Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(23): 64246-64253, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062795

RESUMO

Formaldehyde has carcinogenic properties. It is associated with nasopharyngeal cancer and causes irritation of the eyes, nose, throat, and respiratory system. Formaldehyde exposure is a significant health concern for those participating in the gross anatomy laboratory, but no learning method can substitute cadaver dissection. We performed a formaldehyde level study in 2018, which found that most of the breathing zone (S-level) and environment (R-level) formaldehyde levels during laboratory sessions at the Faculty of Medicine Siriraj Hospital exceeded international ceiling standards. In the academic year 2019, we adapted the engineering rationale of the NIOSH hierarchy of controls to facilitate formaldehyde clearance by opening the dissection table covers and increasing the area per dissection table, then measured formaldehyde ceiling levels by formaldehyde detector tube with a gas-piston hand pump during (1) body wall, (2) upper limb, (3) head-neck, (4) thorax, (5) spinal cord removal, (6) lower limb, (7) abdomen, and (8) organs of special senses dissection sessions and comparing the results with the 2018 study. The perineum region data were excluded from analyses due to the laboratory closure in 2019 from the COVID-19 outbreak. There were statistically significant differences between the 2018 and 2019 S-levels (p < 0.001) and R-levels (p < 0.001). The mean S-level decreased by 64.18% from 1.34 ± 0.71 to 0.48 ± 0.26 ppm, and the mean R-level decreased by 70.18% from 0.57 ± 0.27 to 0.17 ± 0.09 ppm. The highest formaldehyde level in 2019 was the S-level in the body wall region (1.04 ± 0.3 ppm), followed by the S-level in the abdomen region (0.56 ± 0.08 ppm) and the spinal cord removal region (0.51 ± 0.29 ppm). All 2019 formaldehyde levels passed the OSHA 15-min STEL standard (2 ppm). The R-level in the special sense region (0.06 ± 0.02 ppm) passed the NIOSH 15-min ceiling limit (0.1 ppm). Three levels for 2019 were very close: the R-level in the head-neck region (0.11 ± 0.08 ppm), the abdomen region (0.11 ± 0.08), the body wall region (0.14 ± 0.12 ppm), and the S-level in the special sense region (0.12 ± 0.04 ppm). In summary, extensive analysis and removal of factors impeding formaldehyde clearance can improve the general ventilation system and achieve the OSHA 15-min STEL standard.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Neoplasias Nasofaríngeas , Exposição Ocupacional , Humanos , Poluição do Ar em Ambientes Fechados/análise , Formaldeído/análise , Docentes , Laboratórios , Exposição Ocupacional/análise
2.
Environ Sci Pollut Res Int ; 27(14): 16521-16527, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32125638

RESUMO

This study used a formaldehyde detector tube with a gas-piston hand pump to assess ceiling levels of student breathing zone and gross laboratory environment across the 2018 academic year. The room dimension was 28.6 × 55.48 × 5.5 m. It contained 90 cadavers, each placed on a hinged cover table. We measured before and during nine body region dissections. There was a significant difference (p < 0.01) between student exposure and laboratory environment levels. The highest level was student exposure during body wall dissection (2.7 ppm), the first laboratory; students may accidentally enter body cavities. The latter two were in abdominal (1.85 ppm) and lower limb dissections (1.49 ppm). The three highest environment levels were in different regions; spinal cord removal (1.13 ppm), lower limb (0.72 ppm), and thorax (0.71 ppm) dissection. Only the perineum environment level (0.09 ppm) was below the NIOSH ceiling level (0.1 ppm), which may result from the table covers that had been opened for 2 weeks before measurement. This study finding signified the importance of student personal exposure monitoring and encouraged the academic year measurement. Because each laboratory has unique factors, those affect formaldehyde levels; dissection steps, dissection table design, cadaver storage protocol, and heating-ventilation-air conditioning system performance, for instance.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Cadáver , Formaldeído/análise , Humanos , Laboratórios , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA