Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 5052-5065, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920975

RESUMO

A low-calcium microenvironment is imperative for spermatozoa maturation within the epididymis. Our previous work has shown that γ-glutamyl carboxylase (GGCX), the carboxylation enzyme of the matrix Gla protein (MGP), plays an essential role in epididymal calcium homeostasis and sperm maturation in rats and that the GGCX SNP mutation rs699664 was associated with asthenozoospermia (AZS) in humans. Here, we investigated the expression patterns of GGCX and MGP in the mouse epididymis and generated GgcxK325Q knock-in (KI) mice. We also tested the effects of this mutation on epididymal calcium homeostasis, sperm function, and male fertility in GgcxK325Q-/- mice. The results showed that both GGCX and MGP were enriched in all regions of the mouse epididymis, especially in the initial segment of the epididymis. Double immunofluorescence staining revealed that GGCX colocalized with MGP in the epithelial cells of the initial segment and caput regions as well as in the lumen of the corpus and cauda regions of the mouse epididymis. However, the GgcxK325Q-/- mice were fertile with normal epididymal morphology, sperm functions, and epididymal calcium concentration. Overall, our findings revealed that the GgcxK325Q mutation does not exert any discernible effect on male fertility in mice.

2.
Pharmgenomics Pers Med ; 16: 609-615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359384

RESUMO

One 59-year-old female patient with deep venous thrombosis (DVT) and pulmonary embolism (PE) was treated with 6 mg warfarin once daily as an anticoagulant. Before taking warfarin, her international normalized ratio (INR) was 0.98. Two days after warfarin treatment, her INR did not change from baseline. Due to the high severity of the PE, the patient needed to reach her target range (INR goal = 2.5, range = 2~3) rapidly, so the dose of warfarin was increased from 6 mg daily to 27 mg daily. However, the patient's INR did not improve with the dose escalation, still maintaining an INR of 0.97-0.98. We drew a blood sample half an hour before administering 27 mg warfarin and detected single nucleotide polymorphism for the following genes, which were identified to be relevant with warfarin resistance: CYP2C9 rs1799853, rs1057910, VKORC1 rs9923231, rs61742245, rs7200749, rs55894764, CYP4F2 rs2108622, and GGCX rs2592551. The trough plasma concentration of warfarin was 196.2 ng/mL after 2 days of warfarin administration with 27 mg QD, which was much lower than the therapeutic drug concentration ranges of warfarin (500-3,000 ng/mL). The genotype results demonstrate that the CYP4F2gene has rs2108622 mutation which can explain some aspect of warfarin resistance. Further investigations are necessary to fully characterize other pharmacogenomics or pharmacodynamics determinants of warfarin dose-response in Chinese.

3.
Cell Rep ; 42(5): 112500, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37171959

RESUMO

Vitamin K is a micronutrient necessary for γ-carboxylation of glutamic acids. This post-translational modification occurs in the endoplasmic reticulum (ER) and affects secreted proteins. Recent clinical studies implicate vitamin K in the pathophysiology of diabetes, but the underlying molecular mechanism remains unknown. Here, we show that mouse ß cells lacking γ-carboxylation fail to adapt their insulin secretion in the context of age-related insulin resistance or diet-induced ß cell stress. In human islets, γ-carboxylase expression positively correlates with improved insulin secretion in response to glucose. We identify endoplasmic reticulum Gla protein (ERGP) as a γ-carboxylated ER-resident Ca2+-binding protein expressed in ß cells. Mechanistically, γ-carboxylation of ERGP protects cells against Ca2+ overfilling by diminishing STIM1 and Orai1 interaction and restraining store-operated Ca2+ entry. These results reveal a critical role of vitamin K-dependent carboxylation in regulation of Ca2+ flux in ß cells and in their capacity to adapt to metabolic stress.


Assuntos
Processamento de Proteína Pós-Traducional , Vitamina K , Camundongos , Animais , Humanos , Vitamina K/farmacologia , Vitamina K/fisiologia , Osteocalcina/metabolismo , Insulina/metabolismo , Estresse Fisiológico , Cálcio/metabolismo
5.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628569

RESUMO

Vitamin K-dependent (VKD) proteins undergo an unusual post-translational modification, which is the conversion of specific Glu residues to carboxylated Glu (Gla). Gla generation is required for the activation of VKD proteins, and occurs in the endoplasmic reticulum during their secretion to either the cell surface or from the cell. The gamma-glutamyl carboxylase produces Gla using reduced vitamin K, which becomes oxygenated to vitamin K epoxide. Reduced vitamin K is then regenerated by a vitamin K oxidoreductase (VKORC1), and this interconversion of oxygenated and reduced vitamin K is referred to as the vitamin K cycle. Many of the VKD proteins support hemostasis, which is suppressed during therapy with warfarin that inhibits VKORC1 activity. VKD proteins also impact a broad range of physiologies beyond hemostasis, which includes regulation of calcification, apoptosis, complement, growth control, signal transduction and angiogenesis. The review covers the roles of VKD proteins, how they become activated, and how disruption of carboxylation can lead to disease. VKD proteins contain clusters of Gla residues that form a calcium-binding module important for activity, and carboxylase processivity allows the generation of multiple Glas. The review discusses how impaired carboxylase processivity results in the pseudoxanthoma elasticum-like disease.


Assuntos
Processamento de Proteína Pós-Traducional , Vitamina K , Proteínas/metabolismo , Vitamina K/metabolismo , Varfarina
6.
Biofactors ; 48(5): 1129-1136, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35583412

RESUMO

Carboxylative enzymes are involved in many pathways and their regulation plays a crucial role in many of these pathways. In particular, γ-glutamylcarboxylase (GGCX) converts glutamate residues (Glu) into γ-carboxyglutamate (Gla) of the vitamin K-dependent proteins (VKDPs) activating them. VKDPs include at least 17 proteins involved in processes such as blood coagulation, blood vessels calcification, and bone mineralization. VKDPs are activated by the reduced form of vitamin K, naturally occurring as vitamin K1 (phylloquinone) and K2 (menaquinones, MKs). Among these, MK7 is the most efficient in terms of bioavailability and biological effect. Similarly to other trans isomers, it is produced by natural fermentation or chemically in both trans and cis. However, the efficacy of the biological effect of the different isomers and the impact on humans are unknown. Our study assessed carboxylative efficacy of trans and cis MK7 and compared it with other vitamin K isomers, evaluating both the expression of residues of carboxylated Gla-protein by western blot analysis and using a cell-free system to determine the GGCX activity by HPLC. Trans MK7H2 showed a higher ability to carboxylate the 70 KDa GLA-protein, previously inhibited in vitro by warfarin treatment. However, cis MK7 also induced a carboxylation activity albeit of a small extent. The data were confirmed chromatographically, in which a slight carboxylative activity of cis MK7H2 was demonstrated, comparable with both K1H2 and oxidized trans MK7 but less than trans MK7H2 . For the first time, a difference of biological activity between cis and trans configuration of menaquinone-7 has been reported.


Assuntos
Vitamina K 1 , Vitamina K , Ácido 1-Carboxiglutâmico , Humanos , Vitamina K/farmacologia , Vitamina K 1/metabolismo , Vitamina K 1/farmacologia , Vitamina K 2/metabolismo , Vitamina K 2/farmacologia , Varfarina/farmacologia
7.
Pest Manag Sci ; 78(6): 2704-2713, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35394111

RESUMO

BACKGROUND: Some rodent species living in arid areas show elevated physiological tolerance to anti-vitamin K rodenticides (AVKs), which seems to be due to some unknown selective pressures that rodents may experience in desert habitats. Genes involved in the ϒ-carboxylation of blood coagulation, including vitamin K epoxide reductase complex, subunit 1 (Vkorc1), ϒ-glutamyl-carboxylase (Ggcx) and NAD(P)H quinone one dehydrogenase (Nqo1) are associated with anticoagulant resistance, or some levels of elevated tolerance, in rodents. To detect whether the DNA sequences of the three genes are also under natural selection in the desert rodent species, we analyzed the Vkorc1, Ggcx and Nqo1 genes of the desert rodents and compared them with other rodent species. RESULTS: We found an accelerated evolutionary rate in Vkorc1 of desert rodents, especially in Mus spretus, Nannospalax galili and Psammomys obesus. By contrast, signals of positive selection were absent for Ggcx and Nqo1 in all species. Mapping the amino acid variations on the VKORC1 protein three-dimensional model suggested most interspecific amino acid variations occur on the outer surface of the VKORC1 pocket, whereas most intraspecific amino acid changes and known AVK resistance mutations occurred on the inner surface and endoplasmic reticulum luminal loop regions. Some desert-species-specific amino acid variations were found on the positions where known resistance mutations occurred, indicating these variations might be related to the elevated physical tolerance to AVKs in desert rodents. CONCLUSION: The evolution of Vkorc1 has been accelerated in some desert rodent species, indicating genetic preadaptation to anticoagulant rodenticides. Positive selection and relaxed selection have been detected in Psammomys obesus and Nannospalax galili, indicating the two rodent species might also show tolerance to AVKs, which needs further verification. © 2022 Society of Chemical Industry.


Assuntos
Rodenticidas , Aminoácidos , Animais , Anticoagulantes/farmacologia , Proteínas de Membrana/genética , Camundongos , Roedores/genética , Rodenticidas/farmacologia , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
8.
Front Cell Dev Biol ; 10: 827940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252193

RESUMO

In the male reproductive tract, the epididymis is an essential organ for sperm maturation, in which sperm cells acquire mobility and the ability to fertilize oocytes while being stored in a protective microenvironment. Epididymal function involves a specialized luminal microenvironment established by the epithelial cells of epididymal mucosa. Low-calcium concentration is a unique feature of this epididymal luminal microenvironment, its relevance and regulation are, however, incompletely understood. In the rat epididymis, the vitamin D-related calcium-dependent TRPV6-TMEM16A channel-coupler has been shown to be involved in fluid transport, and, in a spatially complementary manner, vitamin K2-related γ-glutamyl carboxylase (GGCX)-dependent carboxylation of matrix Gla protein (MGP) plays an essential role in promoting calcium-dependent protein aggregation. An SNP in the human GGCX gene has been associated with asthenozoospermia. In addition, bioinformatic analysis also suggests the involvement of a vitamin B6-axis in calcium-dependent MGP-mediated protein aggregation. These findings suggest that vitamins interact with calcium homeostasis in the epididymis to ensure proper sperm maturation and male fertility. This review article discusses the regulation mechanisms of calcium homeostasis in the epididymis, and the potential role of vitamin interactions on epididymal calcium homeostasis, especially the role of matrix calcium in the epididymal lumen as a cofactor for the carboxylated MGP-mediated scavenging function.

9.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054981

RESUMO

Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1) is a rare hereditary bleeding disorder caused by mutations in γ-Glutamyl carboxylase (GGCX) gene. The GGCX enzyme catalyzes the γ-carboxylation of 15 different vitamin K dependent (VKD) proteins, which have function in blood coagulation, calcification, and cell signaling. Therefore, in addition to bleedings, some VKCFD1 patients develop diverse non-hemorrhagic phenotypes such as skin hyper-laxity, skeletal dysmorphologies, and/or cardiac defects. Recent studies showed that GGCX mutations differentially effect γ-carboxylation of VKD proteins, where clotting factors are sufficiently γ-carboxylated, but not certain non-hemostatic VKD proteins. This could be one reason for the development of diverse phenotypes. The major manifestation of non-hemorrhagic phenotypes in VKCFD1 patients are mineralization defects. Therefore, the mechanism of regulation of calcification by specific VKD proteins as matrix Gla protein (MGP) and Gla-rich protein (GRP) in physiological and pathological conditions is of high interest. This will also help to understand the patho-mechanism of VKCFD1 phenotypes and to deduce new treatment strategies. In the present review article, we have summarized the recent findings on the function of GRP and MGP and how these proteins influence the development of non-hemorrhagic phenotypes in VKCFD1 patients.


Assuntos
Transtornos Herdados da Coagulação Sanguínea/diagnóstico , Transtornos Herdados da Coagulação Sanguínea/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Mutação , Fenótipo , Alelos , Animais , Biomarcadores , Coagulação Sanguínea , Transtornos Herdados da Coagulação Sanguínea/genética , Transtornos Herdados da Coagulação Sanguínea/metabolismo , Calcificação Fisiológica/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Ligação Proteica , Proteína de Matriz Gla
10.
Am J Med Genet A ; 188(1): 314-318, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558179

RESUMO

Congenital combined vitamin K-dependent clotting factors deficiency (VKCFD) is a rare autosomal recessive disease resulting in hemorrhagic symptoms usually associated with developmental disorders and bone abnormalities. Pathogenic variants in two genes encoding enzymes of the vitamin K cycle, GGCX and VKORC1, can lead to this disorder. We present the case of a male fetus with a brachytelephalangic chondrodysplasia punctata (CDP), absence of nasal bone, growth restriction, and bilateral ventriculomegaly at 18 weeks of gestation. Pathological examination showed a Binder phenotype, hypoplastic distal phalanges, stippled epiphyses, and brain abnormalities suggestive of a brain hemorrhage. Two GGCX pathogenic variants inherited respectively from the mother and the father were identified. To our knowledge, this is the first prenatal description of VKCFD. Even if it remains a rare etiology, which is mostly described in children or adult patients, VKCFD should be considered in fetuses with CDP.


Assuntos
Carbono-Carbono Ligases , Condrodisplasia Punctata , Fatores de Coagulação Sanguínea , Carbono-Carbono Ligases/genética , Condrodisplasia Punctata/diagnóstico , Condrodisplasia Punctata/genética , Feminino , Feto , Humanos , Masculino , Gravidez , Vitamina K , Vitamina K 1 , Vitamina K Epóxido Redutases/genética
11.
Hum Mutat ; 43(1): 42-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816548

RESUMO

γ-Glutamyl carboxylase (GGCX) catalyzes the γ-carboxylation of 15 different vitamin K dependent (VKD) proteins. Pathogenic variants in GGCX cause a rare hereditary bleeding disorder called Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1). In addition to bleedings, some VKCFD1 patients develop skin laxity and skeletal dysmorphologies. However, the pathophysiological mechanisms underlying these non-hemorrhagic phenotypes remain elusive. Therefore, we have analyzed 20 pathogenic GGCX variants on their ability to γ-carboxylate six non-hemostatic VKD proteins in an in vitro assay, where GGCX variants were expressed in GGCX-/- cells and levels of γ-carboxylated co-expressed VKD proteins were detected by a functional ELISA. We observed that GGCX variants causing markedly reduced γ-carboxylation of Gla rich protein (GRP) in vitro were reported in patients with skin laxity. Reduced levels of γ-carboxylated Matrix gla protein (MGP) are not exclusive for causing skeletal dysmorphologies in VKCFD1 patients. In silico docking of vitamin K hydroquinone on a GGCX model revealed a binding site, which was validated by in vitro assays. GGCX variants affecting this site result in disability to γ-carboxylate VKD proteins and hence are involved in the most severe phenotypes. This genotype-phenotype analysis will help to understand the development of non-hemorrhagic phenotypes and hence improve treatment in VKCFD1 patients.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Carbono-Carbono Ligases , Transtornos Herdados da Coagulação Sanguínea/genética , Carbono-Carbono Ligases/química , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Carboxiliases , Humanos , Mutação
12.
J Thromb Haemost ; 19(6): 1412-1424, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33590680

RESUMO

BACKGROUND: Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1) is a rare hereditary bleeding disorder caused by mutations in γ-glutamyl carboxylase (GGCX). VKCFD1 patients are treated life-long with high doses of vitamin K in order to correct the bleeding phenotype. However, normalization of clotting factor activities cannot be achieved for all VKCFD1 patients. OBJECTIVE: The current study aims to investigate the responsiveness to vitamin K for all reported GGCX mutations with respect to clotting factors in order to optimize treatment. METHODS: This study developed an assay using genetically engineered GGCX-/- cells, in which GGCX mutations were analyzed with respect to their ability to γ-carboxylate vitamin K dependent pro-coagulatory and anti-coagulatory clotting factors by ELISA. Additionally, factor VII activity was measured in order to proof protein functionality. For specific GGCX mutations immunofluorescent staining was performed to assess the intracellular localization of clotting factors with respect to GGCX wild-type and mutations. RESULTS: All GGCX mutations were categorized into responder and low responder mutations, thereby determining the efficiency of vitamin K supplementation. Most VKCFD1 patients have at least one vitamin K responsive GGCX allele that is able to γ-carboxylate clotting factors. In few patients, the hemorrhagic phenotype cannot be reversed by vitamin K administration because GGCX mutations on both alleles affect either structural or catalytically important sites thereby resulting in residual ability to γ-carboxylate clotting factors. CONCLUSION: With these new functional data we can predict the hemorrhagic outcome of each VKCFD1 genotype, thus recommending treatments with either vitamin K or prothrombin complex concentrate.


Assuntos
Carbono-Carbono Ligases , Vitamina K , Carbono-Carbono Ligases/genética , Humanos , Mutação , Fenótipo , Vitamina K 1 , Vitamina K Epóxido Redutases/genética
13.
Adv Clin Exp Med ; 29(6): 701-706, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32608581

RESUMO

BACKGROUND: Osteoarthritis represents a kind of chronic and degenerative joint disease characterized by articular cartilage injury and osteoproliferation. Osteoarthritis especially poses a serious threat to the elderly patients. At present, the diagnosis of osteoarthritis mainly consists of clinical examination, X-ray examination, magnetic resonance imaging (MRI), and arthroscopy. However, limitations and misdiagnosis are found within the single method. OBJECTIVES: This article intends to investigate the feasibility of assessing the condition of knee osteoarthritis through quantitative analysis of cartilage using nuclear magnetic resonance 3D fast-spin spoiled gradient-recalled echo (NMR 3D-FS-SPGR) imaging and γ-glutamic acid carboxylase (GGCX) detection in synovial fluid. MATERIAL AND METHODS: A total of 60 patients with primary knee osteoarthritis were enrolled. All the patients were staged and received 3D-FS-SPGR sequence MRI scan for grading based on scan results and cartilage injury. Cartilage tissues were collected for immunohistochemistry (IHC). The GGCX in cartilage was detected using western blotting to analyze the correlation with arthritis. RESULTS: The condition of articular cartilage injury in arthritis patients was clearly observed using 3D-FS-SPGR sequence. The expression of GGCX was decreased in 46 patients (p < 0.05). The expression of GGCX in synovial fluid was significantly reduced following upstaging (p < 0.05). The sensitivity measured using combined 3D-FS-SPGR imaging and synovial fluid GGCX detection for the evaluation of arthritis condition was significantly higher than that of the single detection method (p < 0.05). CONCLUSIONS: Our data showed that the sensitivity of combined detection was obviously higher than single detection for the evaluation of arthritis. The 3D-FS-SPGR combined with synovial fluid GGCX detection could be treated as a promising strategy for arthritis evaluation.


Assuntos
Carboxiliases , Cartilagem Articular , Osteoartrite do Joelho , Líquido Sinovial , Idoso , Carboxiliases/análise , Cartilagem Articular/diagnóstico por imagem , Ácido Glutâmico , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem , Líquido Sinovial/química
14.
Curr Pharm Biotechnol ; 21(14): 1470-1478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32427083

RESUMO

BACKGROUND: The molecular etiology of Pseudoxanthoma Elasticum (PXE), an autosomal recessive connective tissue disorder, has become increasingly complex as not only mutations in the ABCC6, but also in ENPP1 and GGCX, can cause resembling phenotypes. METHODS: To get insights on the common pathway, the overlapping metabolites for these three proteins were predicted through 3D homology modeling and virtual screening. 3D homology models of ABCC6, ENPP1, and GGCX were generated by the MODELLER program, which were further validated using RAMPAGE and ERRAT servers. Substrate binding sites of ABCC6 were predicted using blind docking of reported in vitro substrates. RESULTS: Virtual screening against the substrate binding site of ABCC6 using metabolites listed in Human Metabolome Databases (HMDB) revealed the best possible substrate of ABCC6. Those listed metabolites were further docked against predicted substrate binding sites of GGCX and ENPP1. Molecular docking and virtual screening revealed a list of 133 overlapping metabolites of these three proteins. Most of them are Phosphatidylinositol (PI), Phosphatidylserine (PS), Diacylglycerol (DAG), phosphatidic acid, oleanolic acid metabolites and were found to have links with calcification. CONCLUSION: These predicted overlapping metabolites may give novel insights for searching common pathomechanism for PXE and PXE-like diseases.


Assuntos
Carbono-Carbono Ligases/metabolismo , Metaboloma , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pseudoxantoma Elástico , Pirofosfatases/metabolismo , Sítios de Ligação , Carbono-Carbono Ligases/genética , Humanos , Metaboloma/genética , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Fenótipo , Diester Fosfórico Hidrolases/genética , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/metabolismo , Pirofosfatases/genética , Homologia Estrutural de Proteína , Especificidade por Substrato
15.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226734

RESUMO

Vitamin K is classified into three homologs depending on the side-chain structure, with 2-methyl-1,4-naphthoqumone as the basic skeleton. These homologs are vitamin K1 (phylloquinone: PK), derived from plants with a phythyl side chain; vitamin K2 (menaquinone-n: MK-n), derived from intestinal bacteria with an isoprene side chain; and vitamin K3 (menadione: MD), a synthetic product without a side chain. Vitamin K homologs have physiological effects, including in blood coagulation and in osteogenic activity via γ-glutamyl carboxylase and are used clinically. Recent studies have revealed that vitamin K homologs are converted to MK-4 by the UbiA prenyltransferase domain-containing protein 1 (UBIAD1) in vivo and accumulate in all tissues. Although vitamin K is considered to have important physiological effects, its precise activities and mechanisms largely remain unclear. Recent research on vitamin K has suggested various new roles, such as transcriptional activity as an agonist of steroid and xenobiotic nuclear receptor and differentiation-inducing activity in neural stem cells. In this review, we describe synthetic ligands based on vitamin K and exhibit that the strength of biological activity can be controlled by modification of the side chain part.


Assuntos
Neurogênese/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Vitamina K/análogos & derivados , Vitamina K/farmacologia , Vitaminas/química , Vitaminas/farmacologia , Animais , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Receptor de Pregnano X/metabolismo
16.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212662

RESUMO

Vitamin K is a fat-soluble vitamin that was originally found as an essential factor for blood coagulation. With the discovery of its role as a co-factor for γ-glutamyl carboxylase (GGCX), its function for blood coagulation was understood as the activation of several blood coagulation factors by their γ-carboxylation. Over the last two decades, other modes of vitamin K actions have been discovered, such as the regulation of transcription by activating the steroid and xenobiotic receptor (SXR), physical association to 17ß-Hydroxysteroid dehydrogenase type 4 (17ß-HSD4), covalent modification of Bcl-2 antagonist killer 1 (Bak), and the modulation of protein kinase A (PKA) activity. In addition, several epidemiological studies have revealed that vitamin K status is associated with some aging-related diseases including osteoporosis, osteoarthritis, and sarcopenia. Clinical studies on single nucleotide polymorphisms of GGCX suggested an association between higher GGCX activity and bone protective effect, while recent findings using conditional knockout mice implied that a contribution in protective effect for bone loss by GGCX in osteoblastic lineage was unclear. GGCX in other cell lineages or in other tissues might play a protective role for osteoporosis. Meanwhile, animal experiments by our groups among others revealed that SXR, a putative receptor for vitamin K, could be important in the bone metabolism. In terms of the cartilage protective effect of vitamin K, both GGCX- and SXR-dependent mechanisms have been suggested. In clinical studies on osteoarthritis, the γ-carboxylation of matrix Gla protein (MGP) and gla-rich protein (GRP) may have a protective role for the disease. It is also suggested that SXR signaling has protective role for cartilage by inducing family with sequence similarity 20a (Fam20a) expression in chondrocytes. In the case of sarcopenia, a high vitamin K status in plasma was associated with muscle strength, large muscle mass, and high physical performance in some observational studies. However, the basic studies explaining the effects of vitamin K on muscular tissue are limited. Further research on vitamin K will clarify new biological mechanisms which contribute to human longevity and health through the prevention and treatment of aging-related musculoskeletal disorders.


Assuntos
Envelhecimento/metabolismo , Doenças Musculoesqueléticas/metabolismo , Vitamina K/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Osteoporose/metabolismo , Receptor de Pregnano X/metabolismo , Proteínas/metabolismo , Proteína de Matriz Gla
17.
Biotechnol Lett ; 41(3): 347-355, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673933

RESUMO

OBJECTIVE: To compare the effect of pre-propeptide (pre-pro) of the human prothrombin (hPT), with both the native and an R-9N mutant forms of the human factor IX (hFIX) pre-pro on the hFIX carboxylation, in Drosophila cell. RESULTS: The three different pre-pro sequences, equipped with Drosophila Kozak, were joined to the mature hFIX cDNA and were subjected to transient expression analysis of hFIX in the S2 Drosophila cells, compared to that of a native hFIX cDNA, with its native Kozak. Replacement of the hFIX pre-pro sequence with that of hPT increased the biological activity of hFIX, significantly. The highest total level of hFIX expression occurred for the native hFIX with the Drosophila Kozak. However, the hFIX secretion efficiency with this construct was less than that of the native hFIX with its native Kozak. The R-9N substitution, in the hFIX propeptide, with no apparent effect on the FIX γ-carboxylation, reduced the FIX expression efficiency. CONCLUSION: Potential of the hPT pre-pro sequence for FIX expression in Drosophila cells, was confronted by γ-glutamyl carboxylase (GGCX) saturation in ER, besides the functional importance of -9 amino acid in propeptide is described; these are noteworthy for production of γ-carboxylated proteins.


Assuntos
Produtos Biológicos/metabolismo , Biotecnologia/métodos , Fator IX/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Tecnologia Farmacêutica/métodos , Animais , Linhagem Celular , Drosophila , Fator IX/genética , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Precursores de Proteínas/genética , Proteínas Recombinantes/genética
18.
Nutrients ; 10(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050002

RESUMO

Vitamin K is an essential nutrient involved in the regulation of blood clotting and tissue mineralization. Vitamin K oxidoreductase (VKORC1) converts vitamin K epoxide into reduced vitamin K, which acts as the co-factor for the γ-carboxylation of several proteins, including coagulation factors produced by the liver. VKORC1 is also the pharmacological target of warfarin, a widely used anticoagulant. Vertebrates possess a VKORC1 paralog, VKORC1-like 1 (VKORC1L1), but until very recently, the importance of VKORC1L1 for protein γ-carboxylation and hemostasis in vivo was not clear. Here, we first review the current knowledge on the structure, function and expression pattern of VKORC1L1, including recent data establishing that, in the absence of VKORC1, VKORC1L1 can support vitamin K-dependent carboxylation in the liver during the pre- and perinatal periods in vivo. We then provide original data showing that the partial redundancy between VKORC1 and VKORC1L1 also exists in bone around birth. Recent studies indicate that, in vitro and in cell culture models, VKORC1L1 is less sensitive to warfarin than VKORC1. Genetic evidence is presented here, which supports the notion that VKORC1L1 is not the warfarin-resistant vitamin K quinone reductase present in the liver. In summary, although the exact physiological function of VKORC1L1 remains elusive, the latest findings clearly established that this enzyme is a vitamin K oxidoreductase, which can support γ-carboxylation in vivo.


Assuntos
Coagulação Sanguínea , Ácidos Carboxílicos/metabolismo , Fígado/enzimologia , Vitamina K 1/análogos & derivados , Vitamina K Epóxido Redutases/metabolismo , Animais , Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Oxirredução , Conformação Proteica , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/antagonistas & inibidores , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética , Varfarina/farmacologia
19.
Drug Metab Pers Ther ; 32(2): 109-114, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28525318

RESUMO

BACKGROUND: Acenocoumarol dose is normally determined via step-by-step adjustment process based on International Normalized Ratio (INR) measurements. During this time, the risk of adverse reactions is especially high. Several genotype-based acenocoumarol dosing algorithms have been created to predict ideal doses at the start of anticoagulant therapy. METHODS: Nine dosing algorithms were selected through a literature search. These were evaluated using a cohort of 63 patients with atrial fibrillation receiving acenocoumarol therapy. RESULTS: None of the existing algorithms could predict the ideal acenocoumarol dose in 50% of Russian patients. The Wolkanin-Bartnik algorithtm based on European population was the best-performing one with the highest correlation values (r=0.397), mean absolute error (MAE) 0.82 (±0.61). EU-PACT also managed to give an estimate within the ideal range in 43% of the cases. The two least accurate results were yielded by the Indian population-based algorithms. Among patients receiving amiodarone, algorithms by Schie and Tong proved to be the most effective with the MAE of 0.48±0.42 mg/day and 0.56±0.31 mg/day, respectively. CONCLUSIONS: Patient ethnicity and amiodarone intake are factors that must be considered when building future algorithms. Further research is required to find the perfect dosing formula of acenocoumarol maintenance doses in Russian patients.


Assuntos
Acenocumarol/administração & dosagem , Algoritmos , Anticoagulantes/administração & dosagem , Cálculos da Dosagem de Medicamento , Monitoramento de Medicamentos , Genótipo , Acenocumarol/efeitos adversos , Acenocumarol/uso terapêutico , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Federação Russa , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
20.
J Clin Pharm Ther ; 42(4): 438-445, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28429387

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Warfarin is a widely used anticoagulant with a narrow therapeutic index. Polymorphisms in the VKORC1, CYP2C9 and CYP4F2 genes have been verified to correlate with warfarin stable dosage (WSD). Whether any other genes or variants affect the dosage is unknown. The aim of our study was to investigate the relationship between GGCX, miR-133 variants and the WSD in Han Chinese patients with mechanical heart valve replacement (MHVR). METHODS: A total of 231 patients were enrolled in the study. Blood samples were collected for genotyping. The average WSD among subjects with different GGCX or miR-133 genotypes was compared. Regression analyses were performed to test for any association of genetic polymorphisms with WSD. RESULTS AND DISCUSSION: The warfarin dosage in patients with the GGCX rs699664 TT and rs12714145 TT genotypes was 3.77±0.93 (95% CI: 3.35-4.19) mg/d and 3.70±1.00 (95% CI: 3.32-4.09) mg/d, respectively. The GGCX rs699664 and rs12714145 genotypes were significantly associated with WSD (P<.05). But they were ruled out in the multivariate regression analysis. There were no significant differences in the average warfarin stable dosage between subjects with MIR133B rs142410335 wild-type and variant genotypes (P>.05). WHAT IS NEW AND CONCLUSION: The genotypes of GGCX rs699644 and rs12714145 were significantly associated with WSD (P<.05), but their contributions were not significant after accounting for other factors. MIR133B rs142410335 makes no significant contributions to warfarin stable dosage in Han Chinese patients with MHVR neither in univariate regression nor in multivariate regression analyses.


Assuntos
Carbono-Carbono Ligases/genética , Implante de Prótese de Valva Cardíaca , MicroRNAs/genética , Varfarina/administração & dosagem , Adolescente , Adulto , Idoso , Anticoagulantes/administração & dosagem , Povo Asiático/genética , China , Relação Dose-Resposta a Droga , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Polimorfismo Genético , Análise de Regressão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA