and FnbB and showed 100% and 17.14% of isolates were positive for genes FnbA and FnbB, respectively. The expression of FnbA and FnbB genes was decreased in samples treated with SA compared with untreated ones. CONCLUSION: In conclusion, there is a significant impact of SA on the prevention of biofilm formation of S. hominis through the suppression of gene expression, specifically FnbA and FnbB. This could enhance susceptibility to antimicrobial treatments. However, more research is required to determine whether SA leads to the selection of resistant bacteria.


Assuntos
Biofilmes , Testes de Sensibilidade Microbiana , Ácido Salicílico , Staphylococcus hominis , Ácido Salicílico/farmacologia , Humanos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus hominis/genética , Staphylococcus hominis/efeitos dos fármacos , Adesinas Bacterianas/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/farmacologia
2.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591167

RESUMO

Virulence genes are regulated by a complex regulatory network in Staphylococcus aureus Some of the regulators are global in nature and affect many downstream genes. MgrA is a multiple-gene regulator that has been shown to activate genes involved in capsule biosynthesis and repress surface protein genes. The goal of this study was to demonstrate the biological significance of MgrA regulation of capsule and surface proteins. We found that strain Becker possessed one fibronectin-binding protein, FnbA, and that FnbA was the predominant protein involved in invasion of nonphagocytic HeLa cells. By genetic analysis of strains with different amounts of capsule, we demonstrated that capsule impeded invasion of HeLa cells by masking the bacterial cell wall-anchored protein FnbA. Using variants with different levels of mgrA transcription, we further demonstrated that MgrA negatively impacted invasion by activating the cap genes involved in capsule biosynthesis and repressing the fnbA gene. Thus, we conclude that MgrA negatively impacts cell invasion of S. aureus Becker by promoting capsule and repressing FnbA.


Assuntos
Adesinas Bacterianas/metabolismo , Cápsulas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Adesinas Bacterianas/genética , Cápsulas Bacterianas/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Polissacarídeos Bacterianos/metabolismo , Infecções Estafilocócicas/genética , Staphylococcus aureus/genética , Virulência/genética
3.
Microorganisms ; 6(4)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380651

RESUMO

In methicillin-sensitive Staphylococcus aureus (MSSA), the tricarboxylic acid (TCA) cycle is known to negatively regulate production of the major biofilm-matrix exopolysaccharide, PIA/PNAG. However, methicillin-resistant S. aureus (MRSA) produce a primarily proteinaceous biofilm matrix, and contribution of the TCA-cycle therein remains unclear. Utilizing USA300-JE2 Tn-mutants (NARSA) in genes encoding TCA- and urea cycle enzymes for transduction into a prolific biofilm-forming USA300 strain (UAS391-Erys), we studied the contribution of the TCA- and urea cycle and of proteins, eDNA and PIA/PNAG, to the matrix. Genes targeted in the urea cycle encoded argininosuccinate lyase and arginase (argH::Tn and rocF::Tn), and in the TCA-cycle encoded succinyl-CoA synthetase, succinate dehydrogenase, aconitase, isocitrate dehydrogenase, fumarate hydratase class II, and citrate synthase II (sucC::Tn, sdhA/B::Tn, acnA::Tn, icd::Tn, fumC::Tn and gltA::Tn). Biofilm formation was significantly decreased under no flow and flow conditions by argH::Tn, fumC::Tn, and sdhA/B::Tn (range OD492 0.374-0.667; integrated densities 2.065-4.875) compared to UAS391-EryS (OD492 0.814; integrated density 10.676) (p ≤ 0.008). Cellular and matrix stains, enzymatic treatment (Proteinase K, DNase I), and reverse-transcriptase PCR-based gene-expression analysis of fibronectin-binding proteins (fnbA/B) and the staphylococcal accessory regulator (sarA) on pre-formed UAS391-Erys and Tn-mutant biofilms showed: (i) < 1% PIA/PNAG in the proteinaceous/eDNA matrix; (ii) increased proteins under no flow and flow in the matrix of Tn mutant biofilms (on average 50 and 51 (±11)%) compared to UAS391-Erys (on average 22 and 25 (±4)%) (p < 0.001); and (iii) down- and up-regulation of fnbA/B and sarA, respectively, in Tn-mutants compared to UAS391-EryS (0.62-, 0.57-, and 2.23-fold on average). In conclusion, we show that the biofilm matrix of MRSA-USA300 and the corresponding Tn mutants is PIA/PNAG-independent and are mainly composed of proteins and eDNA. The primary impact of TCA-cycle inactivation was on the protein component of the biofilm matrix of MRSA-USA300.

4.
Int J Med Microbiol ; 305(1): 140-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25547264

RESUMO

Biofilm formation is considered an important virulence factor in implanted device-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Recent studies demonstrated that the ica-independent biofilms produced by MRSA are multifactorial. Despite the recent progress achieved in this field, the bacterial factors associated with biofilm formation/accumulation and regulation among clinical MRSA isolates remain largely unknown. In this study, using MRSA isolates from diverse multilocus sequence typing (MLST) clonal complexes that produce different amounts of biofilm, and a number of phenotypic and molecular approaches, we investigated the correlation between biofilm-associated factors and the ability of the bacteria to accumulate biofilm.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/fisiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Camundongos Endogâmicos BALB C , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA