Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Elife ; 132024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042440

RESUMO

Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ microwaves, and we provide a potential solution.


Assuntos
Cálcio , Dependovirus , Hipocampo , Sinapsinas , Animais , Dependovirus/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Cálcio/metabolismo , Hipocampo/metabolismo , Camundongos , Vetores Genéticos , Transdução Genética , Regiões Promotoras Genéticas , Camundongos Endogâmicos C57BL , Masculino
2.
Chembiochem ; : e202400506, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923811

RESUMO

Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.

3.
J Physiol ; 602(8): 1595-1604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36811153

RESUMO

We review the principles of development and deployment of genetically encoded calcium indicators (GECIs) for the detection of neural activity. Our focus is on the popular GCaMP family of green GECIs, culminating in the recent release of the jGCaMP8 sensors, with dramatically improved kinetics relative to previous generations. We summarize the properties of GECIs in multiple colour channels (blue, cyan, green, yellow, red, far-red) and highlight areas for further improvement. With their low-millisecond rise-times, the jGCaMP8 indicators allow new classes of experiments following neural activity in time frames approaching the underlying computations.

4.
Cell Calcium ; 117: 102819, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956535

RESUMO

Calcium is a universal intracellular messenger and proper Ca2+concentrations ([Ca2+]) both in the cytosol and in the lumen of cytoplasmic organelles are essential for cell functions. Ca2+ homeostasis is achieved by a delicate pump/leak balance both at the plasma membrane and at the endomembranes, and improper Ca2+ levels result in malfunction and disease. Selective intraorganellar Ca2+measurements are best achieved by using targeted genetically encoded Ca2+ indicators (GECIs) but to calibrate the luminal fluorescent signals into accurate [Ca2+] is challenging, especially in vivo, due to the difficulty to normalize and calibrate the fluorescent signal in various tissues or conditions. We report here a procedure to calibrate the ratiometric signal of GAP (GFP-Aequorin Protein) targeted to the endo-sarcoplasmic reticulum (ER/SR) into [Ca2+]ER/SR based on imaging of fluorescence after heating the tissue at 50-52 °C, since this value coincides with that obtained in the absence of Ca2+ (Rmin). Knowledge of the dynamic range (Rmax/Rmin) and the Ca2+-affinity (KD) of the indicator permits calculation of [Ca2+] by applying a simple algorithm. We have validated this procedure in vitro using several cell types (HeLa, HEK 293T and mouse astrocytes), as well as in vivo in Drosophila. Moreover, this methodology is applicable to other low Ca2+ affinity green and red GECIs.


Assuntos
Equorina , Organelas , Camundongos , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Calibragem , Organelas/metabolismo , Equorina/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio
5.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808822

RESUMO

Significance: Genetic cellular calcium imaging has emerged as a powerful tool to investigate how different types of neurons interact at the microcircuit level to produce seizure activity, with newfound potential to understand epilepsy. Although many methods exist to measure seizure-related activity in traditional electrophysiology, few yet exist for calcium imaging. Aim: To demonstrate an automated algorithmic framework to detect seizure-related events using calcium imaging - including the detection of pre-ictal spike events, propagation of the seizure wavefront, and terminal spreading waves for both population-level activity and that of individual cells. Approach: We developed an algorithm for precise recruitment detection of population and individual cells during seizure-associated events, which broadly leverages averaged population activity and high-magnitude slope features to detect single-cell pre-ictal spike and seizure recruitment. We applied this method to data recorded using awake in vivo two-photon calcium imaging during pentylenetetrazol induced seizures in mice. Results: We demonstrate that our detected recruitment times are concordant with visually identified labels provided by an expert reviewer and are sufficiently accurate to model the spatiotemporal progression of seizure-associated traveling waves. Conclusions: Our algorithm enables accurate cell recruitment detection and will serve as a useful tool for researchers investigating seizure dynamics using calcium imaging.

6.
Front Neurosci ; 17: 1247397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817802

RESUMO

Introduction: Human induced pluripotent stem cells (iPSCs), with their ability to generate human neural cells (astrocytes and neurons) from patients, hold great promise for understanding the pathophysiology of major neuropsychiatric diseases such as schizophrenia and bipolar disorders, which includes alterations in cerebral development. Indeed, the in vitro neurodifferentiation of iPSCs, while recapitulating certain major stages of neurodevelopment in vivo, makes it possible to obtain networks of living human neurons. The culture model presented is particularly attractive within this framework since it involves iPSC-derived neural cells, which more specifically differentiate into cortical neurons of diverse types (in particular glutamatergic and GABAergic) and astrocytes. However, these in vitro neuronal networks, which may be heterogeneous in their degree of differentiation, remain challenging to bring to an appropriate level of maturation. It is therefore necessary to develop tools capable of analyzing a large number of cells to assess this maturation process. Calcium (Ca2+) imaging, which has been extensively developed, undoubtedly offers an incredibly good approach, particularly in its versions using genetically encoded calcium indicators. However, in the context of these iPSC-derived neural cell cultures, there is a lack of studies that propose Ca2+ imaging methods that can finely characterize the evolution of neuronal maturation during the neurodifferentiation process. Methods: In this study, we propose a robust and reliable method for specifically measuring neuronal activity at two different time points of the neurodifferentiation process in such human neural cultures. To this end, we have developed a specific Ca2+ signal analysis procedure and tested a series of different AAV serotypes to obtain expression levels of GCaMP6f under the control of the neuron-specific human synapsin1 (hSyn) promoter. Results: The retro serotype has been found to be the most efficient in driving the expression of the GCaMP6f and is compatible with multi-time point neuronal Ca2+ imaging in our human iPSC-derived neural cultures. An AAV2/retro carrying GCaMP6f under the hSyn promoter (AAV2/retro-hSyn-GCaMP6f) is an efficient vector that we have identified. To establish the method, calcium measurements were carried out at two time points in the neurodifferentiation process with both hSyn and CAG promoters, the latter being known to provide high transient gene expression across various cell types. Discussion: Our results stress that this methodology involving AAV2/retro-hSyn-GCaMP6f is suitable for specifically measuring neuronal calcium activities over multiple time points and is compatible with the neurodifferentiation process in our mixed human neural cultures.

7.
Alzheimers Dement ; 19(9): 4196-4203, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154246

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disease with increasing relevance as dementia cases rise. The etiology of AD is widely debated. The Calcium Hypothesis of Alzheimer's disease and brain aging states that the dysfunction of calcium signaling is the final common pathway leading to neurodegeneration. When the Calcium Hypothesis was originally coined, the technology did not exist to test it, but with the advent of Yellow Cameleon 3.6 (YC3.6) we are able to test its validity. METHODS: Here we review use of YC3.6 in studying Alzheimer's disease using mouse models and discuss whether these studies support or refute the Calcium Hypothesis. RESULTS: YC3.6 studies showed that amyloidosis preceded dysfunction in neuronal calcium signaling and changes in synapse structure. This evidence supports the Calcium Hypothesis. DISCUSSION: In vivo YC3.6 studies point to calcium signaling as a promising therapeutic target; however, additional work is necessary to translate these findings to humans.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Camundongos , Humanos , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia
8.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119481, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142127

RESUMO

Over the last years, there is accumulating evidence that acidic organelles can accumulate and release Ca2+ upon cell activation. Hence, reliable recording of Ca2+ dynamics in these compartments is essential for understanding the physiopathological aspects of acidic organelles. Genetically encoded Ca2+ indicators (GECIs) are valuable tools to monitor Ca2+ in specific locations, although their use in acidic compartments is challenging due to the pH sensitivity of most available fluorescent GECIs. By contrast, bioluminescent GECIs have a combination of features (marginal pH sensitivity, low background, no phototoxicity, no photobleaching, high dynamic range and tunable affinity) that render them advantageous to achieve an enhanced signal-to-noise ratio in acidic compartments. This article reviews the use of bioluminescent aequorin-based GECIs targeted to acidic compartments. A need for more measurements in highly acidic compartments is identified.


Assuntos
Equorina , Cálcio , Equorina/genética , Organelas
9.
Front Neurosci ; 17: 1119793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875638

RESUMO

Visualization and tracking of the information flow in the broader brain area are essential because nerve cells make a vast network in the brain. Fluorescence Ca2+ imaging is a simultaneous visualization of brain cell activities in a wide area. Instead of classical chemical indicators, developing various types of transgenic animals that express Ca2+-sensitive fluorescent proteins enables us to observe brain activities in living animals at a larger scale for a long time. Multiple kinds of literature have reported that transcranial imaging of such transgenic animals is practical for monitoring the wide-field information flow across the broad brain regions, although it has a lower spatial resolution. Notably, this technique is helpful for the initial evaluation of cortical function in disease models. This review will introduce fully intact transcranial macroscopic imaging and cortex-wide Ca2+ imaging as practical applications.

10.
Methods Mol Biol ; 2616: 113-151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715932

RESUMO

Functional neuroimaging is a powerful tool for evaluating how local and global brain circuits evolve after focal ischemia and how these changes relate to functional recovery. For example, acutely after stroke, changes in functional brain organization relate to initial deficit and are predictive of recovery potential. During recovery, the reemergence and restoration of connections lost due to stroke correlate with recovery of function. Thus, information gleaned from functional neuroimaging can be used as a proxy for behavior and inform on the efficacy of interventional strategies designed to affect plasticity mechanisms after injury. And because these findings are consistently observed across species, bridge measurements can be made in animal models to enrich findings in human stroke populations. In mice, genetic engineering techniques have provided several new opportunities for extending optical neuroimaging methods to more direct measures of neuronal activity. These developments are especially useful in the context of stroke where neurovascular coupling can be altered, potentially limiting imaging measures based on hemodynamic activity alone. This chapter is designed to give an overview of functional wide-field optical imaging (WFOI) for applications in rodent models of stroke, primarily in the mouse. The goal is to provide a protocol for laboratories that want to incorporate an affordable functional neuroimaging assay into their current research thrusts, but perhaps lack the background knowledge or equipment for developing a new arm of research in their lab. Within, we offer a comprehensive guide developing and applying WFOI technology with the hope of facilitating accessibility of neuroimaging technology to other researchers in the stroke field.


Assuntos
AVC Isquêmico , Acoplamento Neurovascular , Acidente Vascular Cerebral , Animais , Camundongos , Encéfalo , Imageamento por Ressonância Magnética , Imagem Óptica/métodos , Acidente Vascular Cerebral/diagnóstico por imagem
11.
Front Cell Dev Biol ; 10: 880107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846350

RESUMO

Near-infrared (NIR) genetically encoded calcium indicators (GECIs) are becoming powerful tools for neuroscience. Because of their spectral characteristics, the use of NIR GECIs helps to avoid signal loss from the absorption by body pigments, light-scattering, and autofluorescence in mammalian tissues. In addition, NIR GECIs do not suffer from cross-excitation artifacts when used with common fluorescent indicators and optogenetics actuators. Although several NIR GECIs have been developed, there is no NIR GECI currently available that would combine the high brightness in cells and photostability with small size and fast response kinetics. Here, we report a small FRET-based NIR fluorescent calcium indicator iGECInano. We characterize iGECInano in vitro, in non-neuronal mammalian cells, and primary mouse neurons. iGECInano demonstrates the improvement in the signal-to-noise ratio and response kinetics compared to other NIR GECIs.

12.
Stem Cells ; 40(7): 655-668, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35429386

RESUMO

Electrical activity and intracellular Ca2+ transients are key features of cardiomyocytes. They can be measured using organic voltage- and Ca2+-sensitive dyes but their photostability and phototoxicity mean they are unsuitable for long-term measurements. Here, we investigated whether genetically encoded voltage and Ca2+ indicators (GEVIs and GECIs) delivered as modified mRNA (modRNA) into human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be accurate alternatives allowing measurements over long periods. These indicators were detected in hiPSC-CMs for up to 7 days after transfection and did not affect responses to proarrhythmic compounds. Furthermore, using the GEVI ASAP2f we observed action potential prolongation in long QT syndrome models, while the GECI jRCaMP1b facilitated the repeated evaluation of Ca2+ handling responses for various tyrosine kinase inhibitors. This study demonstrated that modRNAs encoding optogenetic constructs report cardiac physiology in hiPSC-CMs without toxicity or the need for stable integration, illustrating their value as alternatives to organic dyes or other gene delivery methods for expressing transgenes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação/fisiologia , Cálcio , Corantes , Humanos , Miócitos Cardíacos , Optogenética , RNA Mensageiro/genética
13.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948305

RESUMO

Radial glial cells are a distinct non-neuronal cell type that, during development, span the entire width of the brain walls of the ventricular system. They play a central role in the origin and placement of neurons, since their processes form structural scaffolds that guide and facilitate neuronal migration. Furthermore, glutamatergic signaling in the radial glia of the adult cerebellum (i.e., Bergmann glia), is crucial for precise motor coordination. Radial glial cells exhibit spontaneous calcium activity and functional coupling spread calcium waves. However, the origin of calcium activity in relation to the ontogeny of cerebellar radial glia has not been widely explored, and many questions remain unanswered regarding the role of radial glia in brain development in health and disease. In this study we used a combination of whole mount immunofluorescence and calcium imaging in transgenic (gfap-GCaMP6s) zebrafish to determine how development of calcium activity is related to morphological changes of the cerebellum. We found that the morphological changes in cerebellar radial glia are quite dynamic; the cells are remarkably larger and more elaborate in their soma size, process length and numbers after 7 days post fertilization. Spontaneous calcium events were scarce during the first 3 days of development and calcium waves appeared on day 5, which is associated with the onset of more complex morphologies of radial glia. Blockage of gap junction coupling inhibited the propagation of calcium waves, but not basal local calcium activity. This work establishes crucial clues in radial glia organization, morphology and calcium signaling during development and provides insight into its role in complex behavioral paradigms.


Assuntos
Sinalização do Cálcio/fisiologia , Cerebelo/metabolismo , Cerebelo/fisiologia , Neuroglia/metabolismo , Neuroglia/fisiologia , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/metabolismo , Animais Geneticamente Modificados/fisiologia , Cálcio/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
14.
Cells ; 10(8)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34440902

RESUMO

Calcium (Ca2+) signaling coordinates are crucial processes in brain physiology. Particularly, fundamental aspects of neuronal function such as synaptic transmission and neuronal plasticity are regulated by Ca2+, and neuronal survival itself relies on Ca2+-dependent cascades. Indeed, impaired Ca2+ homeostasis has been reported in aging as well as in the onset and progression of neurodegeneration. Understanding the physiology of brain function and the key processes leading to its derangement is a core challenge for neuroscience. In this context, Ca2+ imaging represents a powerful tool, effectively fostered by the continuous amelioration of Ca2+ sensors in parallel with the improvement of imaging instrumentation. In this review, we explore the potentiality of the most used animal models employed for Ca2+ imaging, highlighting their application in brain research to explore the pathogenesis of neurodegenerative diseases.


Assuntos
Cálcio/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Humanos , Neurônios/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445636

RESUMO

The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Luminescentes/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Vias Visuais/metabolismo , Animais , Transporte Proteico
16.
J Neurosci Methods ; 362: 109314, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375713

RESUMO

Genetically encoded fluorescent indicators of neuronal activity are ultimately developed to dissect functions of neuronal ensembles during behavior in living animals. Recent development of near-infrared shifted calcium and voltage indicators moved us closer to this goal and enabled crosstalk-free combination with blue light-controlled optogenetic tools for all-optical control and readout. Here I discuss designs of recent near-infrared and far-red calcium and voltage indicators, compare their properties and performance, and overview their applications to spectral multiplexing and in vivo imaging. I also provide perspectives for further development.


Assuntos
Cálcio , Optogenética , Animais , Corantes , Luz
17.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34380658

RESUMO

GABAergic somatodendritic inhibition in the preBötzinger complex (preBötC), a medullary site for the generation of inspiratory rhythm, is involved in respiratory rhythmogenesis and patterning. Nevertheless, whether GABA acts distally on presynaptic terminals, evoking presynaptic inhibition is unknown. Here, we begin to address this problem by measuring presynaptic Ca2+ transients in preBötC neurons, under rhythmic and non-rhythmic conditions, with two variants of genetically encoded Ca2+ indicators (GECIs). Organotypic slice cultures from newborn mice, containing the preBötC, were drop-transduced with jGCaMP7s, or injected with jGCaMP7f-labeling commissural preBötC neurons. Then, Ca2+ imaging combined with whole-cell patch-clamp or field stimulation was obtained from inspiratory preBötC neurons. We found that rhythmically active neurons expressed synchronized Ca2+ transients in soma, proximal and distal dendritic regions, and punctate synapse-like structures. Expansion microscopy revealed morphologic characteristics of bona fide synaptic boutons of the en passant and terminal type. Under non-rhythmic conditions, we found that bath application of the GABAA receptor agonist muscimol, and local microiontophoresis of GABA, reduced action potential (AP)-evoked and field stimulus-evoked Ca2+ transients in presynaptic terminals in inspiratory neurons and commissural neurons projecting to the contralateral preBötC. In addition, under rhythmic conditions, network rhythmic activity was suppressed by muscimol, while the GABAA receptor antagonist bicuculline completely re-activated spontaneous activity. These observations demonstrate that the preBötC includes neurons that show GABAergic inhibition of presynaptic Ca2+ transients, and presynaptic inhibition may play a role in the network activity that underlies breathing.


Assuntos
Bulbo , Neurônios , Potenciais de Ação , Animais , Camundongos , Respiração , Sinapses
18.
J Neurosci Methods ; 355: 109129, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711357

RESUMO

Studying the brain requires knowledge about both structure (i.e., connectome) and function of its constituents (neurons and glia alike). This need has prompted the development of novel tools and techniques, in particular optical techniques to examine cells remotely. Early works (1900's) led to the development of novel cell-staining techniques that, when combined with the use of a very simple light microscope, visualized individual neurons and their subcellular compartments in fixed tissues. Today, highlighting of structure and function can be performed on live cells, notably in vivo, owing to discovery of GFP and subsequent development of genetically encoded fluorescent optical tools. In this review, we focus our attention on a subset of optical biosensors, namely probes whose emission can be modified by light. We designate them photo-transformable genetically encoded probes. The family of photo-transformable probes embraces current probes that undergo photoactivation (PA), photoconversion (PC) or photoswitching (PS). We argue that these are particularly suited for studying multiple features of neurons, such as structure, connectivity and function concomitantly, for functional highlighting of neurons in vivo.


Assuntos
Conectoma , Neurônios , Encéfalo , Proteínas Luminescentes/genética
19.
Biomolecules ; 11(3)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668387

RESUMO

Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.


Assuntos
Cálcio/análise , Biologia Sintética/métodos , Animais , Sinalização do Cálcio/fisiologia
20.
Ann Biomed Eng ; 49(3): 1110-1118, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33479787

RESUMO

Genetically encoded calcium indicators have proven useful for characterizing dorsal root ganglion neuron excitability in vivo. Challenges persist in achieving high spatial-temporal resolutions in vivo, however, due to deep tissue imaging and motion artifacts that may be limiting technical factors in obtaining measurements. Here we report an ex vivo imaging method, using a peripheral neuron-specific Advillin-GCaMP mouse line and electric field stimulation of dorsal root ganglion tissues, to assess the sensitivity of neurons en bloc. The described method rapidly characterizes Ca2+ activity in hundreds of dorsal root ganglion neurons (221 ± 64 per dorsal root ganglion) with minimal perturbation to the in situ soma environment. We further validate the method for use as a drug screening platform with the voltage-gated sodium channel inhibitor, tetrodotoxin. Drug treatment led to decreased evoked Ca2+ activity; half-maximal response voltage (EV50) increased from 13.4 V in untreated tissues to 21.2, 23.3, 51.5 (p < 0.05), and 60.6 V (p < 0.05) at 0.01, 0.1, 1, and 10 µM doses, respectively. This technique may help improve an understanding of neural signaling while retaining tissue structural organization and serves as a tool for the rapid ex vivo recording and assessment of neural activity.


Assuntos
Gânglios Espinais/fisiologia , Neurônios/fisiologia , Animais , Cálcio/fisiologia , Estimulação Elétrica , Camundongos Transgênicos , Microscopia Confocal , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA