Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.815
Filtrar
1.
J Environ Manage ; 370: 122739, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39368388

RESUMO

INTRODUCTION: Microbial fuel cell (MFC) is a variant of the bio-electro-chemical system that uses microorganisms as biocatalysts to generate bioenergy by oxidizing organic matter. Due to its two-prong feature of simultaneously treating wastewater and generating electricity, it has drawn extensive interest by scientific communities around the world. However, the pollution purifying capacity and power production of MFC at the laboratory scale have tended to remain steady, and there have been no reports of a performance breakthrough. PROBLEM STATEMENT: This research was conducted to produce electricity and evaluate the efficiency of chemical oxygen demand (COD) removal from wastewater containing Citric Acid using a two-chamber microbial fuel cell without an intermediary. METHODOLOGY: In this research, citric acid factory wastewater was used as the substrate, graphite as the electrode, Nafion membrane for proton transfer from anode to cathode, and grape waste as a carbon source. These Experiments were performed at room temperature and neutral pH. Also, the effect of three independent variables mixed liquor suspended solid (MLSS), Carbon: Nitrogen: Phosphorus stoichiometric ratio (COD:TKN:P), and grape waste on electricity production and wastewater treatment was investigated. Then, the optimal values of each variable were determined under favorable conditions for electricity generation and COD reduction. RESULTS: The MFC was conducted at the optimal values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P 140:10:1, and the grape waste dose of 1.4 g/L. At these conditions, the obtained maximum power density and current density were 18228.10 mW/m2 and 244.44 mA/m2, respectively. The maximum COD removal was 72% achieved in the values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P equal to 260:10:1, and 1.4 g/L of grape waste. The maximum open circuit voltage was also recorded as 678 mV, obtained at MLSS 3000 mg/L, the stoichiometric ratio of COD:TKN:P equal to 200:10:1, and for a grape waste dose of 2 g/L. CONCLUSION: The results of this research showed that the use of grape waste to supply glucose to microorganisms in the MFC system has a significant effect on increasing energy production and COD removal, and it is recommended to conduct additional research in the future to improve the efficiency. However, scalability and practical application potential of these integrated technologies are the challenges towards their real-world applications in small scale trials.

2.
Sci Rep ; 14(1): 23318, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375479

RESUMO

The design of the reactant gas flow field structure in bipolar plates significantly influences the performance of proton exchange membrane fuel cells (PEMFCs). In this study, we introduced four innovative U-shaped flow field designs, namely: In-Out Multi-U, Out-In Multi-U, Distro In-Out Multi-U, and Distro Out-In Multi-U. To investigate the impact of these various flow fields on PEMFC performance, we conducted computational fluid dynamics (CFD) numerical simulations, validated through model experiments. Our results indicate that the Distro Out-In Multi-U flow field offers notable advantages compared to the conventional parallel flow field (CPFF) and conventional serpentine flow field (CSFF). These benefits include reduced inlet and outlet pressures, lower liquid water content, more uniform liquid water distribution, and a more even current density distribution. Furthermore, the Distro Out-In Multi-U design demonstrates improved efficiency, consuming less H2 (91.9%) than the CSFF while achieving a higher net power density output (10.1%). As a result, for the same power output, the Distro Out-In Multi-U utilizes only 83.5% of the H2 consumed by the CSFF. In summary, the U-shaped structured flow field exhibits superior output performance, enhanced energy efficiency, and improved resistance to flooding. These findings suggest that the U-shaped flow field design holds significant potential as a reactive flow field for PEMFCs.

3.
J Environ Manage ; 370: 122797, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383744

RESUMO

Glyphosate (GLY), a globally-used organophosphate herbicide, is frequently detected in various environmental matrices, including water, prompting significant attention due to its persistence and potential ecological impacts. In light of this environmental concern, innovative remediation strategies are warranted. This study utilized Serratia sp. AC-11 isolated from a tropical peatland as a biocatalyst in a microbial fuel cell (MFC) coupled with a homogeneous electron-Fenton (EF) process to degrade glyphosate in aqueous medium. After coupling the processes with a resistance of 100 Ω, an output voltage value of 0.64 V was obtained and maintained stable throughout the experiment. A bacterial biofilm of Serratia sp. AC-11 was formed on the carbon felt electrode, confirmed by attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). In the anodic chamber, the GLY biodegradation rate was 100% after 48 h of experimentation, with aminomethylphosphonic acid (AMPA) remaining in the solution. In the cathodic chamber, the GLY degradation rate for the EF process was 69.5% after 48 h experimentation, with almost all of the AMPA degraded by the in situ generated hydroxyl radicals. In conclusion, the results demonstrated that Serratia sp. AC-11 not only catalyzed the biodegradation of glyphosate but also facilitated the generation of electrons for subsequent transfer to initiate the EF reaction to degrade glyphosate. This dual functionality emphasizes the unique capabilities of Serratia sp. AC-11, it as an electrogenic microorganism with application in innovative bioelectrochemical processes, and highlighting its role in sustainable strategies for environmental remediation.

4.
Chem Rec ; : e202400114, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380349

RESUMO

Proton exchange membrane fuel cells (PEMFCs) have proven to be a promising power source for various applications ranging from portable devices to automotive and stationary power systems. The production of PEMFC involves numerous stages in the value chain, with each stage presenting unique challenges and opportunities to improve the overall performance and durability of the PEMFC stack. These include steps such as manufacturing the key components such as the platinum-based catalyst, processing these components into the membrane electrode assemblies (MEAs), and stacking the MEAs to ultimately produce a PEMFC stack. However, it is also known that the break-in or conditioning phase of the stack plays a crucial role in the final performance as well as durability. It involves several key phenomena such as hydration of the membrane, swelling of the ionomer, redistribution of the catalyst and the creation of suitable electrochemical interfaces - establishment of the triple phase boundary. These improve the proton conductivity, the mass transport of reactants and products, the catalytic activity of the electrode and thus the overall efficiency of the FC. The cruciality of break-in is demonstrated by the improvement in performance, which can even be over 50 % compared to the initial state. The state-of-the-art approach for the break-in of MEAs involves an electrochemical protocol, such as voltage cycling, using a PEMFC testing station. This method is time-consuming, equipment-intensive, and costly. Therefore, new, elegant, and cost-effective solutions are needed. Nevertheless, the primary aim is to achieve maximum/optimal performance so that it is fully operational and ready for the market. It is therefore essential to better understand and deconvolute these complex mechanisms taking place during break-in/conditioning. Strategies include controlled humidity and temperature cycling, novel electrode materials and other advanced break-in methods such as air braking, vacuum activation or steaming. In addition, it is critical to address the challenges associated with standardisation and quantification of protocols to enable interlaboratory comparisons to further advance the field.

5.
Angew Chem Int Ed Engl ; : e202415691, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375149

RESUMO

Zeolitic-imidazolate frameworks (ZIFs) are among the most efficient precursors for the synthesis of atomically dispersed Fe-N/C materials, which are promising catalysts for enhancing the performance of Zn-air batteries (ZABs) and proton exchange fuel cells (PEMFCs). However, existing ZIF-derived Fe-N/C electrocatalysts mostly consist of microporous materials, leading to insufficient mass transport and inadequate battery/cell performance. In this study, we synthesize an atomically dispersed meso/microporous Fe-N/C material with curved Fe-N4 active sites, denoted as FeSA-N/TC, through the pyrolysis of hemin-modified ZIF films on ZnO nanorods, obtained from the self-assembly reaction between Zn2+ from ZnO hydrolysis and 2-methylimidazole. Density functional theory calculations demonstrate that the curved Fe-N4 active sites can weaken the intermediate adsorptions, resulting in lower free energy barriers and enhanced performance during oxygen reduction reaction (ORR). Specifically, FeSA-N/TC exhibits exceptional ORR performance with half-wave potentials of 0.925 V in alkaline media and 0.825 V in acidic media. When used as the cathodic catalyst in PEMFCs and ZABs, FeSA-N/TC achieves high peak power densities (H2-O2 PEMFC: 1100 mW cm-2; H2-Air PEMFC: 715 mW cm-2; liquid-state ZAB: 228 mW cm-2; solid-state ZAB: 112 mW cm-2), demonstrating its feasibility and efficiency in practical applications.

6.
Bioresour Technol ; : 131575, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39370010

RESUMO

Microbial fuel cell (MFC) and subsequent struvite crystallization are available low-carbon environmental- friendly techniques for resource utilization of waste activated sludge (WAS). In this study, low temperature thermo-alkaline pretreatment (LTTAP) was innovatively proposed for enhancing MFC electricity generation and subsequent struvite crystallization from WAS. The results indicated that LTTAP at 75 °C and pH 10 not only substantially shortened the start-up time of MFC to 3-4 days, but also significantly increased maximum power density to 5.38 W/m3. Moreover, thermo-alkaline pretreated WAS effectively exhibited stable and high output voltage over long period, compared to unpretreated WAS. Furthermore pretreated WAS can provide an effective pH buffering function for MFC operation. In addition, about 90 % of phosphate in the pretreated WAS supernatant was recovered by struvite crystallization. The findings herein provided a new route for enhancing electricity production and nutrient recovery from WAS, which can realize the full-scale applicationof WAS resource utilization.

7.
Physiol Rep ; 12(19): e70070, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39358847

RESUMO

Measurement of ethanol above the skin surface (supradermal) is used to monitor blood alcohol concentrations (BAC) in both legal and consumer settings. Previously, the relationship between supradermal alcohol concentration (SAC) and BAC was described using partial and ordinary differential equations (PDE model: J. Appl. Physiol. 100: 649-55, 2006). Using a range of BAC profiles by varying absorption times and peak concentrations, the PDE model accurately predicted experimental measures of SAC. Recently, other mathematical models have relied on the PDE model. This paper proposes a new approach to modeling transdermal ethanol kinetics using a mass transfer coefficient and only ordinary differential equations (ODE model). Using a range of BAC profiles, the ODE model performed very similarly to the PDE model. The ODE model had slightly slower washout rates and slightly slower times to peak SAC and to zero SAC. Similar to the PDE model, a sensitivity analysis on the ODE model showed changes in solubility and diffusivity within the stratum corneum, stratum corneum thickness, and the volume of gas above the skin affected model performance. This new model will streamline integration into larger physiologic models, reduce computation time, and decrease the time to transform skin alcohol measurements to blood alcohol concentrations.


Assuntos
Etanol , Modelos Biológicos , Absorção Cutânea , Pele , Etanol/administração & dosagem , Etanol/farmacocinética , Etanol/sangue , Humanos , Pele/metabolismo , Cinética , Concentração Alcoólica no Sangue , Administração Cutânea
8.
Small ; : e2406627, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363828

RESUMO

Solid oxide fuel cells (SOFCs) are considered as advanced energy conversion technologies due to the high efficiency, fuel flexibility, and all-solid structure. Nevertheless, their widespread applications are strongly hindered by the high operational temperatures, limited material selection choices, inferior long-term stability, and relatively high costs. Therefore, reducing operational temperatures of SOFCs to intermediate-temperature (IT, 500-800 °C) range can remarkably promote the practical applications by enabling the use of low-cost materials and enhancing the cell stability. Nevertheless, the conventional cathodes for high-temperature SOFCs display inferior electrocatalytic activity for oxygen reduction reaction (ORR) at reduced temperatures. Barium cobaltite (BaCoO3-δ)-based perovskite oxides are regarded as promising cathodes for IT-SOFCs because of the high free lattice volume and large oxygen vacancy content. However, BaCoO3-δ-based perovskite oxides suffer from poor structural stability, inferior thermal compatibility, and insufficient ionic conductivity. Herein, an in-time review about the recent advances in BaCoO3-δ-based cathodes for IT-SOFCs is presented by emphasizing the material design strategies including functional/selectively doping, deficiency control, and (nano)composite construction to enhance the ORR activity/durability and thermal compatibility. Finally, the currently existed challenges and future research trends are presented. This review will provide valuable insights for the development of BaCoO3-δ-based electrocatalysts for various energy conversion/storage technologies.

9.
Adv Sci (Weinh) ; : e2407570, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352320

RESUMO

Anode cell reversal typically leads to severe carbon corrosion and catalyst layer collapse, which significantly compromises the durability of proton exchange membrane fuel cells. Herein, three types of commercial carbon supports with various structures are facilely coated by polyaniline (PANI) and subsequently fabricated into reversal-tolerant anodes (RTAs). Consequently, the optimized PANI-coated catalyst RTAs demonstrate enhanced polarization performance and improved reversal tolerance compared to their uncoated counterparts, thus confirming the universality of this coating strategy. Essentially, the surface engineering introduced by PANI coating incorporates abundant N-groups and enhances coulombic interactions with ionomer side chains, which in turn reduces lower carbon exposure, promotes more uniform Pt deposition, and ensures better ionomer distribution. Accordingly, the membrane-electrode-assembly containing the Pt/PANI/XC-72R-1+IrO2 RTA presents a 100 mV (at 2500 mA cm-2) polarization performance improvement and 26-fold reduction in the degradation rate compared to the uncoated counterpart. This work provides a universal strategy for developing durable anodes and lays the groundwork for the practical fabrication of high-performance, low-degradation RTA.

10.
Heliyon ; 10(17): e36678, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319152

RESUMO

This study is presented to examine the performance of a newly proposed metaheuristic algorithm within discrete and continuous search spaces. Therefore, the multithresholding image segmentation problem and parameter estimation problem of both the proton exchange membrane fuel cell (PEMFC) and photovoltaic (PV) models, which have different search spaces, are used to test and verify this algorithm. The traditional techniques could not find approximate solutions for those problems in a reasonable amount of time, so researchers have used metaheuristic algorithms to overcome those shortcomings. However, the majority of metaheuristic algorithms still suffer from slow convergence speed and stagnation into local minima problems, which makes them unsuitable for tackling these optimization problems. Therefore, this study proposes an improved nutcracker optimization algorithm (INOA) for better solving those problems in an acceptable amount of time. INOA is based on improving the performance of the standard algorithm using a newly proposed convergence improvement strategy that aims to improve the convergence speed and prevent stagnation in local minima. This algorithm is first applied to estimating the unknown parameters of the single-diode, double-diode, and triple-diode models for a PV module and a solar cell. Second, four PEMFC modules are used to further observe INOA's performance for the continuous optimization challenge. Finally, the performance of INOA is investigated for solving the multi-thresholding image segmentation problem to test its effectiveness in a discrete search space. Several test images with different threshold levels were used to validate its effectiveness, stability, and scalability. Comparison to several rival optimizers using various performance indicators, such as convergence curve, standard deviation, average fitness value, and Wilcoxon rank-sum test, demonstrates that INOA is an effective alternative for solving both discrete and continuous optimization problems. Quantitively, INOA could solve those problems better than the other rival optimizers, with improvement rates for final results ranging between 0.8355 % and 3.34 % for discrete problems and 4.97 % and 99.9 % for continuous problems.

11.
J Environ Manage ; 370: 122637, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326072

RESUMO

Sustainable Cr(VI) reduction by microbial fuel cell (MFC) is a major challenge due to the electrode passivation and available electron donors. In this study, the chromate removal across a period of more than three months in a membrane-less TPBC-MFC with solid watermelon rind (SWMR) as electron donors was investigated. The TPBC benefited the Cr(VI) reduction and voltage output owing to the enhanced mass transfer. The average Cr(VI) removal efficiency (RE) of 97%, effluent COD of 80 mg/L and voltage output of 130 mV were achieved during the long-term operation on the TPBC-MFC. The SEM-EDS analysis showed that all biofilms were predominated by rod- and coccus-shaped bacteria and the Cr(VI) reduction was mainly carried out by the S-cathode. The XPS, XRD and FT-IR analysis revealed that the major product of cathodic Cr(VI) reduction was a Cr(III) precipitate in the form of Cr(OH)3. Microbial community structure disclosed that fermentation microorganisms (e.g. Anaeroarcus) and electroactive bacteria (e.g. Porphyromonadaceae) jointly responsible for SWMR degradation and electricity generation were dominant at the anode, while the chromate-associated microorganisms (e.g. Comamonadaceae and Cloacibacterium) dominated at the cathode. The biofilms adsorbing Cr(OH)3 precipitates fell off from the cathode periodically to avoid the passivation. Overall, our study suggests a really sustainable approach with which a goal of simultaneously reusing watermelon rind, reducing Cr(VI) and producing electricity was attained perfectly.

12.
Bioelectrochemistry ; 161: 108829, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39326346

RESUMO

The rational development of high-performance anode and cathode electrodes for microbial fuel cells (MFCs) is crucial for enhancing MFC performance. However, complex synthesis methods and single-performance electrode materials hinder their large-scale implementation. Here, three-dimensional hierarchical porous (3DHP) Fe3O4/Fe-N-C composites were prepared via the hard template method. Notably, Fe3O4/Fe-N-C-0.04-600 demonstrated uniformly dispersed Fe3O4 nanoparticles and abundant Fe-Nx and pyridinic nitrogen, showing excellent catalytic performance for oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.74 V (vs. RHE), surpassing Pt/C (0.66 V vs. RHE). Moreover, Fe3O4/Fe-N-C-0.04-600 demonstrated favorable biocompatibility as an anode material, enhancing anode biomass and extracellular electron transfer efficiency. Sequencing results confirmed its promotion of electrophilic microorganisms in the anode biofilm. MFCs employing Fe3O4/Fe-N-C-0.04-600 as both anode and cathode materials achieved a maximum power density of 831.8 ± 27.7 mW m-2, enduring operation for 38 days. This study presents a novel approach for rational MFC design, emphasizing bifunctional materials capable of serving as anode materials for microorganism growth and as cathode catalysts for ORR catalysis.

13.
Molecules ; 29(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339314

RESUMO

Coated SS316L is a potential alternative to the graphite bipolar plates (BPPs) used in proton-exchange membrane fuel cells (PEMFCs) owing to their low manufacturing cost and machinability. Due to their susceptibility to corrosion and passivation, which increases PEMFC ohmic resistance, protective and conductive coatings on SS316L have been developed. However, coating adhesion is one of the challenges in the harsh acidic environment of PEMFCs, affecting the performance and durability of BPPs. This study compares mechanical polishing and the frequently adopted chemical etchants for SS316L: Adler's, V2A, and Carpenter's etchant with different etching durations and their impact on the wettability, adhesion, and corrosion resistance of a Nb-coated SS316L substrate. Contact angle measurements and laser microscopy revealed that all etching treatments increased the hydrophobicity and surface roughness of SS316L substrates. Ex situ potentiodynamic and potentiostatic polarization tests and interfacial contact resistance analysis revealed high corrosion resistance, interfacial conductivity, and adhesion of the Nb-coated SS316L substrate pretreated with V2A (7 min) and Adler's (3 min) etchant. Increased hydrophobicity (contact angle = 101°) and surface roughness (Ra = 74 nm) achieved using V2A etchant led to the lowest corrosion rate (3.3 µA.cm-2) and interfacial resistance (15.4 mΩ.cm2). This study established pretreatment with V2A etchant (a solution of HNO3, HCl, and DI water (1:9:23 mole ratio)) as a promising approach for improving the longevity, electrochemical stability, and efficiency of the coated SS316L BPPs for PEMFC application.

14.
Molecules ; 29(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339375

RESUMO

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged as a pivotal technology in the automotive industry, significantly contributing to the reduction of greenhouse gas emissions. However, the high material costs of the gas diffusion layer (GDL) and bipolar plate (BP) create a barrier for large scale commercial application. This study aims to address this challenge by optimizing the material and design of the cathode, GDL and BP. While deterministic design optimization (DDO) methods have been extensively studied, they often fall short when manufacturing uncertainties are introduced. This issue is addressed by introducing reliability-based design optimization (RBDO) to optimize four key PEMFC design variables, i.e., gas diffusion layer thickness, channel depth, channel width and land width. The objective is to maximize cell voltage considering the material cost of the cathode gas diffusion layer and cathode bipolar plate as reliability constraints. The results of the DDO show an increment in cell voltage of 31 mV, with a reliability of around 50% in material cost for both the cathode GDL and cathode BP. In contrast, the RBDO method provides a reliability of 95% for both components. Additionally, under a high level of uncertainty, the RBDO approach reduces the material cost of the cathode GDL by up to 12.25 $/stack, while the material cost for the cathode BP increases by up to 11.18 $/stack Under lower levels of manufacturing uncertainties, the RBDO method predicts a reduction in the material cost of the cathode GDL by up to 4.09 $/stack, with an increase in the material cost for the cathode BP by up to 6.71 $/stack, while maintaining a reliability of 95% for both components. These results demonstrate the effectiveness of the RBDO approach in achieving a reliable design under varying levels of manufacturing uncertainties.

15.
Molecules ; 29(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339475

RESUMO

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have become one of the important development directions of PEMFCs because of their outstanding features, including fast reaction kinetics, high tolerance against impurities in fuel, and easy heat and water management. The proton exchange membrane (PEM), as the core component of HT-PEMFCs, plays the most critical role in the performance of fuel cells. Phosphoric acid (PA)-doped membranes have showed satisfied proton conductivity at high-temperature and anhydrous conditions, and significant advancements have been achieved in the design and development of HT-PEMFCs based on PA-doped membranes. However, the persistent issue of HT-PEMFCs caused by PA leaching remains a challenge that cannot be ignored. This paper provides a concise overview of the proton conduction mechanism in HT-PEMs and the underlying causes of PA leaching in HT-PEMFCs and highlights the strategies aimed at mitigating PA leaching, such as designing crosslinked structures, incorporation of hygroscopic nanoparticles, improving the alkalinity of polymers, covalently linking acidic groups, preparation of multilayer membranes, constructing microporous structures, and formation of micro-phase separation. This review will offer a guidance for further research and development of HT-PEMFCs with high performance and longevity.

16.
Polymers (Basel) ; 16(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39274165

RESUMO

Perfluorosulfonic acid (PFSA) polymers are used as electrolyte membranes in polymer electrolyte fuel cells. To investigate the effect on proton conductivity through structural orientation control, we added 1,2,4-triazole to PFSA films during casting to impart anisotropy to the ion-cluster structure of the films. The proton conductivities of the films were found to be high in the film-surface direction and low in the film-thickness direction. Structural analysis using small-angle X-ray scattering suggested that the anisotropy in proton conductivity was due to anisotropy in the ion-cluster structure, which in turn was attributed to the formation of a phase-separated structure via strong bonding between sulfonic acid groups and 1,2,4-triazole during cast film formation and the surface segregation of fluorine. We expect the findings of this study to aid in the fabrication of PFSA films with controlled ion clusters.

17.
Sensors (Basel) ; 24(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39275405

RESUMO

As interest in eco-friendly work vehicles grows, research on the powertrains of eco-friendly tractors has increased, including research on the development of eco-friendly vehicles (tractors) using hydrogen fuel cell power packs and batteries. However, batteries require a long time to charge and have a short operating time due to their low energy efficiency compared with hydrogen fuel cell power packs. Therefore, recent studies have focused on the development of tractors using hydrogen fuel cell power packs; however, there is a lack of research on powertrain performance analysis considering actual working conditions. To evaluate vehicle performance, an actual load measurement during agricultural operation must be conducted. The objective of this study was to conduct an efficiency analysis of powertrains according to their power source using data measured during agricultural operations. A performance evaluation with respect to efficiency was performed through comparison and an analysis with internal combustion engine tractors of the same level. The specifications of the transmission for hydrogen fuel cell and engine tractors were used in this study. The power loss and efficiency of the transmission were calculated using ISO 14179-1 equations, as shown below. Plow tillage and rotary tillage operations were conducted for data measurement. The measurement system consists of four components. The engine data load measurement was calculated using the vehicle's controller area network (CAN) data, the axle load was measured using an axle torque meter and proximity sensors, and fuel consumption was measured using the sensor installed on the fuel line. The calculated capacities, considering the engine's fuel efficiency for plow and rotary tillage operations, were 131.2 and 175.1 kWh, respectively. The capacity of the required power, considering the powertrain's efficiency for hydrogen fuel cell tractors with respect to plow and rotary tillage operations, was calculated using the efficiency of the motor, inverter, and power pack, and 51.3 and 62.9 kWh were the values obtained, respectively. Considering these factors, the engine exhibited an efficiency of about 47.9% compared with the power pack in the case of plow tillage operations, and the engine exhibited an efficiency of about 29.3% in the case of rotary tillage operations. A hydrogen fuel cell tractor is considered suitable for high-efficiency and eco-friendly vehicles because it can operate on eco-friendly power sources while providing the advantages of a motor.

18.
Sci Rep ; 14(1): 21145, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256400

RESUMO

Proton exchange membrane fuel cell (PEMFC) parameter extraction is an important issue in modeling and control of renewable energies. The PEMFC problem's main objective is to estimate the optimal value of unknown parameters of the electrochemical model. The main objective function of the optimization problem is the sum of the square errors between the measured voltages and output voltages of the proposed electrochemical optimized model at various loading conditions. Natural rabbit survival strategies such as detour foraging and random hiding are influenced by Artificial rabbit optimization (ARO). Meanwhile, rabbit energy shrink is mimicked to control the smooth switching from detour foraging to random hiding. In this work, the ARO algorithm is proposed to find the parameters of PEMFC. The ARO performance is verified using experimental results obtained from conducting laboratory tests on the fuel cell test system (SCRIBNER 850e, LLC). The simulation results are assessed with four competitive algorithms: Grey Wolf Optimization Algorithm, Particle Swarm Optimizer, Salp Swarm Algorithm, and Sine Cosine Algorithm. The comparison aims to prove the superior performance of the proposed ARO compared with the other well-known competitive algorithms.

19.
ACS Appl Mater Interfaces ; 16(39): 52529-52538, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39291640

RESUMO

Proton exchange membrane fuel cells have strict requirements for the CO concentration in H2-rich fuel gas. Here, from the perspective of industrial practicability, a highly dispersed Pt catalyst (2-4 nm) supported on activated carbon (AC), which was modified by electronic promoters (K+) and structural promoters (isopropanol), is studied in detail. Compared with traditional metal oxide supports, the K-Pt/AC catalysts, which benefit from the tuned charge distribution, achieve a significant reduction of CO (from 1% to <0.1 ppb) under H2-rich conditions and show potential for used in large-scale industrial hydrogen purification. Experimental results and theoretical calculations reveal that the K atom, with its lower electronegativity, contributes to the shift of surface Pt2+ to a lower binding energy due to the presence of oxygen species on the AC surface. This facilitates oxygen activation and accelerates desorption of the CO2 product, thereby accelerating the reaction process and enabling the deep removal of CO in a hydrogen-rich atmosphere.

20.
ACS Appl Mater Interfaces ; 16(40): 53652-53664, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39325958

RESUMO

Ammonia has emerged as a promising fuel for solid oxide fuel cells (SOFCs) owing to its high energy density, high hydrogen content, and carbon-free nature. Herein, the electrocatalytic potential of a novel Ni-doped SFM double-perovskite (Sr1.9Fe0.4Ni0.1Mo0.5O6-δ) is studied, for the first time, as an alternative anode material for symmetrical direct-ammonia SOFCs. Scanning and transmission electron microscopy characterization has revealed the exsolution of Ni-Fe nanoparticles (NPs) from the parent Sr2Fe1.5Mo0.5O6 under anode conditions, and X-ray diffraction has identified the FeNi3 phase after exposure to ammonia at 800 °C. The active-exsolved NPs contribute to achieving a maximal ammonia conversion rate of 97.9% within the cell's operating temperatures (550-800 °C). Utilizing 3D-printed symmetrical cells with SFNM-GDC electrodes, the study demonstrates comparable polarization resistances and peak power densities of 430 and 416 mW cm-2 for H2 and NH3 fuels, respectively, with long-term stability and a negligible voltage loss of 0.48% per 100 h during ammonia-fed extended galvanostatic operation. Finally, the ammonia consumption mechanism is elucidated as a multistep process involving ammonia decomposition, followed by hydrogen oxidation. This study provides a promising avenue for improving the performance and stability of ammonia-based SOFCs for potential applications in clean energy conversion technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA