Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
BMC Oral Health ; 24(1): 829, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039547

RESUMO

BACKGROUND: Mucosal-associated invariant T (MAIT) cells assume pivotal roles in numerous autoimmune inflammatory maladies. However, scant knowledge exists regarding their involvement in the pathological progression of oral lichen planus (OLP). The focus of our study was to explore whether MAIT cells were altered across distinct clinical types of OLP. METHODS: The frequency, phenotype, and partial functions of MAIT cells were performed by flow cytometry, using peripheral blood from 18 adults with non-erosive OLP and 22 adults with erosive OLP compared with 15 healthy adults. We also studied the changes in MAIT cells in 15 OLP patients receiving and 10 not receiving corticosteroids. Surface proteins including CD4, CD8, CD69, CD103, CD38, HLA-DR, Tim-3, Programmed Death Molecule-1 (PD-1), and related factors released by MAIT cells such as Granzyme B (GzB), interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-17A, and IL-22 were detected. RESULTS: Within non-erosive OLP patients, MAIT cells manifested an activated phenotype, evident in an elevated frequency of CD69+ CD38+ MAIT cells (p < 0.01). Conversely, erosive OLP patients displayed an activation and depletion phenotype in MAIT cells, typified by elevated CD69 (p < 0.01), CD103 (p < 0.05), and PD-1 expression (p < 0.01). Additionally, MAIT cells exhibited heightened cytokine production, encompassing GzB, IFN-γ, and IL-17A in erosive OLP patients. Notably, the proportion of CD103+ MAIT cells (p < 0.05) and GzB secretion (p < 0.01) by MAIT cells diminished, while the proportion of CD8+ MAIT cells (p < 0.05) rose in OLP patients with corticosteroid therapy. CONCLUSIONS: MAIT cells exhibit increased pathogenicity and pro-inflammatory capabilities in OLP. Corticosteroid therapy influences the expression of certain phenotypes and functions of MAIT cells in the peripheral blood of OLP patients.


Assuntos
Líquen Plano Bucal , Células T Invariantes Associadas à Mucosa , Humanos , Líquen Plano Bucal/imunologia , Líquen Plano Bucal/patologia , Células T Invariantes Associadas à Mucosa/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Antígenos CD , Idoso , Granzimas/metabolismo , Corticosteroides/uso terapêutico , Citocinas/metabolismo , Receptor de Morte Celular Programada 1 , Estudos de Casos e Controles , Antígenos de Diferenciação de Linfócitos T , Fenótipo , Citometria de Fluxo , Lectinas Tipo C
2.
Gut Microbes ; 16(1): 2361491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868903

RESUMO

Metformin is widely used for treating type 2 diabetes mellitus (T2D). However, the efficacy of metformin monotherapy is highly variable within the human population. Understanding the potential indirect or synergistic effects of metformin on gut microbiota composition and encoded functions could potentially offer new insights into predicting treatment efficacy and designing more personalized treatments in the future. We combined targeted metabolomics and metagenomic profiling of gut microbiomes in newly diagnosed T2D patients before and after metformin therapy to identify potential pre-treatment biomarkers and functional signatures for metformin efficacy and induced changes in metformin therapy responders. Our sequencing data were largely corroborated by our metabolic profiling and identified that pre-treatment enrichment of gut microbial functions encoding purine degradation and glutamate biosynthesis was associated with good therapy response. Furthermore, we identified changes in glutamine-associated amino acid (arginine, ornithine, putrescine) metabolism that characterize differences in metformin efficacy before and after the therapy. Moreover, metformin Responders' microbiota displayed a shifted balance between bacterial lipidA synthesis and degradation as well as alterations in glutamate-dependent metabolism of N-acetyl-galactosamine and its derivatives (e.g. CMP-pseudaminate) which suggest potential modulation of bacterial cell walls and human gut barrier, thus mediating changes in microbiome composition. Together, our data suggest that glutamine and associated amino acid metabolism as well as purine degradation products may potentially condition metformin activity via its multiple effects on microbiome functional composition and therefore serve as important biomarkers for predicting metformin efficacy.


Assuntos
Aminoácidos , Bactérias , Biomarcadores , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglicemiantes , Metformina , Purinas , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/metabolismo , Aminoácidos/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Purinas/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Biomarcadores/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Idoso , Adulto , Resultado do Tratamento , Metabolômica
3.
Environ Microbiome ; 19(1): 6, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229154

RESUMO

BACKGROUND: Beneficial root-associated microbiomes play crucial roles in enhancing plant growth and suppressing pathogenic threats, and their application for defending against pathogens has garnered increasing attention. Nonetheless, the dynamics of microbiome assembly and defense mechanisms during pathogen invasion remain largely unknown. In this study, we aimed to investigate the diversity and assembly of microbial communities within four niches (bulk soils, rhizosphere, rhizoplane, and endosphere) under the influence of the bacterial plant pathogen Ralstonia solanacearum. RESULTS: Our results revealed that healthy tobacco plants exhibited more diverse community compositions and more robust co-occurrence networks in root-associated niches compared to diseased tobacco plants. Stochastic processes (dispersal limitation and drift), rather than determinism, dominated the assembly processes, with a higher impact of drift observed in diseased plants than in healthy ones. Furthermore, during the invasion of R. solanacearum, the abundance of Fusarium genera, a known potential pathogen of Fusarium wilt, significantly increased in diseased plants. Moreover, the response strategies of the microbiomes to pathogens in diseased and healthy plants diverged. Diseased microbiomes recruited beneficial microbial taxa, such as Streptomyces and Bacilli, to mount defenses against pathogens, with an increased presence of microbial taxa negatively correlated with the pathogen. Conversely, the potential defense strategies varied across niches in healthy plants, with significant enrichments of functional genes related to biofilm formation in the rhizoplane and antibiotic biosynthesis in the endosphere. CONCLUSION: Our study revealed the varied community composition and assembly mechanism of microbial communities between healthy and diseased tobacco plants along the soil-root continuum, providing new insights into niche-specific defense mechanisms against pathogen invasions. These findings may underscore the potential utilization of different functional prebiotics to enhance plants' ability to fend off pathogens.

4.
Artigo em Russo | MEDLINE | ID: mdl-38016054

RESUMO

Therapeutic muds (peloids), which are widely used for body healing, improve metabolism and have antibacterial, anti-inflammatory and analgesic effects due to enrichment with necessary microelements and biological active substances. However, the microbiological component of these effects is not well studied. OBJECTIVE: To characterize the microbiome of therapeutic muds, used in the Tatarstan Republic, by identifying spectrum of cultivated microorganisms, using molecular analysis of bacterial communities, and by determining their biodiversity and functional potential based on revealed genetic determinants. MATERIAL AND METHODS: The study design of 5 peloids samples (local sapropels and peat deposits of swamp; 3 samples of Crimean sulfide muds) included three main techniques: isolation and taxonomic determination of cultivated microorganisms by time-of-flight mass-spectrometry; molecular analysis of peloids bacterial communities by 16S RNA high-throughput sequencing; identification of functional profiles of communities by their genetic determinant using Global Mapper tool on iVikodak platform. RESULTS: Experimental studies have confirmed the safety of examined peloids, where non-pathogenic cultivated bacteria belonging mainly to Bacillus and Rhodococcus genera were dominant. Metagenomic analysis showed that Firmicutes, Proteobacteria and Actinobacteria were predominant in all samples in different ratios. It has been established, that there is both the internal biodiversity of each sample and difference between them. The functional profile of microbial communities was determined based on the identification of bacterial genes. It has been revealed that all communities have an ability to synthesize antibiotics, as well as to decompose dangerous xenobiotics - polyaromatic hydrocarbons, cyclic compounds, and dioxins. CONCLUSION: Various microbial communities, which were identified in the therapeutic muds, contribute both to the clearance of toxicants in the peloids and to the antibacterial properties of the latter. The obtained priority results create a fundamental basis for the subsequent study of the role of peloids' microbiome of different origin in their healing action.


Assuntos
Microbiota , Tartaristão , Bactérias/genética , Sulfetos , Antibacterianos
5.
Sci Total Environ ; 904: 166758, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673251

RESUMO

Afforestation currently makes a great contribution to carbon uptake in terrestrial ecosystems, while dramatically affects soil ecosystem functions too. Little is known, however, about the changes in soil fungal functional groups and their interactions following afforestation. Here, based on high-throughput sequencing and FUNGuild annotation, we investigated the functional characteristics of soil fungi as well as environmental factors in a watershed where paddy field and dry farmland were changed to eucalyptus plantation. The results showed that afforestation on paddy field resulted in greater changes in diversity, community structure and taxon interactions of fungal functional groups than afforestation on dry farmland. The most complex and distinctive community structure was found in eucalyptus plantation, as well as the greatest taxon interactions, and the lowest alpha-diversity of functional guilds of symbiotrophic fungi because of the dominant ectomycorrhizal fungi. Paddy field exhibited the highest proportion of saprotrophic fungi, but the lowest taxonomic diversity of saprotrophic and pathotrophic fungi. The taxonomic diversity of undefined saprotrophic fungi shaped the differences in community structure and network complexity between eucalyptus plantation and cropland. Limited cooperation within dominant fungi was the main reason for the establishment of a loose co-occurrence network in paddy field. From croplands to artificial forests, reduced soil pH boosted the taxonomic diversity of fungal functional groups. All of these findings suggested that afforestation may lead to an increase in the taxonomic diversity of soil fungal functional groups, which would further intensify the taxon interactions.


Assuntos
Ecossistema , Micorrizas , Fazendas , Fungos , Microbiologia do Solo , Solo/química , Florestas
6.
Pharmacol Rep ; 75(5): 1291-1298, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572216

RESUMO

BACKGROUND: Although the terms "agonist" and "antagonist" have been used to classify sigma-1 receptor (σ1R) ligands, an unambiguous definition of the functional activity is often hard. In order to determine the pharmacological profile of σ1R ligands, the most common method is to assess their potency to alleviate opioid analgesia. It has been well established that σ1R agonists reduce opioid analgesic activity, while σ1R antagonists have been demonstrated to enhance opioid analgesia in different pain models. METHODS: In the present study, we evaluated the pharmacological profile of selected σ1R ligands using a novel object recognition (NOR) test, to see if any differences in cognitive functions between σ1R agonists and antagonists could be observed. We used the highly selective PRE-084 and S1RA as reference σ1R agonist and antagonist, respectively. Furthermore, compound KSK100 selected from our ligand library was also included in this study. KSK100 was previously characterized as a dual-targeting histamine H3/σ1R antagonist with antinociceptive and antiallodynic activity in vivo. Donepezil (acetylcholinesterase inhibitor and σ1R agonist) was used as a positive control drug. RESULTS: Both tested σ1R agonists (donepezil and PRE-084) improved learning in the NOR test, which was not observed with the σ1R antagonists S1RA and KSK100. CONCLUSIONS: The nonlinear dose-response effect of PRE-084 in this assay does not justify its use for routine assessment of the functional activity of σ1R ligands.


Assuntos
Analgésicos Opioides , Receptores sigma , Analgésicos Opioides/farmacologia , Ligantes , Teste de Campo Aberto , Acetilcolinesterase , Donepezila , Receptor Sigma-1
7.
Mol Biotechnol ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566190

RESUMO

"Pakhoi" is an ethnic drink of the Tons valley, Uttarakhand, India produced by fermenting jaggery and barley with the help of a starter culture called "keem". In the present study, we investigated the microbial diversity and associated functional potential of "keem" using shotgun metagenome sequencing and amplicon sequencing. We also compared the taxonomic data obtained using these two sequencing techniques. The results showed that shotgun sequencing revealed a higher resolution of taxonomic profiling as compared to the amplicon sequencing. Furthermore, it was found that the genera detected by shotgun sequencing were valuable for facilitating the fermentation process. Additionally, to understand the functional profiling of the genera, different databases were used for annotation, resulting in a total of 13 metabolic pathways. The five most abundant KEGG functions were genetic information processing, metabolism, translation, cofactor and vitamin metabolism and xenobiotic degradation. In contrast, the top five COG were in order of highest frequency sequences belonging to transcription, followed by general function prediction, carbohydrate transport metabolism, amino acid transport and metabolism and translation and biogenesis. Gene ontology revealed many pathways, biochemical processes and molecular functions associated with the organisms forming the starter culture. Overall, the present study can help to understand the microbial diversity and its role in fermentation of traditional alcoholic beverages using "Keem".

8.
Microbiol Spectr ; 11(3): e0228822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37010418

RESUMO

This work evaluated the dynamic changes of phyllosphere microbiota and chemical parameters at various growth stages of Pennisetum giganteum and their effects on the bacterial community, cooccurrence networks, and functional properties during anaerobic fermentation. P. giganteum was collected at two growth stages (early vegetative stage [PA] and late vegetative stage [PB]) and was naturally fermented (NPA and NPB) for 1, 3, 7, 15, 30, and 60 days, respectively. At each time point, NPA or NPB was randomly sampled for the analysis of chemical composition, fermentation parameter, and microbial number. In addition, the fresh, 3-day, and 60-day NPA and NPB were subjected to high-throughput sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional prediction analyses. Growth stage obviously affected the phyllosphere microbiota and chemical parameters of P. giganteum. After 60 days of fermentation, NPB had a higher lactic acid concentration and ratio of lactic acid to acetic acid but a lower pH value and ammonia nitrogen concentration than NPA. Weissella and Enterobacter were dominant in 3-day NPA and Weissella was dominant in 3-day NPB, while Lactobacillus was the most abundant genus in both 60-day NPA and NPB. The complexity of bacterial cooccurrence networks in the phyllosphere decreased with P. giganteum growth. The ensiling process further decreased the complexity of bacterial networks, with the simplest bacterial correlation structures in NPB. There were great differences in the KEGG functional profiles of PA and PB. Ensiling promoted the metabolism of lipid, cofactors, vitamins, energy, and amino acids but suppressed the metabolism of carbohydrates and nucleotides. Storage time had a greater influence than growth stage on bacterial community diversity, cooccurrence networks, and functional profiles of P. giganteum silage. Differences in bacterial diversity and functionality of P. giganteum silage caused by growth stage appear to be offset by long-term storage. IMPORTANCE The phyllosphere microbiota consists of various and complex microbes, including bacteria with crucial relevance to the quality and safety of fermented food and feed. It initially derives from soil and becomes specific to its host after interaction with plants and climate. Bacteria associated with the phyllosphere are highly abundant and diverse, but we know little about their succession. Here, the phyllospheric microbiota structure was analyzed within the growth of P. giganteum. We also evaluated the effects of phyllosphere microbiota and chemical parameter changes on the anaerobic fermentation of P. giganteum. We observed remarkable differences in bacterial diversity, cooccurrence, and functionality of P. giganteum at various growth stages and storage times. The obtained results are important for understanding the fermentation mechanism and may contribute to high-efficient production without additional cost.


Assuntos
Microbiota , Pennisetum , Pennisetum/genética , Pennisetum/metabolismo , Pennisetum/microbiologia , Fermentação , Anaerobiose , Bactérias , Ácido Láctico/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-36940035

RESUMO

The seasonal surplus and putrefactive property of moist forages inevitably increase the pressure on environmental protection and residual grass disposal. In the current work, the anaerobic fermentation approach was adopted to assist the sustainable recycling of leftover Pennisetum giganteum (LP), and its chemical composition, fermentation performance, bacterial community and functional profiles during anaerobic fermentation were studied. Fresh LP was spontaneously fermented for up to 60 d. At the end of anaerobic fermentation, fermented LP (FLP) displayed homolactic fermentation with low pH value, ethanol, and ammonia nitrogen concentrations but high lactic acid concentration. Weissella was dominant in 3-day FLP, yet Lactobacillus was the overwhelming genus (92.6%) in 60-day FLP. The anaerobic fermentation process promoted (P < 0.05) the metabolism of carbohydrate and nucleotide while suppressing (P < 0.05) that of lipid, cofactors, vitamins, energy, and amino acid. The results showed that the residual grass with LP as an example could be successfully fermented even if no additives were added, without signs of clostridial and fungal contamination.

10.
Heliyon ; 9(3): e13868, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950589

RESUMO

Antimetabolites developed from enzymes in the shikimate pathway are appealing targets. There are, however, certain unidentified molecular entities that show bacterial sensitivity to glyphosate shock. This study aims to identify the expression pattern of such entities following treatment with glyphosate shock and to characterize them structurally and functionally. Understanding such entities' catalytic structure and modulatory role guides the design and development of novel antibiotics. This study's functional profiling of 16S rRNA sequencing data and transcriptome analysis of glyphosate-exposedE. coli revealed that two genes were upregulated and twenty-eight were downregulated after glyphosate shock. We discovered the differential expression of some processes based on functional gene analysis, such as global and overview maps (4.2195 on average), carbohydrate metabolism (0.6858 on average), amino acid metabolism (0.5032 on average), and co-factor and vitamin metabolism (0.5032 on average) (0.2876 on average). After examining the two data sets, we discovered that some unidentified proteins were strongly expressed after glyphosate treatment. After examining the two datasets, we discovered a protein with no unique features expressed when treated with glyphosate. The Ecs2020 model looks to be the most stable in structural modeling investigations, while the catalytic residues sought in drug development are anticipated. Furthermore, biological processes and cellular component enrichment analysis revealed that the differentially expressed genes were strongly related to the trehalose manufacturing process and represented the cell membrane's outer membrane component. To estimate the functional gene content of soil sample metagenomics based on 16S rRNA, predictive functional analysis was done with R using the Tax4Fun2 package. On the other hand, transcriptome analysis was carried out using the R tool GEO2R. The results could be a good starting point for making new antibiotic medicines.

11.
Front Microbiol ; 14: 1083620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970661

RESUMO

Alfalfa is harvested two or three times a year in central and western Inner Mongolia, China. However, the variations in bacterial communities as affected by wilting and ensiling, and the ensiling characteristics of alfalfa among the different cuttings, are not fully understood. To enable a more complete evaluation, alfalfa was harvested three times a year. At each time of cutting, alfalfa was harvested at early bloom, wilted for 6 h, and then ensiled in polyethylene bags for 60 days. The bacterial communities and nutritional components of fresh alfalfa(F), wilted alfalfa(W) and ensiled alfalfa(S), and the fermentation quality and functional profile of bacterial communities of the three cuttings alfalfa silage, were then analyzed. Functional characteristics of silage bacterial communities were evaluated according to the Kyoto Encyclopedia of Genes and Genomes. The results showed that all nutritional components, fermentation quality, bacterial communities, carbohydrate, amino acid metabolism and key enzymes of bacterial communities were influenced by cutting time. The species richness of F increased from the first cutting to the third cutting; it was not changed by wilting, but was decreased by ensiling. At phylum level, Proteobacteria were more predominant than other bacteria, followed by Firmicutes (0.063-21.39%) in F and W in the first and second cuttings. Firmicutes (96.66-99.79%) were more predominant than other bacteria, followed by Proteobacteria (0.13-3.19%) in S in the first and second cuttings. Proteobacteria, however, predominated over all other bacteria in F, W, or S in the third cutting. The third-cutting silage showed the highest levels of dry matter, pH and butyric acid (p < 0.05). Higher levels of pH and butyric acid were positively correlated with the most predominant genus in silage, and with Rosenbergiella and Pantoea. The third-cutting silage had the lowest fermentation quality as Proteobacteria were more predominant. This suggested that, compared with the first and second cutting, the third cutting is more likely to result in poorly preserved silage in the region studied.

12.
Front Microbiol ; 14: 1089649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846765

RESUMO

Introduction: The deposition of solid particles carried by production fluids from oil and gas companies in horizontal surfaces of different assets has shown to cause severe localised corrosion. Sand, one of the most common deposits in the energy sector pipelines, is frequently mixed with crude, oil, asphaltenes, corrosion inhibitors, and other organic compounds. For this reason, they might favour the metabolic activity of native microbial communities. This study aimed to determine the impact of sand-deposit chemical composition on the microbial community structure and functional attributes of a multispecies consortium recovered from an oilfield and the resulting risk of under-deposit microbial corrosion of carbon steel. Methods: Sand deposits recovered from an oil pipeline were used in their raw form and compared against the same deposits exposed to heat treatment to remove organic compounds. A four-week immersion test in a bioreactor filled with synthetic produced water and a two-centimeter layer of sand was set up to assess corrosion and microbial community changes. Results: The raw untreated deposit from the field containing hydrocarbons and treatment chemicals resulted in a more diverse microbial community than its treated counterpart. Moreover, biofilms developed in the raw sand deposit exhibited higher metabolic rates, with functional profile analysis indicating a predominance of genes associated with xenobiotics degradation. Uniform and localized corrosion were more severe in the raw sand deposit compared to the treated sand. Discussion: The complex chemical composition of the untreated sand might have represented an additional source of energy and nutrients to the microbial consortium, favoring the development of different microbial genera and species. The higher corrosion rate obtained under the untreated sand suggests that MIC occurred due to syntrophic relationships between sulphate reducers or thiosulphate reducers and fermenters identified in the consortium.

13.
J Hazard Mater ; 447: 130762, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36638676

RESUMO

Microplastic threats to biodiversity, health and ecological safety are adding to concern worldwide, but the real impacts on the functioning of organisms and ecosystems are obscure owing to their inert characteristics. Here we investigated the long-lasting ecological effects of six prevalent microplastic types: polyethylene (PE), polypropylene (PP), polyamide (PA), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) on soil bacteria at a 2 % (w/w) level. Due to the inertia and lack of available nitrogen of these microplastics, their effects on bacteriome tended to converge after one year and were strongly different from their short-term effects. The soil volumes around microplastics were very specific, in which the microplastic-adapted bacteria (e.g., some genera in Actinobacteria) were enriched but the phyla Bacteroidetes and Gemmatimonadetes declined, resulting in higher microbial nitrogen requirements and reduced organic carbon mineralization. The reshaped bacteriome was specialized in the genetic potential of xenobiotic and lipid metabolism as well as related oxidation, esterification, and hydrolysis processes, but excessive oxidative damage resulted in severe weakness in community genetic information processing. According to model predictions, microplastic effects are indirectly derived from nutrients and oxidative stress, and the effects on bacterial functions are stronger than on structure, posing a heavy risk to soil ecosystems.


Assuntos
Microplásticos , Plásticos , Microplásticos/toxicidade , Plásticos/toxicidade , Ecossistema , Solo , Polipropilenos , Bactérias/genética
14.
PeerJ ; 10: e14309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36536626

RESUMO

Mulberry flavonoids can modulate the composition of rumen microbiota in ruminants to improve nutrient digestibility, owing to their strong biological activities. This study aimed to explore the effect of mulberry leaf flavonoids (MLF) on rumen bacteria, fermentation kinetics, and metagenomic functional profile in water buffalo. Forty buffaloes (4 ± 1 lactations) with almost same body weight (av. 600 ± 50 Kg) and days in milk (90 ± 20 d) were randomly allocated to four treatments having different levels of MLF: 0 g/d (control), 15 g/d (MLF15), 30 g/d (MLF30), and 45 g/d (MLF45) supplemented in a basal diet. After 35 days of supplementation, rumen contents were collected to determine rumen fermentation parameters. The 16S rRNA gene sequencing was performed to elucidate rumen bacteria composition. The obtained taxonomic data were analyzed to explore the rumen bacteriome and predict the associated gene functions and metabolic pathways. Results demonstrated a linear increase (p < 0.01) in rumen acetate, propionate, and total VFAs in the MLF45 group as compared to control. No effect of treatment was observed on rumen pH and butyrate contents. Acetate to propionate ratio in the MLF45 group linearly and quadratically decreased (p = 0.001) as compared to MLF15 and control groups. Similarly, MLF45 linearly increased (p < 0.05) the microbial protein (MCP) and NH3-N as compared to other treatments. Treatment adversely affected (p < 0.01) almost all alpha diversity parameters of rumen bacteria except Simpson index. MLF promoted the abundance of Proteobacteria while reducing the relative abundances of Actinobacteria, Acidobacteria, Chloroflexi, and Patescibacteria. The MLF supplementation tended to substantially reduce (0.05 < p < 0.1) the abundance of Actinobacteria, and Patescibacteria while completely eliminating Acidobacteria (p = 0.029), Chloroflexi (p = 0.059), and Gemmatimonadetes (p = 0.03) indicating the negative effect of flavonoids on the growth of these bacteria. However, MLF45 tended to substantially increase (p = 0.07) the abundance (~21.5%) of Acetobacter. The MLF treatment exhibited negative effect on five genera by significantly reducing (Sphingomonas) or eliminating (Arthobactor, unclassified_c__Actinobacteria, norank_c__Subgroup_6, norank_o__Saccharimonadales, and Nocardioides) them from the rumen microbiota. Pearson correlation analysis revealed 3, 5 and 23 positive correlations of rumen bacteria with milk yield, rumen fermentation and serum antioxidant parameters, respectively. A positive correlation of MCP was observed with three bacterial genera (Acetobacter, Enterobacter, and Klebsiella). The relative abundance of Pseudobutyrivibrio and Empedobacter also showed a positive correlation with the ruminal acetate and propionate. The present study indicated 45 g/d as an appropriate dose of MLF which modulated rumen bacteria and its functional profile in water buffalo.


Assuntos
Búfalos , Morus , Animais , Feminino , Acetatos/metabolismo , Bactérias , Búfalos/genética , Fermentação , Morus/genética , Propionatos/metabolismo , RNA Ribossômico 16S/genética , Rúmen
15.
Gut Microbes ; 14(1): 2135963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36289064

RESUMO

Clostridioides difficile infection (CDI) is a gastro-intestinal (GI) infection that illustrates how perturbations in symbiotic host-microbiome interactions render the GI tract vulnerable to the opportunistic pathogens. CDI also serves as an example of how such perturbations could be reversed via gut microbiota modulation mechanisms, especially fecal microbiota transplantation (FMT). However, microbiome-mediated diagnosis of CDI remains understudied. Here, we evaluated the diagnostic capabilities of the fecal microbiome on the prediction of CDI. We used the metagenomic sequencing data from ten previous studies, encompassing those acquired from CDI patients treated by FMT, CDI-negative patients presenting other intestinal health conditions, and healthy volunteers taking antibiotics. We designed a hybrid species/function profiling approach that determines the abundances of microbial species in the community contributing to its functional profile. These functionally informed taxonomic profiles were then used for classification of the microbial samples. We used logistic regression (LR) models using these features, which showed high prediction accuracy (with an average AUC≥0.91), substantiating that the species/function composition of the gut microbiome has a robust diagnostic prediction of CDI. We further assessed the confounding impact of antibiotic therapy on CDI prediction and found that it is distinguishable from the CDI impact. Finally, we devised a log-odds score computed from the output of the LR models to quantify the likelihood of CDI in a gut microbiome sample and applied it to evaluating the effectiveness of FMT based on post-FMT microbiome samples. The results showed that the gut microbiome of patients exhibited a gradual but steady improvement after receiving successful FMT, indicating the restoration of the normal microbiome functions.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Microbiota , Humanos , Clostridioides difficile/genética , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal/métodos , Antibacterianos/uso terapêutico , Resultado do Tratamento
16.
Appl Environ Microbiol ; 88(18): e0075822, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36094201

RESUMO

A range of antibiotic alternative products is increasingly studied and manufactured in the current animal agriculture, particularly in the poultry industry. Phytogenic feed additives are known for their remarkable ability to suppress pathogens such as Clostridium spp., Escherichia coli, and Salmonella. Other than enhancing biosecurity, improvements in productivity and performance were also observed. However, clear mechanisms for these improvements were not established. In this study, 20,000 Lohman-Brown layers were provided with phytogenic supplement from 16 to 40 weeks of age, and performance parameters were assessed against the same number of unsupplemented control birds. The performance results showed that the birds with phytogenic supplementation presented consistently reduced mortality, increased rate of lay, and increased average egg weight. Functional analysis through shotgun sequencing of cecal metagenomes confirmed a substantial functional shift in the microbial community, showing that phytogen significantly reduced the range of microbial functions, including the production of essential vitamins, cofactors, energy, and amino acids. Functional data showed that phytogen supplementation induced a phenotypic shift in intestinal bacteria LPS phenotype toward the less pathogenic form. The study corroborates the use of phytogenic products in antibiotic-free poultry production systems. The productivity improvements in the number and weight of eggs produced during Spotty Liver Disease justify further optimizing phytogenic alternatives for use in high-risk open and free-range poultry systems. IMPORTANCE The present study establishes the beneficial effects of the continuous phytogenic supplementation reflected in reduced diarrhea and mortality and higher egg productivity under normal conditions and during a natural outbreak of Spotty Liver Disease. Our data points to the importance of phytogen-driven alteration of microbial pathogenicity and fitness-related functional capabilities revealed on the commercial layer farm. Phytogenic product showed an ability to improve the bird's welfare and sustainability in free-range poultry production systems.


Assuntos
Galinhas , Hepatopatias , Aminoácidos , Ração Animal/análise , Animais , Bactérias , Galinhas/microbiologia , Lipopolissacarídeos , Hepatopatias/microbiologia , Aves Domésticas , Virulência , Vitaminas
17.
Biomedicines ; 10(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35625710

RESUMO

Longitudinal approaches for disease-monitoring in old animals face survival and frailty limitations, but also assessment and re-test bias on genotype and sex effects. The present work investigated these effects on 56 variables for behavior, functional profile, and biological status of male and female 3xTg-AD mice and NTg counterparts using two designs: (1) a longitudinal design: naïve 12-month-old mice re-tested four months later; and (2) a cross-sectional design: naïve 16-month-old mice compared to those re-tested. The results confirmed the impact as (1) improvement of survival (NTg rested females), variability of gait (3xTg-AD 16-month-old re-tested and naïve females), physical endurance (3xTg-AD re-tested females), motor learning (3xTg-AD and NTg 16-month-old re-tested females), and geotaxis (3xTg-AD naïve 16-month-old males); but (2) worse anxiety (3xTg-AD 16-month-old re-tested males), HPA axis (3xTg-AD 16-month-old re-tested and naïve females) and sarcopenia (3xTg-AD 16-month-old naïve females). Males showed more functional correlations than females. The functional profile, biological status, and their correlation are discussed as relevant elements for AD-pathology. Therefore, repetition of behavioral batteries could be considered training by itself, with some variables sensitive to genotype, sex, and re-test. In the AD-genotype, females achieved the best performance in physical endurance and motor learning, while males showed a deterioration in most studied variables.

18.
Front Microbiol ; 13: 831746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495701

RESUMO

Microbial communities of soil aggregate-size fractions were explored with molecular and networking assays for topsoil samples from a clayey rice paddy under long-term fertilization treatments. The treatments included no fertilizer (NF) as control, chemical fertilizer only (CF), chemical fertilizer with swine manure (CFM), and chemical fertilizer with rice straw return (CFS). Following a wet-sieving protocol, water-stable aggregates were separated into size fractions of large macroaggregates (L-MacA, >2,000 µm), macroaggregates (MacA, 2,000-250 µm), microaggregates (MicA, 250-53 µm), fine microaggregates (F-MicA, 53-2 µm), and fine clay (F-Clay, <2 µm). Mass proportion was 32.3-38.2% for F-MicA, 23.0-31.5% for MacA, 19.0-23.1% for MicA, 9.1-12.0% for L-MacA, and 4.9-7.5% for F-Clay, respectively. The proportion of MacA was increased, but F-Clay was reduced by fertilization, whereas the mean weight diameter was increased by 8.0-16.2% from 534.8 µm under NF to 621.5 µm under CFM. Fertilization affected bacterial 16S rRNA and fungal 18S rRNA gene abundance in F-MicA and F-Clay but not in aggregates in size larger than 53 µm. However, bacterial and fungal community α-diversities and community structures were quite more divergent among the fertilization treatments in all size fractions. Organic carbon and gene abundance of bacteria and fungi were enriched in both L-MacA and MacA but depleted in F-Clay, whereas microbial Shannon diversity was rarely changed by fraction size under the four treatments. L-MacA and MacA contained more bacteria of r-strategists and copiotrophs, whereas F-MicA and F-Clay were demonstrated with a higher abundance of K-strategists and oligotrophs. Guilds of parasitic and litter saprotrophic fungi were enriched in F-MicA but depleted in L-MacA. Furthermore, most of bacterial and fungal operational taxonomic units were strongly interacted in L-MacA and MacA rather than in MicA and F-Clay. Thus, MacA acted as micro-hotspots enriched with functional and networked microbial communities, which were enhanced with organic/inorganic fertilization in the rice paddy.

19.
AMB Express ; 12(1): 47, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35460382

RESUMO

The sustainable production of sunflower (Helianthus annuus) is crucial and one way to accomplish this feat is to have an understanding of the beneficial bacteria of sunflower rhizosphere. Similarly, the respiratory response of these bacteria needs to be studied to understand their roles in the ecosystem. This study was therefore conceptualized to gain insights into the effects of soil properties and carbon substrate utilization on bacterial community diversity of sunflower rhizosphere grown in Ditsobottla and Kraaipan, North West Province, South Africa. Extracted DNA from sunflower rhizosphere and bulk soils was subjected to 16S amplicon sequencing. Significant differences were observed in the alpha and beta diversities of the soil bacterial communities (p < 0.05). At the order level, among all the bacterial taxa captured in the farms, Bacillales were the most dominant. The abundance of Lactobacillales, Bacillales, Rhizobiales, Enterobacteriales, Burkholderiales, Flavobacteriales, Sphingomonadales, Myxococcales, and Nitrosomonadales obtained from Ditsobottla rhizosphere soil (R1) was positively influenced by organic matter (OM), while the abundance of Planctomycetales, Cytophagales, Gemmatimonadales, Nitrospirales and Caulobacteriales from Kraaipan rhizosphere soil (R2) was positively influenced by total N and pH. Bacterial communities of all the soil samples utilized the different carbon substrates (three amino acids, six carbohydrates, and three carboxylic acids) as an energy source. Significant differences (p < 0.05) were only observed in tryptophan and methionine amended soils. Unclassified bacteria were also captured in this study, such bacteria can further be harnessed for sustainable production of sunflower and other agricultural crops.

20.
Mundo saúde (Impr.) ; 46: e11122021, 2022.
Artigo em Inglês, Português | LILACS-Express | LILACS | ID: biblio-1437777

RESUMO

As lesões do Traumatismo Cranioencefálico (TCE) de caráter macro ou micro podem comprometer fisicamente e/ou psicologicamente o indivíduo. Sendo uma doença da sociedade moderna que acomete qualquer idade, é considerada principal causa de morbimortalidade no Brasil ao abranger a população economicamente ativa podendo incapacitar de forma temporária ou permanente, consequentemente gerando impacto na qualidade de vida, sendo difícil mensurar o perfil funcional, nível de recuperação e quanto tempo ficará em determinado perfil. Com o objetivo de determinar e classificar o perfil funcional de indivíduos com TCE na alta hospitalar, foi realizado um estudo analítico, observacional e transversal onde foi aplicado a Glasgow Outcome Scale/Escala de Resultado Ampliada de Glasgow (GOSE/ERGA) através de uma ficha para coleta de dados e entrevistas. A população do estudo foi constituída por 26 voluntários, admitidos para tratamento no Hospital Universitário São Francisco de Bragança Paulista-São Paulo com diagnóstico comprovado de TCE por meio de exames de imagem entre setembro/2019 e março de 2020. Encontramos evidências de 88,46% pertencente ao gênero masculino, e 11,54% gênero feminino, onde foram observados média e desvio padrão de idade 35,73±16,76. Entre os tipos de trauma mais comuns o politrauma se sobressaiu com 80,77% e a GOSE/ERGA teve maior indício com 46,15% de escore 8. A maioria dos colaboradores recebeu alta do HUSF com o perfil funcional de boa recuperação e poderão retornar a vida anterior ao trauma. Através das classificações funcionais pode-se orientar profissionais responsáveis pela reabilitação daqueles que foram acometidos pelo trauma e ficaram com sequelas, bem como orientar os familiares e centros de assistência a comunidade.


The lesions caused by a Traumatic Brain Injury (TBI) of macro or micro character can physically and/or psychologically compromise an individual. Being a disease of modern society that affects any age, it is considered the main cause of morbidity and mortality in Brazil as it covers the economically active population. It can temporarily or permanently disable people, consequently generating an impact on their quality of life, and is difficult to measure their functional profile, level of recovery, and how long they will remain in a given profile. In order to determine and classify the functional profile of individuals with TBI at hospital discharge, an analytical, observational, and cross-sectional study was carried out in which the Glasgow Outcome Scale/Glasgow Extended Outcome Scale (GOSE) was applied through a form for data collection and interviews. The study population consisted of 26 volunteers, admitted for treatment at Hospital Universitario Sao Francisco de Braganca Paulista, Sao Paulo with a confirmed diagnosis of TBI through imaging tests between September 2019 and March 2020. We found evidence of 88.46 % belonging to the males, and 11.54% female, where the mean and standard deviation of age 35.73±16.76 were observed. Among the most common types of traumas, polytrauma stood out with 80.77% and GOSE had the highest scores where 46.15% had a score of 8. Most participants of the study were discharged from the HUSF with the functional profile of good recovery and may return to their lives before the trauma. Through functional classifications, it is possible to guide professionals responsible for the rehabilitation of those who were affected by trauma and were left with sequelae, as well as guide family members and community assistance centers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA