Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Dev Cogn Neurosci ; 69: 101419, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098250

RESUMO

Mathematical operations are cognitive actions we take to calculate relations among numbers. Arithmetic operations, addition, subtraction, multiplication, and division are elemental in education. Addition is the first one taught in school and is most popular in functional magnetic resonance imaging (fMRI) studies. Division, typically taught last is least studied with fMRI. fMRI meta-analyses show that arithmetic operations activate brain areas in parietal, cingulate and insular cortices for children and adults. Critically, no meta-analysis examines concordance across brain correlates of separate arithmetic operations in children and adults. We review and examine using quantitative meta-analyses data from fMRI articles that report brain coordinates separately for addition, subtraction, multiplication, and division in children and adults. Results show that arithmetic operations elicit common areas of concordance in fronto-parietal and cingulo-opercular networks in adults and children. Between operations differences are observed primarily for adults. Interestingly, higher within-group concordance, expressed in activation likelihood estimates, is found in brain areas associated with the cingulo-opercular network rather than the fronto-parietal network in children, areas also common between adults and children. Findings are discussed in relation to constructivist cognitive theory and practical directions for future research.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Criança , Adulto , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Matemática , Conceitos Matemáticos , Cognição/fisiologia
2.
Front Neurosci ; 18: 1368754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091347

RESUMO

Objective: Recent studies have shown that transcutaneous vagal nerve stimulation (tVNS) holds promise as a treatment for neurological or psychiatric disease through the ability to modulate neural activity in some brain regions without an invasive procedure. The objective of this study was to identify the neural correlates underlying the effects of tVNS. Methods: Twenty right-handed healthy subjects with normal hearing participated in this study. An auricle-applied tVNS device (Soricle, Neurive Co., Ltd., Gyeongsangnam-do, Republic of Korea) was used to administer tVNS stimulation. A session consisted of 14 blocks, including 7 blocks of tVNS stimulation or sham stimulation and 7 blocks of rest, and lasted approximately 7 min (1 block = 30 s). Functional magnetic resonance imaging (fMRI) was performed during the stimulation. Results: No activated regions were observed in the fMRI scans following both sham stimulation and tVNS after the first session. After the second session, tVNS activated two clusters of brain regions in the right frontal gyrus. A comparison of the activated regions after the second session of each stimulation revealed that the fMRI following tVNS exhibited four surviving clusters. Additionally, four clusters were activated in the overall stimulated area during both the first and second sessions. When comparing the fMRI results after each type of stimulation, the fMRI following tVNS showed four surviving clusters compared to the fMRI after sham stimulation. Conclusion: tVNS could stimulate some brain regions, including the fronto-parietal network. Stimulating these regions for treating neurological or psychiatric disease might require applying tVNS for at least 3.5 min.

3.
Front Neurosci ; 18: 1355565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638697

RESUMO

Introduction: Rhythmic transcranial magnetic stimulation (rhTMS) has been shown to enhance auditory working memory manipulation, specifically by boosting theta oscillatory power in the dorsal auditory pathway during task performance. It remains unclear whether these enhancements (i) persist beyond the period of stimulation, (ii) if they can accelerate learning and (iii) if they would accumulate over several days of stimulation. In the present study, we investigated the lasting behavioral and electrophysiological effects of applying rhTMS over the left intraparietal sulcus (IPS) throughout the course of seven sessions of cognitive training on an auditory working memory task. Methods: A limited sample of 14 neurologically healthy participants took part in the training protocol with an auditory working memory task while being stimulated with either theta (5 Hz) rhTMS or sham TMS. Electroencephalography (EEG) was recorded before, throughout five training sessions and after the end of training to assess to effects of rhTMS on behavioral performance and on oscillatory entrainment of the dorsal auditory network. Results: We show that this combined approach enhances theta oscillatory activity within the fronto-parietal network and causes improvements in auditoryworking memory performance. We show that compared to individuals who received sham stimulation, cognitive training can be accelerated when combined with optimized rhTMS, and that task performance benefits can outlast the training period by ∼ 3 days. Furthermore, we show that there is increased theta oscillatory power within the recruited dorsal auditory network during training, and that sustained EEG changes can be observed ∼ 3 days following stimulation. Discussion: The present study, while underpowered for definitive statistical analyses, serves to improve our understanding of the causal dynamic interactions supporting auditory working memory. Our results constitute an important proof of concept for the potential translational impact of non-invasive brain stimulation protocols and provide preliminary data for developing optimized rhTMS and training protocols that could be implemented in clinical populations.

4.
Schizophr Res ; 267: 156-164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547718

RESUMO

We characterized the neurocognitive profile of communed-based individuals and unaffected siblings of patients with psychosis from Brazil reporting psychotic experiences (PEs). We also analyzed associations between PEs and the intra and inter-functional connectivity (FC) in the Default Mode Network (DMN), the Fronto-Parietal Network (FPN) and the Salience Network (SN) measured by functional magnetic resonance imaging. The combined sample of communed-based individuals and unaffected siblings of patients with psychosis comprised 417 (neurocognition) and 85 (FC) volunteers who were divided as having low (<75th percentile) and high (≥75th percentile) PEs (positive, negative, and depressive dimensions) assessed by the Community Assessment of Psychic Experiences. The neurocognitive profile and the estimated current brief intellectual quotient (IQ) were assessed using the digit symbol (processing speed), arithmetic (working memory), block design (visual learning) and information (verbal learning) subtests of Wechsler Adult Intelligence Scale-third edition. Logistic regression models were performed for neurocognitive analysis. For neuroimaging, we used the CONN toolbox to assess FC between the specified regions, and ROI-to-ROI analysis. In the combined sample, high PEs (all dimensions) were related to lower processing speed performance. High negative PEs were related to poor visual learning performance and lower IQ, while high depressive PEs were associated with poor working memory performance. Those with high negative PEs presented FPN hypoconnectivity between the right and left lateral prefrontal cortex. There were no associations between PEs and the DMN and SN FC. Brazilian individuals with high PEs showed neurocognitive impairments like those living in wealthier countries. Hypoconnectivity in the FPN in a community sample with high PEs is coherent with the hypothesis of functional dysconnectivity in schizophrenia.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Transtornos Psicóticos , Humanos , Masculino , Feminino , Adulto , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Irmãos , Brasil , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem
5.
bioRxiv ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352359

RESUMO

Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over six- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~ 0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.

6.
Basic Clin Neurosci ; 14(4): 529-542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38050565

RESUMO

Introduction: Frontoparietal (FPN) and cingulo-opercular network (CON) control cognitive functions needed in deductive and inductive reasoning via different functional frameworks. The FPN is a fast intuitive system while the CON is slow and analytical. The default-interventionist model presents a serial view of the interaction between intuitive and analytic cognitive systems. This study aims to examine the activity pattern of the FPN and CON from the perspective of the default-interventionist model via reasoning. Methods: We employed functional magnetic resonance imaging (fMRI) to investigate cingulo-opercular and frontoparietal network activities in 24 healthy university students during Raven and Wason reasoning tasks. Due to the different operation times of the CON and FPN, the reaction time was assessed as a behavioral factor. Results: During Raven's advanced progressive matrices (RAPM) test, both the CON and FPN were activated. Also, with the increase in the difficulty level of the Raven test, a linear increase in response time was observed. In contrast, during the Wason's selection task (WST) test, only the activity of FPN was observed. Conclusion: The results of the study support the hypothesis that the default-interventionist model of dual-process theory provides an accurate explanation of the cognitive mechanisms involved in reasoning. Thus, the response method (intuitive/analytical) determines which cognitive skills and brain regions are involved in responding. Highlights: The cingulo-opercular and fronto-parietal networks (FPNs) control cognitive functions and processes.The frontoparietal network is a fast intuitive system that utilizes short-time attention which is compatible with type 1 processing. In contrast, the cingulo-opercular network (CON) is an analytical time-consuming system that utilizes attention and working memory for a longer time, compatible with type 2 processing.The default-interventionist model of a dual-process theory states that our behaviors are controlled by type 1 processing unless we are confronted with novel and complex problems in which we have no prior experiences. Plain Language Summary: The present study examined the activity of two task-based brain networks through performing diffrent type of reasoning tasks. Fronto-parietal and Cingulo-opercular are the two task-based brain networks that are responsible for cognitive control. These two brain networks direct the way to use cognitive skills and executive functions which are necessary to perform cognitive tasks especially higher-order ones as reasoning tasks. Since the two types of inductive and deductive reasoning tasks requier two different bottom-up and top-down cognitive control respectively, different cognitive skills would be needed which affect the activity of fronto-parietal and cingulo-opercular brain networks. Our results showed that through inductive reasoning task which examined by RAVEN, both of the fronto-parietal and cingulo-opercular brain networks were activated but deductive reasoning task which examined by Wason Selection Card test, just the fronto-parietal brain network was activated. It seems that in the case of deductive reasoninf task, there is a higher probability of errors which lead to giving less correct responses. Based on our results, subjects paid not enough attention to details, so had failure to update informations that leaded to responding with errors. Inactivity of cingulo-opercular network through dedeuctive reasoning task clearly showed that the bottom-up cognitive control did not happen successfully. As a result of that, information processing did not proceed properly.

7.
Brain Res Bull ; 205: 110818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972900

RESUMO

Schizophrenia is associated with a range of cognitive deficits, among which impairments in sustained attention are particularly significant. Previous research has investigated functional changes in the fronto-parietal network (FPN) related to attentional control in schizophrenia. However, the role of structural connectivity within the FPN in sustained attention deficits remains under-explored. Utilizing diffusion tensor imaging (DTI), this study investigated white matter integrity in 75 participants, comprising 37 individuals with schizophrenia (SZ) and 38 healthy controls (HC). Psychomotor vigilance task (PVT) performance was assessed to gauge sustained attention. The SZ group showed a significant reduction in fractional anisotropy (FA) and streamline counts within white matter tracts connecting frontal and parietal regions, compared to the HC group. Further, significant negative correlations were found between PVT performance and white matter integrity measures within the SZ group, specifically in the left FPN. Our findings indicate that structural abnormalities in the FPN are associated with sustained attention deficits in schizophrenia. These results contribute to our understanding of the neurobiological mechanisms underlying cognitive impairments in schizophrenia and offer potential avenues for targeted therapeutic interventions. Further research is warranted to validate these outcomes and explore their clinical implications.


Assuntos
Transtornos Cognitivos , Esquizofrenia , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo , Esquizofrenia/complicações , Imagem de Tensor de Difusão/métodos
8.
Front Psychiatry ; 14: 1289300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034912

RESUMO

Objective: The intricate relationship between sleep deprivation (SD) and cognitive performance has long been a subject of research. Our study offers a novel angle by closely examining the neurobiological underpinnings of sustained attention deficits through the lens of the fronto-parietal network (FPN). Using state-of-the-art imaging techniques, we delve into the changes in spontaneous brain activity after SD and explore their associations with performance on the psychomotor vigilance task (PVT). Methods: We conducted an elaborate investigation involving 64 healthy, right-handed participants who underwent resting-state functional MRI scans before and after experiencing 24 h of sleep deprivation. Employing sophisticated statistical analyses, we scrutinized the changes in fractional amplitude of low-frequency fluctuations (fALFF) through paired t-tests. Pearson correlation analyses were then applied to dissect the associations between these neurobiological shifts and behavioral outcomes in PVT. Results: The study yielded remarkable findings, revealing a dramatic decrease in fALFF values within critical areas of the FPN following SD. These alterations predominantly occurred in the frontal and parietal gyri and were inversely correlated with PVT performance metrics. Furthermore, we discovered that baseline fALFF values in the left dorsolateral prefrontal cortex (DLPFC) have the potential to serve as compelling neurobiological markers, with high discriminatory power in identifying individual responses to the adverse effects of SD on cognitive performance. Conclusion: Our groundbreaking research underscores the pivotal role that the FPN plays in modulating attention and executive function, especially under the challenging conditions brought about by sleep deprivation. The findings offer critical insights that could shape the way we understand, assess, and potentially mitigate the cognitive impacts of SD, setting the stage for future research in this riveting domain.

9.
Psychophysiology ; 60(10): e14355, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254582

RESUMO

The present study uses functional magnetic resonance image (fMRI) to examine the overlapping and specific neural correlates of contextualized emotional conflict control and domain-general conflict control. During a performance on emotional and domain-general conflict tasks, conjunction analyses showed that neural areas distributed in the frontoparietal network were engaged in both processes, supporting the notion that similar neural mechanisms are implemented in these two types of control. Importantly, disjunction analyses revealed a broader neural recruitment of emotional conflict control compared to domain-general conflict control as shown by the possible lateralization of the lateral prefrontal cortex (lPFC), such that emotional conflict control significantly involved the left lPFC while domain-general conflict control seemly involved the right lPFC. Results of generalized psychophysiological interaction (gPPI) analyses further demonstrated that emotional conflict control, compared to domain-general conflict control, elicited broader synergistic activities in individuals' brain networks. Together, these findings offer novel and compelling neural evidence that furthers our understanding of the complex relationship between domain-general and emotional conflict control.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Conflito Psicológico , Emoções/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem
10.
Dev Cogn Neurosci ; 60: 101218, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36821878

RESUMO

The COVID-19 pandemic has made an unprecedented shift in children's daily lives. Children are increasingly spending time with screens to learn and connect with others. As the online environment rapidly substitutes in-person experience, understanding children's neuropsychological trajectories associated with screen experiences is important. Previous findings suggest that excessive screen use can lead children to prefer more immediate rewards over delayed outcomes. We hypothesized that increased screen time delays a child's development of inhibitory control system in the brain (i.e., fronto-striatal circuitry). By analyzing neuropsychological data from 8324 children (9-11ys) from the ABCD Study, we found that children who had more screen time showed a higher reward orientation and weaker fronto-striatal connectivity. Importantly, we found that the daily screen exposure mediated the effect of reward sensitivity on the development of the inhibitory control system in the brain over a two year period. These findings suggest possible negative long-term impacts of increased daily screen time on children's neuropsychological development. The results further demonstrated that screen time influences dorsal striatum connectivity, which suggests that the effect of daily screen use is a habitual seeking behavior. The study provides neural and behavioral evidence for the negative impact of daily screen use on developing children.


Assuntos
Encéfalo , Desenvolvimento Infantil , Vias Neurais , Psicologia da Criança , Recompensa , Tempo de Tela , Criança , Humanos , Encéfalo/fisiologia , Encéfalo/fisiopatologia , COVID-19 , Seguimentos , Neuropsicologia , Corpo Estriado/fisiologia , Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Reprodutibilidade dos Testes , Masculino , Feminino
11.
Cogn Emot ; 37(2): 220-237, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36583855

RESUMO

Attentional control theory (ACT) was proposed to account for trait anxiety's effects on cognitive performance. According to ACT, impaired processing efficiency in high anxiety is mediated through inefficient executive processes that are needed for effective attentional control. Here we review the central assumptions and predictions of ACT within the context of more recent empirical evidence from neuroimaging studies. We then attempt to provide an account of ACT within a framework of the relevant cognitive processes and their associated neural mechanisms and networks, particularly the fronto-parietal, cingular-opercula, and default mode networks. Future research directions, including whether a neuroscience-informed model of ACT can provide a platform for novel neurocognitive intervention for anxiety, are also discussed.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Ansiedade , Transtornos de Ansiedade , Lobo Parietal , Encéfalo , Vias Neurais
12.
Int J Geriatr Psychiatry ; 38(1): e5851, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36494919

RESUMO

INTRODUCTION: Executive function deficits (EFD) in late life depression (LLD) are associated with poor outcomes. Dysfunction of the cognitive control network (CCN) has been posited in the pathophysiology of LLD with EFD. METHODS: Seventeen older adults with depression and EFD were randomized to iTBS or sham for 6 weeks. Intervention was delivered bilaterally using a recognized connectivity target. RESULTS: A total of 89% (17/19) participants completed all study procedures. No serious adverse events occurred. Pre to post-intervention change in mean Montgomery-Asberg-depression scores was not different between iTBS or sham, p = 0.33. No significant group-by-time interaction for Montgomery-Asberg Depression rating scale scores (F 3, 44  = 0.51; p = 0.67) was found. No significant differences were seen in the effects of time between the two groups on executive measures: Flanker scores (F 1, 14  = 0.02, p = 0.88), Dimensional-change-card-sort scores F 1, 14  = 0.25, p = 0.63, and working memory scores (F 1, 14  = 0.98, p = 0.34). The Group-by-time interaction effect for functional connectivity (FC) within the Fronto-parietal-network was not significant (F 1, 14  = 0.36, p = 0.56). No significant difference in the effect-of-time between the two groups was found on FC within the Cingulo-opercular-network (F 1, 14  = 0, p = 0.98). CONCLUSION: Bilateral iTBS is feasible in LLD. Preliminary results are unsupportive of efficacy on depression, executive function or target engagement of the CCN. A future Randomized clinical trial requires a larger sample size with stratification of cognitive and executive variables and refinement in the target engagement.


Assuntos
Função Executiva , Estimulação Magnética Transcraniana , Humanos , Idoso , Estimulação Magnética Transcraniana/métodos
13.
Brain Stimul ; 15(6): 1439-1447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36328341

RESUMO

BACKGROUND: Using transcranial alternating current stimulation (tACS) to improve visuospatial working memory (vsWM) has received considerable attention over the past few years. However, fundamental issues remain, such as the optimal frequency, the generality of behavioral effects, and the anatomical specificity of stimulation. OBJECTIVES: Here we examined the effects of two theory-driven tACS protocols for improving vsWM on behavioral and electroencephalogram (EEG) measures. METHODS: Twenty adults each completed 3 HD-tACS conditions (Tuned, Slow, and Sham) on two separate days. The Tuned condition refers to a situation in which the frequency of tACS is tuned to individual theta peak measured during a vsWM task. By contrast, the frequency was fixed to 4 Hz in the Slow condition. A high-definition tACS was deployed to target smaller frontal and parietal regions for increasing their phase-locking values. During each tACS condition, participants performed vsWM, mental rotation (MR), and arithmetic tasks. Resting-state EEG (rs-EEG) was recorded before and after each condition. RESULTS: Compared with Sham, Tuned but not Slow improved both vsWM and MR but not arithmetics. The rs-EEG recording showed an increased fronto-parietal synchrony for Tuned, and this increase in synchronicity was correlated with the behavioral improvement. A follow-up study showed no behavioral improvement in Tuned with an anti-phase setting. CONCLUSION: We provide the first evidence that simulating right fronto-parietal network with the tuned frequency increases the interregional synchronicity and improves performance on two spatial tasks. The results provide insight into the structure of spatial abilities as well as suggestions for stimulating the fronto-parietal network.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Eletroencefalografia , Seguimentos , Memória de Curto Prazo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
14.
Brain Sci ; 12(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36138937

RESUMO

Balanced time perspective refers to the ability to flexibly switch between different temporal foci in an adaptive manner according to the current context. Functional connectivity within the default mode network (DMN) has been suggested to support balanced time perspective. The coupling between the DMN and fronto-parietal network (FPN) may drive many important expressions of internally directed cognition. However, it remains unclear whether balanced time perspective is supported by the interaction between the FPN and DMN. To examine these issues, we recruited 91 participants (52 males with mean age of 19.6, and 39 females with mean age of 20.0) to undergo resting-state brain imaging scan and to complete a questionnaire measuring balanced time perspective. Seed-based voxel-wise functional connectivity analyses implicated midline DMN regions including the anterior medial prefrontal cortex (amPFC) and posterior cingulate cortex (PCC) along with the anterior cingulate cortex (ACC), precuneus, and cerebellum in supporting a balanced time perspective. More importantly, functional connectivity between the right amPFC and right dorsal lateral prefrontal cortex (DLPFC) in the FPN was found to associate with balanced time perspective. Our findings suggest the importance of coordinated brain activity in supporting a balanced time perspective.

15.
Front Aging Neurosci ; 14: 930877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118681

RESUMO

A right-hemisphere dominance for visuospatial attention has been invoked as the most prominent neural feature of pseudoneglect (i.e., the leftward visuospatial bias exhibited in neurologically healthy individuals) but the neurophysiological underpinnings of such advantage are still controversial. Previous studies investigating visuospatial bias in multiple-objects visual enumeration reported that pseudoneglect is maintained in healthy elderly and amnesic mild cognitive impairment (aMCI), but not in Alzheimer's disease (AD). In this study, we aimed at investigating the neurophysiological correlates sustaining the rearrangements of the visuospatial bias along the progression from normal to pathological aging. To this aim, we recorded EEG activity during an enumeration task and analyzed intra-hemispheric fronto-parietal and inter-hemispheric effective connectivity adopting indexes from graph theory in patients with mild AD, patients with aMCI, and healthy elderly controls (HC). Results revealed that HC showed the leftward bias and stronger fronto-parietal effective connectivity in the right as compared to the left hemisphere. A breakdown of pseudoneglect in patients with AD was associated with both the loss of the fronto-parietal asymmetry and the reduction of inter-hemispheric parietal interactions. In aMCI, initial alterations of the attentional bias were associated with a reduction of parietal inter-hemispheric communication, but not with modulations of the right fronto-parietal connectivity advantage, which remained intact. These data provide support to the involvement of fronto-parietal and inter-parietal pathways in the leftward spatial bias, extending these notions to the complex neurophysiological alterations characterizing pathological aging.

16.
Front Neurosci ; 16: 866734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968385

RESUMO

Cognitive tasks induce fluctuations in the functional connectivity between brain regions which constitute cognitive networks in the human brain. Although several cognitive networks have been identified, consensus still cannot be achieved on the precise borders and distribution of involved brain regions for each network, due to the multifarious use of diverse brain atlases in different studies. To address the problem, the current study proposed a novel approach to generate a fused cognitive network with the optimal performance in discriminating cognitive states by using graph learning, following the synthesization of one cognitive network defined by different brain atlases, and the construction of a hierarchical framework comprised of one main version and other supplementary versions of the specific cognitive network. As a result, the proposed method demonstrated better results compared with other machine learning methods for recognizing cognitive states, which was revealed by analyzing an fMRI dataset related to the mental arithmetic task. Our findings suggest that the fused cognitive network provides the potential to develop new mind decoding approaches.

17.
Eur J Neurosci ; 56(7): 5070-5089, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997580

RESUMO

The current standard model of language production involves a sensorimotor dorsal stream connecting areas in the temporo-parietal junction with those in the inferior frontal gyrus and lateral premotor cortex. These regions have been linked to various aspects of word production such as phonological processing or articulatory programming, primarily through neuropsychological and functional imaging group studies. Most if not all the theoretical descriptions of this model imply that the same network should be identifiable across individual speakers. We tested this hypothesis by quantifying the variability of activation observed across individuals within each dorsal stream anatomical region. This estimate was based on electrical activity recorded directly from the cerebral cortex with millisecond accuracy in awake epileptic patients clinically implanted with intracerebral depth electrodes for pre-surgical diagnosis. Each region's activity was quantified using two different metrics-intra-cerebral evoked related potentials and high gamma activity-at the level of the group, the individual and the recording contact. The two metrics show simultaneous activation of parietal and frontal regions during a picture naming task, in line with models that posit interactive processing during word retrieval. They also reveal different levels of between-patient variability across brain regions, except in core auditory and motor regions. The independence and non-uniformity of cortical activity estimated through the two metrics push the current model towards sub-second and sub-region explorations focused on individualized language speech production. Several hypotheses are considered for this within-region heterogeneity.


Assuntos
Epilepsia , Córtex Motor , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Idioma
18.
Front Hum Neurosci ; 16: 883337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795258

RESUMO

Transcranial magnetic stimulation (TMS) was used to test the functional role of parietal and prefrontal cortical regions activated during a playing card Guilty Knowledge Task (GKT). Single-pulse TMS was applied to 15 healthy volunteers at each of three target sites: left and right dorsolateral prefrontal cortex and midline parietal cortex. TMS pulses were applied at each of five latencies (from 0 to 480 ms) after the onset of a card stimulus. TMS applied to the parietal cortex exerted a latency-specific increase in inverse efficiency score and in reaction time when subjects were instructed to lie relative to when asked to respond with the truth, and this effect was specific to when TMS was applied at 240 ms after stimulus onset. No effects of TMS were detected at left or right DLPFC sites. This manipulation with TMS of performance in a deception task appears to support a critical role for the parietal cortex in intentional false responding, particularly in stimulus selection processes needed to execute a deceptive response in the context of a GKT. However, this interpretation is only preliminary, as further experiments are needed to compare performance within and outside of a deceptive context to clarify the effects of deceptive intent.

19.
Brain Stimul ; 15(4): 968-979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35792318

RESUMO

BACKGROUND: Healthy older adults show a decrease in motor performance and motor learning capacity as well as in working memory (WM) performance. WM has been suggested to be involved in motor learning processes, such as sequence learning. Correlational evidence has shown the involvement of the frontoparietal network (FPN), a network underlying WM processes, in motor sequence learning. However, causal evidence is currently lacking. Non-invasive brain stimulation (NIBS) studies have focused so far predominantly on motor-related areas to enhance motor sequence learning while areas associated with more cognitive aspects of motor learning have not yet been addressed. HYPOTHESIS: In this study, we aim to provide causal evidence for the involvement of WM processes and the underlying FPN in the successful performance of a motor sequence learning task by using theta transcranial alternating current stimulation (tACS) targeting the FPN during a motor sequence learning task. METHODS: In a cohort of 20 healthy older adults, we applied bifocal tACS in the theta range to the FPN during a sequence learning task. With the use of a double-blind, cross-over design, we tested the efficacy of active compared to sham stimulation. Two versions of the motor task were used: one with high and one with low WM load, to explore the efficacy of stimulation on tasks differing in WM demand. Additionally, the effects of stimulation on WM performance were addressed using an N-back task. The tACS frequency was personalized by means of EEG measuring the individual theta peak frequency during the N-back task. RESULTS: The application of personalized theta tACS to the FPN improved performance during the motor sequence learning task with high WM load (p < .001), but not with low WM load. Active stimulation significantly improved both speed (p < .001), and accuracy (p = .03) during the task with high WM load. In addition, the stimulation paradigm improved performance on the N-back task for the 2-back task (p = .013), but not for 1-back and 3-back. CONCLUSION: The performance during a motor sequence learning task can be enhanced by means of personalized bifocal theta tACS to the FPN when WM load is high, indicating that the efficacy of this stimulation paradigm is dependent on the cognitive demand during the learning task. These data provide further causal evidence for the critical involvement of WM processes and the FPN during the execution of a motor sequence learning task in healthy older. These findings open new exciting possibilities to counteract the age-related decline in motor performance, learning capacity and WM performance.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Idoso , Cognição/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Humanos , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia
20.
Curr Opin Neurobiol ; 76: 102605, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850060

RESUMO

Attention is fundamental to all cognition. In the primate brain, it is implemented by a large-scale network that consists of areas spanning across all major lobes, also including subcortical regions. Classical attention accounts assume that control over the selection process in this network is exerted by 'top-down' mechanisms in the fronto-parietal cortex that influence sensory representations via feedback signals. More recent studies have expanded this view of attentional control. In this review, we will start from a traditional top-down account of attention control, and then discuss more recent findings on feature-based attention, thalamic influences, temporal network dynamics, and behavioral dynamics that collectively lead to substantial modifications. We outline how the different emerging accounts can be reconciled and integrated into a unified theory.


Assuntos
Atenção , Lobo Parietal , Animais , Encéfalo , Cognição , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA