Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Foods ; 13(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998482

RESUMO

Corn straw is one kind of agricultural by-product containing 70-80% insoluble dietary fiber (IDF). In order to develop corn straw dietary fiber, this study was conducted to increase soluble dietary fiber (SDF) yield and improve the structure, functional and prebiotic properties of IDF and SDF from corn straw treated by alkali oxidation treatment, enzymatic hydrolysis, microbial fermentation and the combination of these methods. The results demonstrated that the yield of SDF was significantly increased from 2.64% to 17.15% after corn straw was treated by alkali oxidation treatment + Aspergillus niger fermentation + cellulase hydrolysis, compared with untreated corn straw. The SDF extracted from corn straw treated by alkali oxidation treatment + Aspergillus niger fermentation + cellulase hydrolysis (F-SDF) exhibited a honeycomb structure, low crystallinity (11.97%), good antioxidant capacity and high capacities of water holding, water solubility and cholesterol absorption and promoted short-chain fatty acids production by chicken cecal microbial fermentation in vitro. F-SDF enhanced the antibacterial activity against Escherichia coli and Staphylococcus aureus proliferations of Lactobacillus plantarum when it was used as a substrate for Lactobacillus plantarum fermentation. It could be concluded that the combined treatments could increase SDF yield from corn straw and improve its functional and prebiotic properties.

2.
J Biomech ; 171: 112170, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870569

RESUMO

Fascicle force-length relationship is one major basic mechanical property of skeletal muscle, subsequently influencing movement mechanics. While force-length properties are increasingly described through ultrafast ultrasound imaging, their test-retest reliability remains unknown. Using ultrafast ultrasound, and electrically evoked contractions at various ankle angles, gastrocnemius medialis fascicle force-length relationship was assessed twice, few days apart, in sixteen participants. The test-retest reliability of the resulting fascicle force-length relationship key parameters - i.e., maximal force (Fmax), and optimal fascicle length (L0) - was evaluated considering (i) all the trials obtained at each ankle joint and (ii) the mean of the two trials obtained at each tested angle. Considering all trials, L0 indicated a 'high' test-retest reliability, with intra-class correlation coefficients (ICC) of 0.89 and Fmax a 'moderate' reliability (ICC = 0.71), while when averaging the two trials L0 reliability was 'very-high' (ICC = 0.91), and Fmax reliability 'moderate' (ICC = 0.73). All values of coefficient of variation and standard error of measurement were low, i.e., ≤7.7 % and ≤0.35 cm for L0 and ≤3.4 N for Fmax, respectively. Higher absolute reliability was reported for L0 than Fmax, with better reliability when averaging the two trials at each angle. All these parameters, in accordance with the limit of agreement, demonstrated that L0 and Fmax test-retest reliability is acceptable, particularly when averaging multiple points obtained at a given angle. Interestingly, the shape of the fascicle force-length relationship is more variable. Therefore, L0 and Fmax can be used to compare between days-effects following an intervention, while a comparison of fascicle operating lengths may require more precautions.


Assuntos
Articulação do Tornozelo , Músculo Esquelético , Ultrassonografia , Humanos , Músculo Esquelético/fisiologia , Músculo Esquelético/diagnóstico por imagem , Masculino , Adulto , Reprodutibilidade dos Testes , Ultrassonografia/métodos , Feminino , Articulação do Tornozelo/fisiologia , Articulação do Tornozelo/diagnóstico por imagem , Contração Muscular/fisiologia , Fenômenos Biomecânicos , Adulto Jovem
3.
Compr Rev Food Sci Food Saf ; 23(4): e13396, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925601

RESUMO

Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.


Assuntos
Polissacarídeos , Alga Marinha , Alga Marinha/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Rodófitas/química , Carragenina/química , Phaeophyceae/química , Clorófitas/química
4.
Food Sci Nutr ; 12(6): 4233-4247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873459

RESUMO

The objective of this study was to evaluate the effect of different reheating methods and conditions on the proximate composition, mineral content, oil quality, and functional and microbiological properties of cow meat. For this, a survey was carried out to identify the reheating methods used in the community. For this study, 8.6 kg of raw beef was used and group 1 (500 g) served as raw control. The remaining 8.1 kg was boiled for 30 min in 5 L of water. Four hundred grams of boiled beef was removed and served as cooked control (group 2). The remaining 3688 g was divided into four groups of 922 g, which were, respectively, divided into subgroups of 307 g. The four sets of subgroups were, respectively, reheated by boiling, frying, microwaving and oven roasting for 3 days. Reheating was done three times a day and samples were collected at the end of each day for further analysis. Changes in proximate composition, mineral content, oil quality, functional properties, and microbiological count were evaluated using standard methods. Results showed that frequent reheating of food was the most used preservation method of cooked food, and boiling and steaming were the most used methods. Reheating time significantly reduces the protein, mineral content, and oil quality of cow meat in general. For the functional properties, reheating methods/conditions generally increased the water-holding capacity, loose and packed bulk densities as well the pH of the meat. Reheating by frying increased the porosity and Hausner ratio of the meat powder while all the reheating treatments reduced the swelling capacity and titratable acidity of cow meat powder. Generally, the reheating methods and duration significantly reduced the bacterial count of cow meat powder. Cow meat should not be reheated for more than 2 days in order to preserve its physiochemical properties.

5.
J Sci Food Agric ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822620

RESUMO

BACKGROUND: Java tea is widely consumed and has multiple health effects. This study established a steam explosion (SE) pretreatment method to prepare Java tea-leaf powders. The physicochemical, functional properties, phenolic extraction, and antioxidant activity of Java tea-leaf powders produced by simple and SE-assisted milling methods were investigated. RESULTS: In comparison with simple milling, SE pretreatment broke the cell wall effectively and reduced the particle size of Java tea-leaf powders. Steam explosion-treated powders showed higher values for sensory signals, bulk and tap density, and for the water solubility index. After SE treatment, the adsorption capacities to glucose, soybean oil, and cholesterol of leaf powders were increased by up to 55, 95, and 80% respectively. The extracts from SE-treated powders also showed higher total polyphenol content and antioxidant activity. CONCLUSION: Steam explosion treatment is helpful for the improvement of functional properties and antioxidant activity, which can benefit the development and application of Java tea-leaf powders. © 2024 Society of Chemical Industry.

6.
Food Chem ; 454: 139835, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815323

RESUMO

Lactoferrin (LF) with various biological functions demonstrates great application potential. However, its application was restricted by its poor gelation and instability. The aim of this work was to explore the effect of microbial transglutaminase (MTGase) and Tremella fuciformis polysaccharide (TP) on the functional properties of LF. The formation of a self-supporting LF gel could be induced by MTGase through generating covalent crosslinks between the LF protein molecules. Meanwhile, TP was introduced into the gel system to improve the strength of LF-TP composite gels by enhancing non-covalent interactions such as hydrogen bond and electrostatic interactions during gel formation. Additionally, the LF-TP composite gel exhibited outstanding functional characteristics such as gastrointestinal digestive stability and antioxidant property. This work clarified the mechanism on MTGase and TP-mediated modification of lactoferrin, offered a novel strategy to increase the functional characteristics of LF, and enlarged the application range of LF and TP.


Assuntos
Basidiomycota , Alimento Funcional , Lactoferrina , Polissacarídeos , Transglutaminases , Lactoferrina/química , Lactoferrina/metabolismo , Transglutaminases/metabolismo , Transglutaminases/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Basidiomycota/química , Basidiomycota/enzimologia , Basidiomycota/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo
7.
Foods ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731655

RESUMO

Litopenaeus vannamei protein (LVP) is a high-quality protein. However, its functional properties do not fully meet the needs of food processing. In this study, LVP-xylose conjugates were prepared by conventional wet heat method (GLVP) and ball-milling-assisted wet heat method (GBLVP), respectively. The changes in structure and functional properties of the glycosylated LVP were explored. The findings revealed that ball-milling pretreatment increased the grafting degree to 35.21%. GBLVP had a sparser surface structure and lower particle size than GLVP. FTIR spectra showed that xylose was grafted onto LVP successfully and GBLVP had the lowest α-helix content. Compared with GLVP, GBLVP had a decrease in intrinsic fluorescence intensity and surface hydrophobicity, and an increase in UV absorption intensity. Moreover, GBLVP had higher foaming capacity, solubility and water-holding capacity, and lower allergenicity than GLVP. However, ball-milling pretreatment had a negative impact on the vitro digestibility and oil-holding capacity of GBLVP. In conclusion, ball-milling-assisted treatment of glycosylation could effectively improve the functional properties of LVP, benefiting the broader application of LVP in the food industry.

8.
Foods ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38472872

RESUMO

The effects of the roasting-assisted aqueous ethanol extraction of peanut oil on the structure and functional properties of dreg proteins were investigated to interpret the high free oil yield and provide a basis for the full utilization of peanut protein resources. The roasting-assisted aqueous ethanol extraction of peanut oil obtained a free oil yield of 97.74% and a protein retention rate of 75.80% in the dreg. The water-holding capacity of dreg proteins increased significantly, and the oil-holding capacity and surface hydrophobicity decreased significantly, reducing the binding ability with oil and thus facilitating the release of oil. Although the relative crystallinity and denaturation enthalpy of the dreg proteins decreased slightly, the denaturation temperatures remained unchanged. Infrared and Raman spectra identified decreases in the C-H stretching vibration, Fermi resonance and α-helix, and increases in random coil, ß-sheet and ß-turn, showing a slight decrease in the overall ordering of proteins. After the roasting treatment, 62.57-135.33% of the protein functional properties were still preserved. Therefore, the roasting-assisted aqueous ethanol extraction of peanut oil is beneficial for fully utilizing the oil and protein resources in peanuts.

9.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540958

RESUMO

Cinnamomum camphora seed kernel protein isolate (CPI) has attracted increasing attention due to its sustainability and potential applications. This study aimed to investigate the effects of freeze-drying (FD), vacuum-drying (VD), and spray-drying (SD) on the physicochemical and functional properties of CPI. The morphology observation results showed that the SD-CPI, SD-CPI, and VD-CPI were spherical, lamellar, and massive, respectively. Compared to FD and SD, VD had more impact on the color, surface hydrophobicity, intermolecular disulfide bonds, intrinsic fluorescence, and thermal stability of CPI. Fourier transform infrared spectroscopy (FTIR) analyses showed that among three CPI samples, VD-CPI had the highest content of ß-sheet but the lowest contents of α-helix and ß-turn. At different pH values, the solubility, emulsification, and foaming properties of VD-CPI were inferior to those of FD-CPI and SD-CPI. These results provide useful information on the changes in the physicochemical and functional properties of CPI subjected to different drying methods, and offer theoretical guidance for the production and use of CPI in the food industry.

10.
J Food Sci Technol ; 61(3): 516-527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327868

RESUMO

De-oiled rice bran is a good source of high-quality protein; however, the current practice of desolventization at high temperature (110-120 °C) denatures the protein, making its extraction difficult and uneconomical. The present study aims to investigate the effect of low temperature desolventization of de-oiled rice bran (LTDRB) on extraction, yield, and purity of protein and its comparison with protein obtained from high temperature desolventized de-oiled rice bran (HTDRB). The optimal conditions for preparation of protein from LTDRB were: extraction pH 11.00, extraction duration 52 min, and extraction temperature 58 °C resulting in an extraction efficiency, yield, and purity of 54.0, 7.23, and 78.70%, respectively. The LTDRB showed a positive impact on the color, solubility, foaming capacity and stability of protein whereas the absorption and emulsification properties were better for HTDRB protein. Significant decrease in enthalpy (ΔH) for denaturation was observed for LTDRB protein as compared to HTDRB protein. Scanning electron microscopy analysis revealed that HTDRB protein was more compact than LTDRB protein. LTDRB protein had smaller particle size distribution than HTDRB. Study suggested that low temperature desolventization can result in higher protein extraction with better physico-chemical, structural, and functional properties of protein obtained from DRB.

11.
Int J Biol Macromol ; 263(Pt 2): 130370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403222

RESUMO

Dry heat treatment (DHT) has been demonstrated as a viable method for starch modification, offering benefits due to its environmentally friendly process and low operational costs. This research modified potato starch using different DHT conditions (continuous-CDHT and cyclic-RDHT), with durations ranging from 3 to 15 h and 1 to 5 cycles, at 120 °C. The study investigated and compared the structural, thermal, pasting, and morphological properties of the treated samples to those of untreated potato starch, including in vitro digestibility post-modification. DHT altered the amylose content of the biopolymer. X-ray diffraction patterns transitioned from type B to type C, and a decrease in relative crystallinity (RC%) was observed. Morphological changes were more pronounced in starches modified by RDHT. Paste viscosities of both CDHT and RDHT-treated starches decreased significantly, by 61.7 % and 58.1 % respectively, compared to native starch. The gelatinization enthalpy of RDHT-treated starches reduced notably, from 17.60 to 16.10 J g-1. Additionally, starch digestibility was impacted, with cyclic treatments yielding a significant increase in resistant starch content, notably an 18.26 % rise. These findings underscore the efficacy of dry heat in enhancing the functional properties of potato starch.


Assuntos
Solanum tuberosum , Solanum tuberosum/química , Temperatura Alta , Amido/química , Amilose/química , Viscosidade , Difração de Raios X
12.
Int J Biol Macromol ; 263(Pt 2): 129939, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423909

RESUMO

Polysaccharides are biologically essential macromolecules, widely exist in plants, which are used in food, medicine, bioactives' encapsulation, targeted delivery and other fields. Suitable extraction technology can not only improve the yield, but also regulate the physicochemical, improve the functional property, and is the basis for the research and application of polysaccharide. High pressure (HP) extraction (HPE) induces the breakage of raw material cells and tissues through rapid changes in pressure, increases extraction yield, reduces extraction time, and modifies structure of polysaccharides. However, thus far, literature review on the mechanism of extraction, improved yield and modified structure of HPE polysaccharide is lacking. Therefore, the present work reviews the mechanism of HPE polysaccharide, increasing extraction yield, regulating physicochemical and functional properties, modifying structure and improving activity. This review contributes to a full understanding of the HPE or development of polysaccharide production and modification methods and promotes the application of HP technology in polysaccharide production.


Assuntos
Medicina , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Extratos Vegetais/química , Substâncias Macromoleculares , Antioxidantes/química
13.
J Dairy Res ; 91(1): 10-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361413

RESUMO

This research paper addresses the hypothesis that there is an optimal amount of intestinally available oleic acid (provided via abomasal infusion) to produce higher-oleic acid milk fat with satisfactory functional characteristics of cream and butter oil. A control and four increasing doses of free fatty acids from high oleic sunflower oil (HOSFA) were infused into the abomasum of four lactating dairy cows in a crossover experimental design with 7-d periods. Treatments were: (1) control (no HOSFA infused), (2) HOSFA (250 g/d), (3) HOSFA (500 g/d), (4) HOSFA (750 g/d), and (5) HOSFA (1000 g/d). All treatments included meat solubles and Tween 80 as emulsifiers. Viscosity, overrun and whipping time as well as foam firmness and stability were evaluated in whipping creams (33% fat). Solid fat content (from 0 to 40°C), melting point and firmness were determined in butter oil. Whipping time of cream increased linearly and viscosity decreased linearly as infusion of HOSFA increased. Overrun displayed a quadratic response, decreasing when 500 g/d or more was infused. Foam firmness and stability were not affected significantly by HOSFA. For butter oil, melting point, firmness, and solid fat content decreased as HOSFA infusion increased. Changes in 21 TG fractions were statistically correlated to functional properties, with 6-10 fractions showing the highest correlations consistently. Decisions on the optimal amount of HOSFA were dependent on the dairy product to which milk fat is applied. For products handled at commercial refrigeration temperatures, such as whipping cream and butter oil, the 250 g/d level was the limit to maintain satisfactory functional qualities. Palmitic acid needed to be present in at least 20% in milk fat to keep the functional properties for the products.


Assuntos
Abomaso , Leite , Ácido Oleico , Óleos de Plantas , Óleo de Girassol , Animais , Bovinos , Feminino , Leite/química , Viscosidade , Óleo de Girassol/química , Abomaso/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Estudos Cross-Over , Lactação/efeitos dos fármacos , Manipulação de Alimentos/métodos
14.
Int J Biol Macromol ; 261(Pt 1): 129702, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280699

RESUMO

Taro starch (TS) was modified by dry heat treatment (DHT) for different periods (1, 3, 5, and 7 h at 130 °C) and temperatures (90, 110, 130, and 150 °C for 5 h) to expand its applications in food and other industries. The structure and functional properties of DHT-modified TS were characterized. It was found that TS granules became agglomerated after DHT, and the particle size, amylose content, solubility, and retrogradation enthalpy change of TS increased with increasing dry heating time and temperature, whereas the relative crystallinity, molecular weight, swelling power, gelatinization temperature, and enthalpy change decreased. The absorbance ratio of 1047 cm-1/1022 cm-1 for DHT-modified TS (except at 7 h) was higher than that of native TS. DHT increased the contact angle of TS in a time- and temperature-dependent manner. At a moderate strength, DHT increased the pasting viscosity, relative setback value, and storage modulus but decreased the relative breakdown value. Moreover, DHT (except at 150 °C) caused a decrease in the rapid digestive starch content and estimated glycemic index of TS. These results suggested that DHT-modified TS could be used in foods with high viscosity requirements, gel foods, and low-glycemic index starch-based foods.


Assuntos
Colocasia , Amido , Amido/química , Temperatura Alta , Fenômenos Químicos , Amilose/química , Viscosidade
15.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005187

RESUMO

To identify the ideal soybean protein isolate for texturized vegetable protein processing, the effect of different soybean protein isolates on texturized vegetable protein composition was studied. Three different types of soybean protein isolates were selected and analyzed for functional properties (water holding capacity (WHC), emulsifying properties, foaming properties), amino acid content, and protein secondary structure. Then, using the same formulation, the soybean protein isolates were extruded to produce texturized vegetable protein, and its textural properties, degree of texturization, microstructure, free sulfhydryl (free SH), and disulfide (S-S) content were determined. Lastly, a correlation analysis was performed to examine the connection between soybean protein isolates and texturized vegetable proteins. After correlation analysis, the soybean protein isolate functional properties that affect the textural properties of the texturized vegetable protein were as follows: the emulsifying property affected the hardness, adhesiveness, springiness, gumminess, and chewiness of the texturized vegetable proteins; and the foaming property affected the gumminess, chewiness, and the degree of texturization of the texturized vegetable proteins. In addition, 16 amino acids including threonine (Thr), methionine (Met), and arginine (Arg) affect texturized vegetable proteins, mainly with respect to adhesiveness, springiness, and free SH. The effects of secondary structure (α-helix, random coil) on texturized vegetable proteins were degree of texturization, resilience, and cohesion, respectively. Therefore, choosing the soybean protein isolate with better emulsifying and foaming properties provides a more suitable approach for processing texturized vegetable protein.


Assuntos
Alimentos de Soja , Proteínas de Soja , Estrutura Secundária de Proteína , Metionina , Aminoácidos
16.
Front Chem ; 11: 1295347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025049

RESUMO

A library of ß-enamino diketones was prepared via base-mediated, three-component reaction of 4-hydroxycoumarins with various aromatic/aliphatic amines and ß-nitrostyrenes under microwave irradiation conditions to investigate their photochemical properties. Among the prepared compounds, a thiophene derived ß-enamino diketone was found to be light-sensitive and to exhibit unique photochromic behavior, that is, positive photochromism in solution and negative photochromism in crystalline phase. In addition, this prepared photochromic compound was further covalently linked to a structure-related, piezochromic ß-enamino diketone moiety to explore its potential multi-stimuli responsive properties.

17.
Food Chem X ; 19: 100866, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780344

RESUMO

Herein, cationic soy protein (NSPI) was synthesized by grafting Ethylenediamine (EDA) onto soy protein isolate (SPI), and protein-gallic acid (GA) complexes were formed by mixing NSPI with GA in various ratios. We assessed the structure, particle size, thermal stability, emulsifying ability, and antioxidant capacity of NSPI and complexes. Results show that grafting with EDA introduced a positive charge to SPI and resulted in a uniform particle size, and enhanced thermal stability, emulsifying ability, and antioxidant capacity. In addition, NSPI presented more amino groups and stronger interactions with GA compared to SPI. EDA and GA synergistically increased the flexibility of SPI, reducing the α-helix content and increasing the random coil content. Moreover, the interactions between SPI, NSPI, and GA were static, and hydrophobic and electrostatic between GA and SPI and NSPI, respectively. Grafting SPI with EDA improved functionality and interactions with GA, implying that NSPI-GA complexes may function as emulsifiers and antioxidants.

18.
Curr Res Food Sci ; 7: 100604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840699

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal plant that originally came from South America. The trend of consuming quinoa is propelled by its well‒balanced amino acid profile compared to that of other plants. In addition, its gluten‒free nature makes quinoa a promising diet option for celiac disease patients. Protein accounts for approximately 17% of the quinoa seed composition and quinoa protein possesses excellent quality. Quinoa protein is mainly composed of 11S globulins (37%) and 2S albumins (35%), both of which are stabilized by disulfide bonds. To date, the alkaline extraction method is the most commonly used method to extract quinoa protein. The functional properties and digestibility of quinoa protein can be improved with the help of various modification methods, and as a result, the application of quinoa protein will be extended. In this review, the extraction method, modification of functional properties and digestibility of quinoa protein are thoroughly discussed, providing insights into the application of quinoa protein in plant‒based foods.

19.
Foods ; 12(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835278

RESUMO

Goat milk whey protein products are a hard-to-source commodity. Whey protein concentrate was directly prepared from fresh goat milk. The effects of the heating temperature (69-78 °C), time (15-30 min), and pH (7.5-7.9) on the physicochemical and functional properties of the goat milk whey protein were investigated. The results showed that the particle size of the samples significantly increased (p < 0.05) after heat treatment. The zeta potential of polymerized goat milk whey protein (PGWP) was lower than that of native goat milk whey protein. The content of the free sulfhydryl groups of PGWP decreased with increasing heating temperature and time, while an increase in surface hydrophobicity and apparent viscosity of PGWP were observed after heat treatment. Fourier Transform Infrared Spectroscopy analysis indicated that heat treatment and pH had considerable impacts on the secondary structure of goat milk whey protein. Transmission electron microscope images revealed that heat induced the formation of a large and uniform protein network. Additionally, the changes in the physicochemical and structural properties contributed to the improvement of the emulsifying and foaming properties of goat milk whey protein after heat treatment. The results may provide a theoretical basis for the applications of polymerized goat milk whey protein in related products.

20.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894643

RESUMO

Besides active substances, Forsythia suspensa is rich in dietary fiber (DF), but it is often wasted or discarded and not put to good use. In order to improve the function of Forsythia DF, it was modified using alkaline hydrogen peroxide (AHP) and cellulase (EM). Compared to the control DF (ODF), the DF modified using AHP (AHDF) and EM (EMDF) had a looser microstructure, lower crystallinity, and higher oil holding capacity (OHC) and cation exchange capacity (CEC). The AHP treatment significantly increased the water holding capacity (WHC) and water swelling ability (WSA) of the DF, while the EM treatment achieved just the opposite. Moreover, the functional properties of AHDF and EMDF, including their cholesterol adsorption capacity (CAC), nitrite ion adsorption capacity (NAC), glucose adsorption capacity (GAC), glucose dialysis retardation index (GDRI), α-amylase inhibitory activity, and DPPH radical scavenging activity, were far better than those of ODF. Together, the results revealed that AHP and EM modifications could effectively improve or enhance the physicochemical and functional properties of Forsythia suspensa DF.


Assuntos
Celulase , Forsythia , Peróxido de Hidrogênio , Celulase/química , Diálise Renal , Fibras na Dieta/farmacologia , Glucose/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA