Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
JHEP Rep ; 5(4): 100671, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36866390

RESUMO

Background & Aims: Blood biomarkers facilitating the diagnosis of covert hepatic encephalopathy (CHE) in patients with cirrhosis are lacking. Astrocyte swelling is a major component of hepatic encephalopathy. Thus, we hypothesised that glial fibrillary acidic protein (GFAP), the major intermediate filament of astrocytes, might facilitate early diagnosis and management. This study aimed to investigate the utility of serum GFAP (sGFAP) levels as a biomarker of CHE. Methods: In this bicentric study, 135 patients with cirrhosis, 21 patients with ongoing harmful alcohol use and cirrhosis, and 15 healthy controls were recruited. CHE was diagnosed using psychometric hepatic encephalopathy score. sGFAP levels were measured using a highly sensitive single-molecule array (SiMoA) immunoassay. Results: In total, 50 (37%) people presented with CHE at study inclusion. Participants with CHE displayed significantly higher sGFAP levels than those without CHE (median sGFAP, 163 pg/ml [IQR 136; 268] vs. 106 pg/ml [IQR 75; 153]; p <0.001) or healthy controls (p <0.001). sGFAP correlated with results in psychometric hepatic encephalopathy score (Spearman's ρ = -0.326, p <0.001), model for end-stage liver disease score (Spearman's ρ = 0.253, p = 0.003), ammonia (Spearman's ρ = 0.453, p = 0.002), and IL-6 serum levels (Spearman's ρ = 0.323, p = 0.006). Additionally, sGFAP levels were independently associated with the presence of CHE in multivariable logistic regression analysis (odds ratio 1.009; 95% CI 1.004-1.015; p <0.001). sGFAP levels did not differ between patients with alcohol-related cirrhosis vs. patients with non-alcohol-related cirrhosis or between patients with ongoing alcohol use vs. patients with discontinued alcohol use.Conclusions: sGFAP levels are associated with CHE in patients with cirrhosis. These results suggest that astrocyte injury may already occur in patients with cirrhosis and subclinical cognitive deficits and that sGFAP could be explored as a novel biomarker. Impact and implications: Blood biomarkers facilitating the diagnosis of covert hepatic encephalopathy (CHE) in patients with cirrhosis are lacking. In this study, we were able to demonstrate that sGFAP levels are associated with CHE in patients with cirrhosis. These results suggest that astrocyte injury may already occur in patients with cirrhosis and subclinical cognitive deficits and that sGFAP could be explored as a novel biomarker.

2.
IBRO Neurosci Rep ; 14: 253-263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880055

RESUMO

Rehabilitative exercise following a brain stroke has beneficial effects on the morphological plasticity of neurons. Particularly, voluntary running exercise after focal cerebral ischemia promotes functional recovery and ameliorates ischemia-induced dendritic spine loss in the peri-infarct motor cortex layer 5. Moreover, neuronal morphology is affected by changes in the perineuronal environment. Glial cells, whose phenotypes may be altered by exercise, are known to play a pivotal role in the formation of this perineuronal environment. Herein, we investigated the effects of voluntary running exercise on glial cells after middle cerebral artery occlusion. Voluntary running exercise increased the population of glial fibrillary acidic protein-positive astrocytes born between post-operative days (POD) 0 and 3 on POD15 in the peri-infarct cortex. After exercise, transcriptomic analysis of post-ischemic astrocytes revealed 10 upregulated and 70 downregulated genes. Furthermore, gene ontology analysis showed that the 70 downregulated genes were significantly associated with neuronal morphology. In addition, exercise reduced the number of astrocytes expressing lipocalin 2, a regulator of dendritic spine density, on POD15. Our results suggest that exercise modifies the composition of astrocytic population and their phenotype.

3.
Heliyon ; 9(3): e14361, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938412

RESUMO

Prolonged infusion of a high dose of kynurenic acid (KYNA) reduces the myelin content in the rat spinal cord with preservation of the axonal integrity and without inducing an inflammatory response. We hypothesized that subdural infusion of a high concentration of KYNA can induce myelin loss in the optic nerves (ONs) of chickens. However, existing methods to deliver agents to the ON are inefficient, unlocalized and provide only acute exposure. Thus, we developed a surgical approach for sustained delivery of KYNA to the chicken ON. In brief, the novel surgical technique, which does not include excision of the extraocular muscles, involves incision of the skin and underlying fascial sheath to access the optic nerve within the muscle cone, implantation of a catheter in the dura of the optic nerve, the other end of which exits the orbit under the skin. The catheter runs under the skin near the lateral canthus, over the ears to the back of the neck, where a second incision is made to both implant the osmotic pump and to attach the catheter to the osmotic pump. India ink was used to confirm prolonged sustained administration to the optic nerves and across the chiasm. This surgical model was used to investigate KYNA's effect(s) on myelin loss in the ON. ONs of 7-day old chickens were infused with 50 mM KYNA or phosphate buffered saline (PBS) for seven days. Analysis of KYNA-infused contralateral ON g-ratios and protein levels indicated a reduction in myelin. These findings demonstrate the utility of our surgical approach for sustained delivery of KYNA into the ON and suggest a role for KYNA in modulating CNS myelination.

4.
IBRO Neurosci Rep ; 14: 264-272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36926592

RESUMO

Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of ß-amyloid (Aß) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aß and GFAP in the hippocampus and that treatment with melatonin reduces Aß levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.

5.
Mater Today Bio ; 18: 100546, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36691606

RESUMO

Nanoparticle technologies offer a non-invasive means to deliver basic fibroblast growth factor (bFGF) for the treatment of spinal cord injury (SCI). However, the inability of bFGF to accumulate at the injury site and inefficient penetration across the blood-spinal cord barrier (BSCB) remain challenges. The present study describes a dual-targeting liposome (bFGF@Lip-Cp&Rp) with injury lesion targeting and BSCB-penetrating capability to deliver bFGF for SCI treatment. The CAQK peptide (Cp) with injury lesion targeting ability and R2KC peptide (Rp) with BSCB-penetrating capability were grafted onto the liposomes for a flexible and non-invasive drug delivery systems preparation. Results exhibit that the dual-targeted liposomes could significantly cross the BSCB and accumulate at the injury site. During the early stage of SCI, bFGF@Lip-Cp&Rp promotes repair of BSCB and facilitates M2-polarization of macrophages. Regular delivery of bFGF@Lip-Cp&Rp increase HUVECs tube formation and angiogenesis, ameliorate the microenvironment of lesion site, suppress the neuronal apoptosis and axonal atrophy in SCI rats. Importantly, continuous treatment of bFGF@Lip-Cp&Rp supports the restoration of limb motor function in SCI rats. In summary, this research implies that the injury site-targeting and BSCB-penetrating liposomes could be a promising therapeutic approach for the treatment of SCI.

6.
Nutr Neurosci ; 26(6): 560-571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35507337

RESUMO

INTRODUCTION: In this paper, we conducted a meta-analysis on the curcumin effect on functional recovery provided by the Basso, Beattie, Brenham (BBB) test for rats, and the Basso mouse scale (BMS) for mice after spinal cord injury (SCI) in animal models. METHOD: Data mining was performed, and the standard mean difference (SMD) between the treated and control (untreated) groups was calculated using the STATA software. Quality control and subgroup analysis were performed. RESULTS: The analysis includes 24 experimental studies that showed curcumin had a strong significance in improving functional recovery after SCI (SMD = 3.38; 95% CI: 2.54-4.22; p < 0.001). When curcumin was administered daily, it had a stronger effect than single-dose treatment or weekly administration. Despite the same effect in the follow-up time before and after 4 weeks post-injury, but later 9 weeks, curcumin had only a moderate effect. Curcumin also significantly reduced the expression of GFAP (Glial fibrillary acidic protein) marker compared to untreated groups. CONCLUSION: These findings suggest that daily administration of curcumin can be an effective approach to improving functional recovery after SCI.


Assuntos
Curcumina , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Curcumina/uso terapêutico , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Modelos Animais de Doenças , Recuperação de Função Fisiológica , Medula Espinal/metabolismo
7.
Brain Behav Immun Health ; 27: 100573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36583066

RESUMO

The spleen is a key immune-related organ that plays a role in communication between the brain and the immune system through the brain-spleen axis and brain-gut-microbiota axis. However, how the gut microbiota affects spleen and brain function remains unclear. Here, we investigated whether microbiome depletion induced by administration of an antibiotic cocktail (ABX) affects spleen and brain function. Treatment with ABX for 14 days resulted in a significant decrease in spleen weight and significant alterations in splenic functions, including the percentage of neutrophils, NK cells, macrophages, and CD8+ T cells. Furthermore, ABX treatment resulted in the depletion of a large portion of the gut microbiota. Untargeted metabolomics analysis showed that ABX treatment caused alterations in the levels of certain compounds in the plasma, spleen, and brain. Moreover, ABX treatment decreased the expression of microglia marker Iba1 in the cerebral cortex. Interestingly, correlations were found between the abundance of different microbiome components and metabolites in various tissues, as well as splenic cell populations and spleen weight. These findings suggest that ABX-induced microbiome depletion and altered metabolite levels may affect spleen and brain function through the gut-microbiota-spleen-brain axis.

8.
Brain Behav Immun Health ; 26: 100555, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36457825

RESUMO

Delirium is a common postoperative neurologic complication among older adults. Despite its prevalence (14%-50%) and likely association with inflammation, the exact mechanisms that underpin postoperative delirium are unclear. This project aimed to characterize systemic and central nervous system (CNS) inflammatory changes following surgery in mice and humans. Matched plasma and cerebrospinal fluid (CSF) samples from the "Investigating Neuroinflammation Underlying Postoperative Brain Connectivity Changes, Postoperative Cognitive Dysfunction, Delirium in Older Adults" (INTUIT; NCT03273335) study were compared to murine endpoints. Delirium-like behavior was evaluated in aged mice using the 5-Choice Serial Reaction Time Test (5-CSRTT). Using a well established orthopedic surgical model in the FosTRAP reporter mouse we detected neuronal changes in the prefrontal cortex, an area implicated in attention, but notably not in the hippocampus. In aged mice, plasma interleukin-6 (IL-6), chitinase-3-like protein 1 (YKL-40), and neurofilament light chain (NfL) levels increased after orthopedic surgery, but hippocampal YKL-40 expression was decreased. Given the growing evidence for a YKL-40 role in delirium and other neurodegenerative conditions, we assayed human plasma and CSF samples. Plasma YKL-40 levels were similarly increased after surgery, with a trend toward a greater postoperative plasma YKL-40 increase in patients with delirium. However, YKL-40 levels in CSF decreased following surgery, which paralleled the findings in the mouse brain. Finally, we confirmed changes in the blood-brain barrier (BBB) as early as 9 h after surgery in mice, which warrants more detailed and acute evaluations of BBB integrity following surgery in humans. Together, these results provide a nuanced understanding of neuroimmune interactions underlying postoperative delirium in mice and humans, and highlight translational biomarkers to test potential cellular targets and mechanisms.

9.
Cereb Circ Cogn Behav ; 3: 100133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324401

RESUMO

Background: Cerebral amyloid angiopathy (CAA) is common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a transgenic rat model of capillary CAA type-1 that develops many pathological features of human disease. However, a complementary rat model of larger vessel CAA type-2 disease has been lacking. Methods: A novel transgenic rat model (rTg-D) was generated that produces human familial CAA Dutch E22Q mutant amyloid ß-protein (Aß) in brain and develops larger vessel CAA type-2. Quantitative biochemical and pathological analyses were performed to characterize the progression of CAA and associated pathologies in aging rTg-D rats. Results: rTg-D rats begin to accumulate Aß in brain and develop varying levels of larger vessel CAA type-2, in the absence of capillary CAA type-1, starting around 18 months of age. Larger vessel CAA was mainly composed of the Aß40 peptide and most prominent in surface leptomeningeal/pial vessels and arterioles of the cortex and thalamus. Cerebral microbleeds and small vessel occlusions were present mostly in the thalamic region of affected rTg-D rats. In contrast to capillary CAA type-1 the amyloid deposited within the walls of larger vessels of rTg-D rats did not promote perivascular astrocyte and microglial responses or accumulate the Aß chaperone apolipoprotein E. Conclusion: Although variable in severity, the rTg-D rats specifically develop larger vessel CAA type-2 that reflects many of the pathological features of human disease and provide a new model to investigate the pathogenesis of this condition.

10.
Mater Today Bio ; 16: 100425, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36186847

RESUMO

Spinal cord injury (SCI) is a serious disease of the central nervous system that is associated with a poor prognosis; furthermore, existing clinical treatments cannot restore nerve function in an effective manner. Inflammatory responses and the increased production of reactive oxygen species (ROS) in the microenvironment of the lesion are major obstacles that inhibit the recovery of SCI. Small extracellular vesicles (sEVs), derived from mesenchymal stem cells, are suitable options for cell-free therapy and have been shown to exert therapeutic effects in SCI, thus providing a potential strategy for microenvironment regulation. However, the effective retention, controlled release, and integration of small extracellular vesicles into injured spinal cord tissue are still a major challenge. Herein, we fabricated an N-acryloyl glycinamide/gelatin methacrylate/Laponite/Tannic acid (NAGA/GelMA/LPN/TA, NGL/T) hydrogel with sustainable sEV release (sEVs-NGL/T) to promote the recovery of motor function after SCI. The newly developed functional sEVs-NGL/T hydrogel exhibited excellent antioxidant properties in an H2O2-simulated peroxidative microenvironment in vitro. Implantation of the functional sEVs-NGL/T hydrogel in vivo could encapsulate sEVs, exhibiting efficient retention and the sustained release of sEVs, thereby synergistically inducing significant restoration of motor function and urinary tissue preservation. These positive effects can be attributed to the effective mitigation of the inflammatory and ROS microenvironment. Therefore, sEVs-NGL/T therapy provides a promising strategy for the sEV-based therapy in the treatment of SCI by comprehensively regulating the pathological microenvironment.

11.
J Clin Exp Hepatol ; 12(5): 1393-1401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157142

RESUMO

Background: Teratoid hepatoblastoma is an uncommon but well-recognized variant of mixed hepatoblastoma. Case report: A one-year female child presented with palpable and progressively increasing right abdominal mass for 3 months. The contrast-enhancing computed tomography (CECT) abdomen revealed a large heterogeneous hepatic mass measuring 12 × 6.6 × 6 cm. Histopathological examination of the resected specimen showed a mixed hepatoblastoma (epithelial and mesenchymal) with teratoid features and multi-lineage differentiation (all three germ cell layers). A focus showed embryonal rhabdomyosarcomatous element. Conclusion: Teratoid hepatoblastoma can show a wide range of heterologous differentiation that may pose a significant diagnostic dilemma. Such a broad spectrum has not been described in the literature previously. An appropriate immunohistochemical panel may be needed to identify and delineate the various heterologous differentiation to clinch the correct diagnosis. Secondary somatic malignancy such as rhabdomyosarcoma can develop in a teratomatous element.

12.
JHEP Rep ; 4(8): 100510, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845295

RESUMO

Background & Aims: In cirrhosis, astrocytic swelling is believed to be the principal mechanism of ammonia neurotoxicity leading to hepatic encephalopathy (HE). The role of neuronal dysfunction in HE is not clear. We aimed to explore the impact of hyperammonaemia on mitochondrial function in primary co-cultures of neurons and astrocytes and in acute brain slices of cirrhotic rats using live cell imaging. Methods: To primary cocultures of astrocytes and neurons, low concentrations (1 and 5 µM) of NH4Cl were applied. In rats with bile duct ligation (BDL)-induced cirrhosis, a model known to induce hyperammonaemia and minimal HE, acute brain slices were studied. One group of BDL rats was treated twice daily with the ammonia scavenger ornithine phenylacetate (OP; 0.3 g/kg). Fluorescence measurements of changes in mitochondrial membrane potential (Δψm), cytosolic and mitochondrial reactive oxygen species (ROS) production, lipid peroxidation (LP) rates, and cell viability were performed using confocal microscopy. Results: Neuronal cultures treated with NH4Cl exhibited mitochondrial dysfunction, ROS overproduction, and reduced cell viability (27.8 ± 2.3% and 41.5 ± 3.7%, respectively) compared with untreated cultures (15.7 ± 1.0%, both p <0.0001). BDL led to increased cerebral LP (p = 0.0003) and cytosolic ROS generation (p <0.0001), which was restored by OP (both p <0.0001). Mitochondrial function was severely compromised in BDL, resulting in hyperpolarisation of Δψm with consequent overconsumption of adenosine triphosphate and augmentation of mitochondrial ROS production. Administration of OP restored Δψm. In BDL animals, neuronal loss was observed in hippocampal areas, which was partially prevented by OP. Conclusions: Our results elucidate that low-grade hyperammonaemia in cirrhosis can severely impact on brain mitochondrial function. Profound neuronal injury was observed in hyperammonaemic conditions, which was partially reversible by OP. This points towards a novel mechanism of HE development. Lay summary: The impact of hyperammonaemia, a common finding in patients with liver cirrhosis, on brain mitochondrial function was investigated in this study. The results show that ammonia in concentrations commonly seen in patients induces severe mitochondrial dysfunction, overproduction of damaging oxygen molecules, and profound injury and death of neurons in rat brain cells. These findings point towards a novel mechanism of ammonia-induced brain injury in liver failure and potential novel therapeutic targets.

13.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685361

RESUMO

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

15.
IBRO Neurosci Rep ; 12: 366-376, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35586775

RESUMO

In the acute phase of spinal cord injury, the initial injury triggers secondary damage due to neuroinflammation, leading to the formation of cavities and glial scars that impair nerve regeneration. Following injuries to the central nervous system, early mobilization promotes the recovery of physical function. Therefore, in the present study, we investigated the effects of early mobilization on motor function recovery and neuroinflammation in rats. Early mobilization of rats with complete spinal cord transection resulted in good recovery of hindlimb motor function after 3 weeks. At 1 week after spinal cord injury, the early-mobilized rats expressed fewer inflammatory M1 microglia/macrophages and more anti-inflammatory M2 microglia. In addition, significantly more matrix metalloproteinase 2 (MMP2)-positive cells were observed at the lesion site 1 week after injury in the early-mobilized rats. Multiple labeling studies suggested that many MMP2-positive cells were M2 microglia. MMP9-positive cells that highly co-expressed GFAP were also observed more frequently in the early-mobilized rats. The density of growth-associated protein-positive structures in the lesion center was significantly higher in the early-mobilized rats at 3 weeks after spinal cord injury. The present results suggest that early mobilization after spinal cord injury reduced the production of M1 microglia/macrophages while increasing the production of M2 microglia at the lesion site. Early mobilization might also activate the expression of MMP2 in M2 microglia and MMP9 in astrocytes. These cellular dynamics might suppress neuroinflammation at the lesion site, thereby inhibiting the progression of tissue destruction and promoting nerve regeneration to recover motor function.

16.
Mol Genet Metab Rep ; 30: 100843, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35242574

RESUMO

GM2 and GM1 gangliosidoses are genetic, neurodegenerative lysosomal sphingolipid storage disorders. The earlier the age of onset, the more severe the clinical presentation and progression, with infantile, juvenile and late-onset presentations broadly delineated into separate phenotypic subtypes. Gene and substrate reduction therapies, both of which act directly on sphingolipidosis are entering clinical trials for treatment of these disorders. Simple to use biomarkers for disease monitoring are urgently required to support and expedite these clinical trials. Here, lysosphingolipid and protein biomarkers of sphingolipidosis and neuropathology respectively, were assessed in plasma samples from 33 GM2 gangliosidosis patients, 13 GM1 gangliosidosis patients, and compared to 66 controls. LysoGM2 and lysoGM1 were detectable in 31/33 GM2 gangliosidosis and 12/13 GM1 gangliosidosis patient samples respectively, but not in any controls. Levels of the axonal damage marker Neurofilament light (NF-L) were highly elevated in both GM2 and GM1 gangliosidosis patient plasma samples, with no overlap with controls. Levels of the astrocytosis biomarker Glial fibrillary acidic protein (GFAP) were also elevated in samples from both patient populations, albeit with some overlap with controls. In GM2 gangliosidosis patient plasma NF-L, Tau, GFAP and lysoGM2 were all most highly elevated in infantile onset patients, indicating a relationship to severity and phenotype. Plasma NF-L and liver lysoGM2 were also elevated in a GM2 gangliosidosis mouse model, and were lowered by treatment with a drug that slowed disease progression. These results indicate that lysosphingolipids and NF-L/GFAP have potential to monitor pharmacodynamics and pathogenic processes respectively in GM2 and GM1 gangliosidoses patients.

17.
IBRO Neurosci Rep ; 12: 131-141, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35146484

RESUMO

Lysosomal network abnormalities are an increasingly recognised feature of Alzheimer's disease (AD), which appear early and are progressive in nature. Sandhoff disease and Tay-Sachs disease (neurological lysosomal storage diseases caused by mutations in genes that code for critical subunits of ß-hexosaminidase) result in accumulation of amyloid-ß (Aß) and related proteolytic fragments in the brain. However, experiments that determine whether mutations in genes that code for ß-hexosaminidase are risk factors for AD are currently lacking. To determine the relationship between ß-hexosaminidase and AD, we investigated whether a heterozygous deletion of Hexb, the gene that encodes the beta subunit of ß-hexosaminidase, modifies the behavioural phenotype and appearance of disease lesions in App NL-G-F/NL-G-F (App KI/KI ) mice. App KI/KI and Hexb +/- mice were crossed and evaluated in a behavioural test battery. Neuropathological hallmarks of AD and ganglioside levels in the brain were also examined. Heterozygosity of Hexb in App KI/KI mice reduced learning flexibility during the Reversal Phase of the Morris water maze. Contrary to expectation, heterozygosity of Hexb caused a small but significant decrease in amyloid beta deposition and an increase in the microglial marker IBA1 that was region- and age-specific. Hexb heterozygosity caused detectable changes in the brain and in the behaviour of an AD model mouse, consistent with previous reports that described a biochemical relationship between HEXB and AD. This study reveals that the lysosomal enzyme gene Hexb is not haplosufficient in the mouse AD brain.

18.
IBRO Neurosci Rep ; 13: 96-106, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590091

RESUMO

In recent years, it has been shown that central nervous system agents, such as antidepressants and antiepileptic drugs, reopen a critical period in mature animals. Fingolimod, which is used for the treatment of multiple sclerosis, also restores neuroplasticity. In this study, we investigated the effects of parvalbumin (PV)-positive neurons and perineuronal nets (PNN) on fingolimod administration with respect to neuroplasticity. Fingolimod was chronically administered intraperitoneally to mature mice. PV-positive neurons and PNN in the hippocampus, prefrontal cortex, and somatosensory cortex were analyzed. An increase in PV-positive neurons was observed in the hippocampus, prefrontal cortex, and somatosensory cortex of the fingolimod-treated mice. An increase in Wisteria floribunda agglutinin-positive PNN was confirmed in mice treated with fingolimod in the somatosensory cortex only. Fingolimod increased the density of PV-positive neurons in the brains of mature mice. The results indicate that fingolimod may change the critical period in mature animals.

19.
IBRO Neurosci Rep ; 11: 183-193, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34766103

RESUMO

Status epilepticus (SE) is a neurological emergency, and delayed management can lead to higher morbidity and mortality. It is thought that prolonged seizures stimulate stem cells in the hippocampus and that epileptogenesis may arise from aberrant connections formed by newly born cells, while others have suggested that the acute neuroinflammation and gliosis often seen in epileptic hippocampi contribute to hyperexcitability and epilepsy development. Previous studies have identified the expression of homeodomain-only protein (HOP) in the hippocampal dentate gyrus (HDG) and the heart. HOP was found to be a regulator of cell proliferation and differentiation during heart development, while it maintains the 'heart conduction system' in adulthood. However, little is known about HOP function in the adult HDG, particularly in the SE setting. Here, a HOP immunohistochemical profile in an SE mouse model was established. A total of 24 adult mice were analyzed 3-10 days following the SE episode, the 'acute phase'. Our findings demonstrate a significant downregulation of HOP and BLBP protein expression in the SE group following SE episodes, while HOP/Ki67 coexpression did not remarkably differ. Furthermore, coexpression of HOP/S100ß and HOP/Prox1 was not observed, although we noticed insignificant HOP/DCX coexpression level. The findings of this study show no compelling evidence of proliferation, and newly added neurons were not identified during the acute phase following SE, although HOP protein expression was significantly decreased in the HDG. Similar to its counterpart in the adult heart, this suggests that HOP seems to play a key role in regulating signal conduction in adult hippocampus. Moreover, acute changes in HOP expression following SE could be part of an inflammatory response that could subsequently influence epileptogenicity.

20.
Nutrients ; 13(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835991

RESUMO

Maternal obesity greatly affects next generations, elevating obesity risk in the offspring through perinatal programming and flawed maternal and newborn nutrition. The exact underlying mechanisms are poorly understood. Interleukin-6 (IL-6) mediates its effects through a membrane-bound receptor or by trans-signaling (tS), which can be inhibited by the soluble form of the co-receptor gp130 (sgp130). As IL-6 tS mediates western-style diet (WSD) effects via chronic low-grade inflammation (LGI) and LGI is an important mediator in brain-adipose tissue communication, this study aims at determining the effects of maternal obesity in a transgenic mouse model of brain-restricted IL-6tS inhibition (GFAPsgp130) on offspring's short- and long-term body composition and epigonadal white adipose tissue (egWAT) metabolism. Female wild type (WT) or transgenic mice were fed either standard diet (SD) or WSD pregestationally, during gestation, and lactation. Male offspring received SD from postnatal day (P)21 to P56 and were metabolically challenged with WSD from P56 to P120. At P21, offspring from WT and transgenic dams that were fed WSD displayed increased body weight and egWAT mass, while glucose tolerance testing showed the strongest impairment in GFAPsgp130WSD offspring. Simultaneously, egWAT proteome reveals a characteristic egWAT expression pattern in offspring as a result of maternal conditions. IL-6tS inhibition in transgenic mice was in tendency associated with lower body weight in dams on SD and their respective offspring but blunted by the WSD. In conclusion, maternal nutrition affects offspring's body weight and egWAT metabolism predominantly independent of IL-6tS inhibition, emphasizing the importance of maternal and newborn nutrition for long-term offspring health.


Assuntos
Encéfalo/metabolismo , Interleucina-6/metabolismo , Obesidade Materna/metabolismo , Transdução de Sinais , Adipocinas/genética , Adipocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/sangue , Peso Corporal , Dieta , Dieta Ocidental , Feminino , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade Materna/sangue , Fenótipo , Gravidez , Proteoma/metabolismo , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA