RESUMO
G-quadruplexes refer to a large group of nucleic acid-based structures. In recent years, they have been attracting attention due to their biological roles in the telomeres and promoter regions. These structures show wide diversity in topology, however, development of methods for structural classification of G-quadruplexes has been evaded for a long time. There has been a limited number of studies aiming to bring forth a secondary structure classification method. The situation was even more complex than imagined, since the discovery of bulged and mismatched G-quadruplexes while most of the available tools fail to distinguish these non-canonical G-quadruplex motifs. Moreover, the interpretation of their analysis output still requires expert knowledge. In this study, we propose a new method for identification of unimolecular G-Quadruplexes and classification by secondary structures based on three-dimensional structural data. Briefly, coordinates of guanines are processed to identify tetrads, loops and bulges. Then, we present the secondary structure in the form of a depiction which shows the loop types, bulges, and guanines that participate in each tetrad. Moreover, CIIS-GQ identifies non-guanine nucleotides that joins the G-tetrads and forms multiplets. Finally, the results of our study are compared with DSSR and ElTetrado classification methods, and the advantages of the proposed depiction method for representing secondary structures were discussed. The source code of the method can be accessed via https://github.com/TugayDirek/CIIS-GQ .
Assuntos
Quadruplex G , Conformação de Ácido Nucleico , Modelos Moleculares , Guanina/química , DNA/química , Humanos , Telômero/química , Biologia Computacional/métodosRESUMO
G-quadruplexes (GQs) have been primarily studied in the context of cancer and neurodegenerative pathologies. However, recent research has shifted focus to their existence and functional roles in viral genomes, revealing GQ-regulated key pathways in various human pathogenic viruses. While GQ structures have been reported in the genomes of emerging and re-emerging viruses, RNA viruses have been understudied compared to DNA viruses, including notable examples such as human immunodeficiency virus-1, hepatitis C virus, Ebola virus, Nipah virus, Zika virus, and SARS-CoV-2. The flavivirus family, comprising the Japanese encephalitis virus (JEV), poses a significant global threat due to recurring outbreaks yet lacks approved antivirals. In this study, we identified and characterized eight putative G-quadruplex-forming motifs within essential genes involved in genome replication, assembly, and internalization in the host cell, conserved across different JEV isolates. The formation and stability of these motifs were validated through a multitude of biophysical and cell-based assays. The interaction and binding affinity of these motifs with the known GQ-binding ligand BRACO-19 were supported by biophysical assays, confirming the capability of these motifs to form GQ structures. Notably, BRACO-19 also exerted antiviral properties through reduction of viral replication and infectious virus titers as well as inhibition of viral protein expression, as evaluated by the cell-based assays. This comprehensive molecular characterization of G-quadruplex structures within the JEV genome highlights their potential as promising antiviral targets for intervention strategies against JEV infection through GQ-specific ligands.
RESUMO
L-RNA aptamers have been developed to target G-quadruplexes (G4s) and regulate G4-mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subjected to high failure rate. By analyzing the previously reported G4-binding L-RNA aptamers, we found that the stem-loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4-SLSELEX-Seq platform specifically for G4 targets by introducing a pre-defined stem-loop structure library during SELEX process. Using G4-SLSELEX-Seq, we rapidly identified an L-RNA aptamer, L-Apt1-12 for EBNA1 RNA G4 (rG4) in just three selection rounds. L-Apt1-12 maintained the stem-loop structure initially introduced, and possessed a unique G-triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. Notably, L-Apt1-12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards EBV-positive cancer cells, highlighting its potential for targeted therapy against EBV-associated cancers. Furthermore, we demonstrate the robustness and generality of G4-SLSELEX-Seq by selecting L-RNA aptamers for another two G4 targets-APP rG4 and HCV-1a rG4, also obtaining high-affinity aptamers in three selection rounds. These findings demonstrated G4-SLSELEX-Seq can be a robust and efficient platform for the selection of L-RNA aptamers targeting rG4.
RESUMO
G-quadruplexes (G4â s), as non-canonical DNA structures, attract a great deal of research interest in the molecular biology as well as in the material science fields. The use of small molecules as ligands for G-quadruplexes has emerged as a tool to regulate gene expression and telomeres maintenance. Meso-tetrakis-(N-methyl-4-pyridyl) porphyrin (TMPyP4) was shown as one of the first ligands for G-quadruplexes and it is still widely used. We report an investigation comprising molecular docking and dynamics, synthesis and multiple spectroscopic and spectrometric determinations on simple cationic porphyrins and their interaction with different DNA sequences. This study enabled the synthesis of tetracationic porphyrin derivatives that exhibited binding and stabilizing capacity against G-quadruplex structures; the detailed characterization has shown that the presence of amide groups at the periphery improves selectivity for parallel G4â s binding over other structures. Taking into account the ease of synthesis, 5,10,15,20-tetrakis-(1-acetamido-4-pyridyl) porphyrin bromide could be considered a better alternative to TMPyP4 in studies involving G4 binding.
RESUMO
Liquid-liquid phase separation (LLPS), mediated by G-quadruplexes (G4â s) and intrinsically disordered proteins, particularly those containing RGG domains, plays a critical role in cellular processes and diseases. However, the molecular mechanism and the role of individual amino acid residues of the protein in LLPS with G4 (G4-LLPS) are still unknown. Here, we systematically designed peptides and investigated the roles of arginine residues in G4-LLPS. It was found that the FMRP-derived RGG peptide induced LLPS with G4-forming Myc-DNA, whereas a point-mutated peptide, in which all arginine residues were replaced with lysine, was unable to undergo LLPS, indicating the importance of arginine residues. Moreover, systematically truncated peptides showed that at least five positive net charges of peptide are required to induce G4-LLPS. Furthermore, quantitative investigation demonstrated that the higher binding affinity of peptides with G4 led to a higher LLPS ability, whereas threshold of the binding affinity for undergoing LLPS was identified. These insights elucidate the pivotal role of arginine in G4-LLPS and the specific requirement for multiple arginine residues, contributing to a deeper understanding of the complex interplay between intrinsically disordered proteins and nucleic acids.
RESUMO
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cellular processes, with their dysregulation linked to various disease states. Among the structural motifs in lncRNAs, RNA G-quadruplexes (rG4s) have gained increasing attention due to their diverse roles in cellular function and disease pathogenesis. This review provides an updated and comprehensive overview of rG4s in lncRNAs, elucidating their formation, interaction with proteins, and distinctive roles in cellular processes. We discuss current methodologies for experimentally probing RNA G4s, including the use of specific small molecules, biomolecular ligands and fluorescent probes. The commonly found RNA G4-interacting protein domains are summarised along with potential strategies for disrupting lncRNA G4-protein interactions from a therapeutic perspective.
Assuntos
Quadruplex G , Ligação Proteica , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/química , Humanos , Animais , Proteínas/química , Proteínas/metabolismo , Proteínas/genéticaRESUMO
RTEL1 is an essential DNA helicase which plays an important role in various aspects of genome stability, from telomere metabolism to DNA replication, repair and recombination. RTEL1 has been implicated in a number of genetic diseases and cancer development, including glioma, breast, lung and gastrointestinal tumors. RTEL1 is a FeS helicase but, in addition to the helicase core, it comprises a long C-terminal region which includes a number of folded domains connected by intrinsically disordered loops and mediates RTEL1 interaction with factors involved in pivotal cellular pathways. However, information on the architecture and the function of this region is still limited. We expressed and purified a variety of fragments encompassing the folded domains and the unstructured regions. We determined the crystal structure of the second repeat, confirming that it has a fold similar to the harmonin homology domains. SAXS data provide low-resolution information on all the fragments and suggest that the presence of the RING domain affects the overall architecture of the C-terminal region, making the structure significantly more compact. NMR data provide experimental information on the interaction between PCNA and the RTEL1 C-terminal region, revealing a putative low-affinity additional site of interaction. A biochemical analysis shows that the C-terminal region, in addition to a preference for telomeric RNA and DNA G-quadruplexes, has a high affinity for R-loops and D-loops, consistent with the role played by the RTEL1 helicase in homologous recombination, telomere maintenance and preventing replication-transcription conflicts. We further dissected the contribution of each domain in binding different substrates.
Assuntos
DNA Helicases , Humanos , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/genética , Cristalografia por Raios X , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Domínios Proteicos , Espalhamento a Baixo ÂnguloRESUMO
DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).
Assuntos
Quadruplex G , Porfirinas , Telômero , Quadruplex G/efeitos dos fármacos , Porfirinas/química , Porfirinas/farmacologia , Humanos , Telômero/química , Linhagem Celular Tumoral , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Simulação de Dinâmica Molecular , Ligantes , OncogenesRESUMO
Parallel-stranded G-quadruplex structures are found to be common in the human promoter sequences. We tested highly fluorescent 9-methoxyluminarine ligand (9-MeLM) binding interactions with different parallel G-quadruplexes DNA by spectroscopic methods such as fluorescence and circular dichroism (CD) titration as well as UV melting profiles. The results showed that the studied 9-MeLM ligand interacted with the intramolecular parallel G-quadruplexes (G4s) with similar affinity. The binding constants of 9-methoxyluminarine with different parallel G4s were determined. The studies upon oligonucleotides with different flanking sequences on c-MYC G-quadruplex suggest that 9-methoxyluminarine may preferentially interact with 3'end of the c-MYC promoter. The high decrease in 9-MeLM ligand fluorescence upon binding to all tested G4s indicates that 9-methoxyluminarine molecule can be used as a selective fluorescence turn-off probe for parallel G-quadruplexes.
Assuntos
Dicroísmo Circular , Quadruplex G , Ligantes , Humanos , Espectrometria de Fluorescência , Regiões Promotoras Genéticas , DNA/química , DNA/metabolismo , Fluorescência , Corantes Fluorescentes/químicaRESUMO
Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.
Assuntos
Replicação do DNA , Heme Oxigenase-1 , Animais , Humanos , Camundongos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/metabolismo , Dano ao DNA , Quadruplex G , Células HEK293 , Heme/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Camundongos Knockout , Estresse OxidativoRESUMO
Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [Co2L3]6+ cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges. This study was motivated by earlier results demonstrating that both Co(III) cylinders exhibit potent and selective activity against cancer cells, accumulate in the nucleus of cancer cells, and prove to be efficient DNA binders. The results show that the bigger cylinder rac-2 stabilizes all DNA structures, while the smaller cylinder meso-1 stabilizes just the Y-shaped three-way junctions. Collectively, the results of this study suggest that the stabilization of alternative DNA structures by Co(III) cylinders investigated in this work might contribute to the mechanism of their biological activity.
Assuntos
Cobalto , DNA , DNA/química , DNA/metabolismo , Cobalto/química , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Conformação de Ácido Nucleico , Quadruplex GRESUMO
Apurinic/apyrimidinic endonuclease 1 (APE1) is involved in DNA repair and transcriptional regulation mechanisms. This multifunctional activity of APE1 should be supported by specific structural properties of APE1 that have not yet been elucidated. Herein, we applied atomic force microscopy (AFM) to characterize the interactions of APE1 with DNA containing two well-separated G-rich segments. Complexes of APE1 with DNA containing G-rich segments were visualized, and analysis of the complexes revealed the affinity of APE1 to G-rich DNA sequences, and their yield was as high as 53%. Furthermore, APE1 is capable of binding two DNA segments leading to the formation of loops in the DNA-APE1 complexes. The analysis of looped APE1-DNA complexes revealed that APE1 can bridge G-rich segments of DNA. The yield of loops bridging two G-rich DNA segments was 41%. Analysis of protein size in various complexes was performed, and these data showed that loops are formed by APE1 monomer, suggesting that APE1 has two DNA binding sites. The data led us to a model for the interaction of APE1 with DNA and the search for the specific sites. The implication of these new APE1 properties in organizing DNA, by bringing two distant sites together, for facilitating the scanning for damage and coordinating repair and transcription is discussed.
Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Humanos , Sítios de Ligação , DNA/metabolismo , DNA/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Microscopia de Força Atômica , Ligação ProteicaRESUMO
How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.
Assuntos
Quadruplex G , Histonas , Complexo Repressor Polycomb 2 , RNA Longo não Codificante , Inativação do Cromossomo X , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Histonas/metabolismo , Histonas/genética , Células-Tronco Embrionárias Murinas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação Gênica , Dobramento de RNA , Ligação ProteicaRESUMO
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Assuntos
DNA Mitocondrial , Quadruplex G , Mitocôndrias , Fator de Transcrição RelA , Humanos , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Fator de Transcrição RelA/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Hipóxia CelularRESUMO
Besides the canonical B-form, DNA also adopts alternative non-B form conformations which are highly conserved in all domains of life. While extensive research over decades has centered on the genomic functions of B-form DNA, understanding how non-B-form conformations influence functional genomic states remains a fundamental and open question. Recent studies have ascribed alternative DNA conformations such as G-quadruplexes and R-loops as important functional features in eukaryotic genomes. This review delves into the biological importance of alternative DNA structures, with a specific focus on hematopoiesis and adaptive immunity. We discuss the emerging roles of G-quadruplex and R-loop structures, the two most well-studied alternative DNA conformations, in the hematopoietic compartment and present evidence for their functional roles in normal cellular physiology and associated pathologies.
Assuntos
Imunidade Adaptativa , Quadruplex G , Hematopoese , Humanos , Hematopoese/genética , Animais , DNA/imunologia , Conformação de Ácido NucleicoRESUMO
Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.
Assuntos
Quadruplex G , DNA/metabolismo , Sódio/química , Cátions Monovalentes/química , TermodinâmicaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to raise concerns worldwide. Numerous host factors involved in SARS-CoV-2 infection have been identified, but the regulatory mechanisms of these host factor remain unclear. Here, we report the role of G-quadruplexes (G4s) located in the host factor promoter region in SARS-CoV-2 infection. Using bioinformatics, biochemical, and biological assays, we provide evidence for the presence of G4 structures in the promoter regions of SARS-CoV-2 host factors NRP1. Specifically, we focus on two representative G4s in the NRP1 promoter and highlight its importance in SARS-CoV-2 pathogenesis. The presence of the G4 structure greatly increases NRP1 expression, facilitating SARS-CoV-2 entry into cells. Utilizing published single-cell RNA sequencing data obtained from simulated SARS-CoV-2 infection in human bronchial epithelial cells (HBECs), we found that ciliated cells with high levels of NRP1 are prominently targeted by the virus during infection. Furthermore, our study identifies E2F1 act as a transcription factor that binds to G4s. These findings uncover a previously unknown mechanism underlying SARS-CoV-2 infection and suggest that targeting G4 structures could be a potential strategy for COVID-19 prevention and treatment.
Assuntos
COVID-19 , Quadruplex G , Neuropilina-1 , Regiões Promotoras Genéticas , Humanos , COVID-19/genética , COVID-19/virologia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , SARS-CoV-2/fisiologia , Internalização do VírusRESUMO
Detecting heavy metal pollution, particularly lead ion (Pb2âº) contamination, is imperative for safeguarding public health. In this study, we introduced an innovative approach by integrating DNAzyme with rolling circle amplification (RCA) to propose an amplification sensing method termed DNAzyme-based dimeric-G-quadruplex (dimer-G4) RCA. This sensing approach allows for precise and high-fidelity Pb2⺠detection. Strategically, in the presence of Pb2âº, the DNAzyme undergoes substrate strand (S-DNA) cleavage, liberating its enzyme strand (E-DNA) to prime isothermal amplification. This initiates the RCA process, producing numerous dimer-G-Quadruplexes (dimer-G4) as the signal reporting transducers. Compared to conventional strategies using monomeric G-quadruplex (mono-G4) as the reporting transducers, these dimer-G4 structures exhibit significantly enhanced fluorescence when bound with Thioflavin T (ThT), offering superior target signaling ability for even detection of Pb2⺠at low concentration. Conversely, in the absence of Pb2âº, the DNAzyme structure remains intact so that no primers can be produced to cause the RCA initiation. This nucleic acid amplification-based Pb2⺠detection method combing with the high specificity of DNAzymes for Pb2⺠recognition ensures highly sensitive detection of Pb2+ with a detection limit of 0.058 nM, providing a robust tool for food safety analysis and environmental monitoring.
Assuntos
DNA Catalítico , Quadruplex G , Chumbo , Técnicas de Amplificação de Ácido Nucleico , DNA Catalítico/química , DNA Catalítico/metabolismo , DNA Catalítico/genética , Chumbo/análise , Chumbo/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Benzotiazóis/químicaRESUMO
G-quadruplexes (G4s) are nucleic acids secondary structures that may form in guanine-rich sequences, either intra or inter-molecularly. Ability of a primary sequence to form a G4 can be predicted computationally with an improving accuracy as well as tested in bulk using biophysical measurements. As a result, G4 density maps have been devised for a large number of genomes from all life kingdoms. Experimental validation of the formation of G4s in vivo however remains indirect and relies on their stabilization with small molecules, antibodies or proteins, or mutational studies, in order to measure downstream effects on gene expression or genome stability for example. Although numerous techniques exist to observe spontaneous formation of G4s in single-stranded DNA, observing G4 formation in double-stranded DNA (dsDNA) is more challenging. However, it is particularly relevant to understand if a given G4 sequence forms stably in a dsDNA context, if it is stable enough to dock proteins or pose a challenge to molecular motors such as helicases or polymerases. In essence, G4s can be a threat to genomic stability but carry as well as the potential to be elements of a structural language in the non-replicating genome. To study quantitatively the formation dynamics and stability of single intramolecular G4s embedded in dsDNA, we have adapted techniques of DNA manipulation under magnetic tweezers. This technique also allows to study encounters of molecular motors with G4 at a single molecule resolution, in order to gain insight into the specificity of G4 resolution by molecular motors, and its efficiency. The procedures described here include the design of the G4 substrate, the study of G4 formation probability and lifetime in dsDNA, as well as procedures to characterize the encounter between the Pif1 helicase and a G4 until G4 resolution. The procedures that we described here can easily be extended to the study of other G4s or molecular motors.