Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Med Life ; 17(2): 201-204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38813364

RESUMO

Stress drives neuroendocrine signals with detrimental effects to the intestinal homeostasis. The aim of this study was to evaluate the effect of stress on intestinal hypoxia response elements, including G protein-coupled receptor 41 (GPR41), GPR43, and hypoxia inducible factor (HIF)-1α. Groups of five BALB/c mice were subjected to acute (2 h per day) and chronic (2 h per day for 4 days) stress induced by restraint, and the results were compared to those of an unstressed control group. Whole mucosal samples from the colon were collected to evaluate the expression of GPR41, GPR43 and HIF-1α using Western blot chemiluminescent analysis. Compared to the control group, in the chronic stress group the expression of GPR43 (P = 0.0092) and HIF-1α (P < 0.0001) were significantly lower and the expression of GPR41 was similar (P = 0.9184); acute stress significantly increased HIF-1α expression (P = 0.0030) and increased GPR41 expression (P = 0.0937), without affecting GPR43 (P = 0.9184). These findings offer insights into the modulation of hypoxia response elements under stress conditions and their pharmacological implications for developing drugs that mitigate the effects of stress on intestinal homeostasis.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos BALB C , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Estresse Psicológico/metabolismo , Masculino , Colo/metabolismo , Mucosa Intestinal/metabolismo
2.
Biomed Pharmacother ; 175: 116735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744220

RESUMO

G-protein-coupled receptors are a diverse class of cell surface receptors that orchestrate numerous physiological functions. The G-protein-coupled receptors, GPR41 and GPR43, sense short-chain fatty acids (SCFAs), which are metabolites of dietary fermentation by the host's intestinal bacteria. These receptors have gained attention as potential therapeutic targets against various diseases because of their SCFA-mediated beneficial effects on the host's intestinal health. Mounting evidence has associated the activity of these receptors with chronic metabolic diseases, including obesity, diabetes, inflammation, and cardiovascular disease. However, despite intensive research using various strategies, including gene knockout (KO) mouse models, evidence about the precise roles of GPR41 and GPR43 in disease treatment remains inconsistent. Here, we comprehensively review the latest findings from functional studies of the signaling mechanisms that underlie the activities of GPR41 and GPR43, as well as highlight their multifaceted roles in health and disease. We anticipate that this knowledge will guide future research priorities and the development of effective therapeutic interventions.


Assuntos
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Humanos , Transdução de Sinais , Doenças Metabólicas/metabolismo , Ácidos Graxos Voláteis/metabolismo
3.
Bioorg Med Chem Lett ; 107: 129758, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641152

RESUMO

GPR41, a G protein-coupled receptor, serves as a sensor for short-chain fatty acids and plays a crucial role in regulating multiple physiological processes such as the maintenance of metabolic and immune homeostasis. Therefore, the modulation of GPR41 has garnered attention as a potential strategy for the treatment of various disorders. We conducted a structure-activity relationship study on a lead tetrahydroquinolone derivative bearing a 2-(trifluoromethoxy)benzene group that displayed antagonistic activity toward GPR41. Modification of the aryl group attached to the furan moiety revealed that derivatives containing di- or trifluorobenzene, instead of 2-(trifluoromethoxy)benzene, exhibited agonistic activity toward GPR41, comparable with the reported agonistic modulator AR420626. These results suggest that the aryl group plays a pivotal role in regulating the activity of compounds toward GPR41, providing valuable insights for the design of GPR41 modulators.


Assuntos
Receptores Acoplados a Proteínas G , Relação Estrutura-Atividade , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Humanos , Estrutura Molecular , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/síntese química , Relação Dose-Resposta a Droga , Receptores de Superfície Celular
4.
Front Immunol ; 15: 1332588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524121

RESUMO

Naïve CD8+ T cells need to undergo a complex and coordinated differentiation program to gain the capacity to control virus infections. This not only involves the acquisition of effector functions, but also regulates the development of a subset of effector CD8+ T cells into long-lived and protective memory cells. Microbiota-derived metabolites have recently gained interest for their influence on T cells, but much remains unclear about their role in CD8+ T cell differentiation. In this study, we investigated the role of the G protein-coupled receptors (GPR)41 and GPR43 that can bind microbiota-derived short chain fatty acids (SCFAs) in CD8+ T cell priming following epicutaneous herpes simplex virus type 1 (HSV-1) infection. We found that HSV-specific CD8+ T cells in GPR41/43-deficient mice were impaired in the antigen-elicited production of interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), granzyme B and perforin, and failed to differentiate effectively into memory precursors. The defect in controlling HSV-1 at the site of infection could be restored when GPR41 and GPR43 were expressed exclusively by HSV-specific CD8+ T cells. Our findings therefore highlight roles for GPR41 and GPR43 in CD8+ T cell differentiation, emphasising the importance of metabolite sensing in fine-tuning anti-viral CD8+ T cell priming.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Camundongos , Herpesvirus Humano 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Herpes Simples/metabolismo , Ácidos Graxos Voláteis/metabolismo , Interferon gama/metabolismo
5.
Korean J Physiol Pharmacol ; 28(1): 1-10, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154959

RESUMO

Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia and dyslipidemia. Carvacrol (CAR) has demonstrated the potential to mitigate dyslipidemia. This study aims to investigate whether CAR can modulate blood glucose and lipid levels in a T2DM rat model by regulating short-chain fatty acids (SCFAs) and the GPR41/43 pathway. The T2DM rat model was induced by a high-fat diet combined with low-dose streptozocin injection and treated with oral CAR and/or mixed antibiotics. Fasting blood glucose, oral glucose tolerance, and insulin tolerance tests were assessed. Serum lipid parameters, hepatic and renal function indicators, tissue morphology, and SCFAs were measured. In vitro, high glucose (HG)-induced IEC-6 cells were treated with CAR, and optimal CAR concentration was determined. HG-induced IEC-6 cells were treated with SCFAs or/and GPR41/43 agonists. CAR significantly reduced blood lipid and glucose levels, improved tissue damage, and increased SCFA levels in feces and GPR41/43 expression in colonic tissues of T2DM rats. CAR also attenuated HG-induced apoptosis of IEC-6 cells and enhanced GPR41/43 expression. Overall, these findings suggest that CAR alleviates blood lipid and glucose abnormalities in T2DM rats by modulating SCFAs and the GPR41/43 pathway.

6.
Br J Pharmacol ; 180(24): 3113-3129, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37620991

RESUMO

Short-chain fatty acids (SCFAs) are biosynthesized via fermentation of polysaccharides by gastrointestinal microbiota and have been shown to have wide-reaching effects on almost all tissues, including the pancreatic islets. Historically, the effects of SCFAs have been attributed to their intracellular metabolism and function as energy sources, but the discovery of free fatty acid G protein-coupled receptors (GPCRs) in the 2000s suggested that many functional outcomes of SCFAs are receptor-mediated. The SCFA receptors FFA2/GPR43 and FFA3/GPR41 are expressed on ß-cells, where they regulate glucose-dependent insulin secretion, making them attractive targets for treatment of diabetes and other metabolic disorders. Here, we provide an update on the current evidence regarding regulation of FFA2/FFA3 receptors by specific probiotic bacterial species within the gut microbiome that synthesize SCFAs. We also review the body of research regarding the FFA2- and FFA3 receptor-specific function of SCFAs on ß-cells and discuss the somewhat controversial and opposing findings within these studies.


Assuntos
Microbioma Gastrointestinal , Células Secretoras de Insulina , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Células Secretoras de Insulina/metabolismo , Transdução de Sinais
7.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443707

RESUMO

The enteric nervous system is affected by inflammatory bowel diseases (IBD). Gut microbiota ferments dietary fibers and produces short-chain fatty acids, such as Butyrate, which bind to G protein-coupled receptors, such as GPR41, and contribute to maintaining intestinal health. This work aimed to study the GPR41 in myenteric neurons and analyze the effect of Butyrate in mice submitted to experimental ulcerative colitis. The 2, 4, 6 trinitrobenzene sulfonic acid (TNBS) was injected intrarectally in C57BL/6 mice (Colitis). Sham group received ethanol (vehicle). One group was treated with 100 mg/kg of Sodium Butyrate (Butyrate), and the other groups received saline. Animals were euthanized 7 days after colitis induction. Analyzes demonstrated colocalization of GPR41 with neurons immunoreactive (-ir) to nNOS and ChAT-ir and absence of colocalization of the GPR41 with GFAP-ir glia. Quantitative results demonstrated losses of nNOS-ir, ChAT-ir, and GPR41-ir neurons in the Colitis group and Butyrate treatment attenuated neuronal loss. The number of GFAP-ir glia increased in the Colitis group, whereas Butyrate reduced the number of these cells. In addition, morphological alterations observed in the Colitis group were attenuated in the Butyrate group. The presence of GPR41 in myenteric neurons was identified, and the treatment with Butyrate attenuated the damage caused by experimental ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Camundongos Endogâmicos C57BL , Neurônios , Ácido Butírico/farmacologia
8.
Gut Microbes ; 15(1): 2206507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131293

RESUMO

Evidence has accumulated that gut microbiota and its metabolites, in particular the short-chain fatty acid propionate, are significant contributors to the pathogenesis of a variety of diseases. However, little is known regarding its impact on pediatric bronchial asthma, one of the most common allergic diseases in childhood. This study aimed to elucidate whether, and if so how, intestinal propionate during lactation is involved in the development of bronchial asthma. We found that propionate intake through breast milk during the lactation period resulted in a significant reduction of airway inflammation in the offspring in a murine house dust mite-induced asthma model. Moreover, GPR41 was the propionate receptor involved in suppressing this asthmatic phenotype, likely through the upregulation of Toll-like receptors. In translational studies in a human birth cohort, we found that fecal propionate was decreased one month after birth in the group that later developed bronchial asthma. These findings indicate an important role for propionate in regulating immune function to prevent the pathogenesis of bronchial asthma in childhood.


Assuntos
Asma , Microbioma Gastrointestinal , Feminino , Humanos , Lactente , Criança , Animais , Camundongos , Propionatos , Asma/prevenção & controle , Ácidos Graxos Voláteis/metabolismo , Intestinos , Suscetibilidade a Doenças
9.
Chin Med ; 18(1): 49, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147692

RESUMO

PURPOSE: The purpose of this study is to investigate the relationship between the susceptibility to type 2 diabetes and gut microbiota in rats and to explore the potential mechanism involved. METHODS: Thirty-two SPF-grade SD rats were raised as donor rats, and divided into control, type 2 diabetes mellitus (T2DM, fasting blood glucose ≥ 11.1 mmol/L), and Non-T2DM (fasting blood glucose < 11.1 mmol/L) groups. Feces were collected and prepared as fecal bacteria supernatants Diab (fecal bacteria supernatant of T2DM group rats), Non (fecal bacteria supernatant of Non-T2DM group rats), and Con (fecal bacteria supernatant of control group rats). Another seventy-nine SPF-grade SD rats were separated into normal saline (NS) and antibiotics (ABX) groups and given normal saline and antibiotics solutions, respectively. In addition, the ABX group rats were randomly separated into ABX-ord (fed with a 4-week ordinary diet), ABX-fat (fed with a 4-week high-fat diet and STZ ip), FMT-Diab (with transplanted fecal bacteria supernatant Diab and fed with a 4-week high-fat diet and STZ ip), FMT-Non (with transplanted fecal bacteria supernatant Non and fed with a 4-week high-fat diet and STZ ip), and FMT-Con (with transplanted fecal bacteria supernatant Con and fed with a 4-week high-fat diet and STZ ip) groups. Furthermore, the NS group was randomly divided into NS-ord (fed with a 4-week ordinary diet) and NS-fat (fed with a 4-week high-fat diet and STZ ip) groups. After this, the short-chain fatty acids (SCFAs) in the feces were detected using gas chromatography, and the gut microbiota were detected using 16S rRNA gene sequencing. Finally, G protein-coupled receptor 41 (GPR41) and GPR43 were detected by western blot and quantitative real-time polymerase chain reaction. RESULTS: G__Ruminococcus_gnavus_group were more abundant in the FMT-Diab group compared to the ABX-fat and FMT-Non groups. The levels of blood glucose, serum insulin, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were also higher in the FMT-Diab group compared to those of the ABX-fat group. Compared to the ABX-fat group, both the FMT-Diab and FMT-Non groups had higher contents of acetic and butyric acid, and the expression of GPR41/43 were significantly higher as well. CONCLUSIONS: G__Ruminococcus_gnavus_group might make rats more susceptible to T2DM; T2DM-susceptible flora transplantation increased the susceptibility to T2DM in rats. Additionally, gut microbiota-SCFAs-GPR41/43 may play a role in the development of T2DM. Lowering blood glucose by regulating gut microbiota may therefore become a new strategy for the treatment of T2DM in humans.

10.
Int J Biol Macromol ; 240: 124413, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059278

RESUMO

Acetic acid has been shown to be effective in chronic kidney disease (CKD). However, it is a low-molecular-weight compound that allows it to be absorbed in the upper digestive tract so that it cannot function in colon. To overcome these deficiencies, an acetate-releasing xylan derivative, xylan acetate ester (XylA), was synthesized and selected in this study for its potential in the treatment of CKD. IR, NMR and HPGPC were used to characterize the structure of XylA and its antinephritic effects was evaluated in vivo. The results showed that acetate was successfully grafted onto the C-2 and C-3 positions of xylan and with a molecular weight at 69157 Da. XylA treatments could relieve the symptoms of CKD in an adenine-induced chronic renal failure (CRF) model and an adriamycin-induced focal segmental glomerulosclerosis (FSGS) model in SD rats. Further study indicated that XylA could upregulate the short-chain fatty acids (SCFAs) in vitro and vivo. Nevertheless, the relative abundance of Phascolarctobacterium in colon was increased after XylA treatment. XylA could upregulate G-protein-coupled receptor 41 (GPR41) expression, inhibit glomerular cell apoptosis and promoting proliferation. Our study expands the application of xylan and provides a new idea for the treatment of CKD with acetic acid.


Assuntos
Insuficiência Renal Crônica , Xilanos , Ratos , Animais , Xilanos/farmacologia , Ratos Sprague-Dawley , Acetatos , Ácidos Graxos Voláteis/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico
11.
Front Nutr ; 10: 1098715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969813

RESUMO

Background: Fat is a critical component in milk, which provided energy for the early growth and development of mammals. Milk fat is positively related to the concentration of acetate in the blood, while the underlying mechanism is still unclear. Objective: This study is to investigate the effects of sodium acetate (NaAc) on milk fat synthesis in the mammary gland, and explored the underlying mechanism. Methods: In vitro experiments were carried out in mouse mammary epithelial cell line (HC11) cells cultured with NaAc to explore the potential pathway of NaAc on milk fat synthesis. Furthermore, 24 pregnant mice (from d 18.5 of gestation to d 7 of lactation, exposed to 200 mM NaAc drinking water) were used as an in vivo model to verify the results. Results: In this study, we found that NaAc promoted milk fat synthesis and the expression of related genes and proteins in HC11 mammary epithelial cells with the activation of GPCR and mTORC1 signaling pathways (p < 0.05). Pretreatment with the mTORC1 inhibitors and G protein inhibitors attenuated the NaAc-induced milk fat synthesis in HC11 mammary epithelial cells (p < 0.05). Importantly, the effect of NaAc on milk synthesis was attenuated in GPR41 and GPR43 knockdown HC11 mammary epithelial cells (p < 0.05). This evidence indicates that NaAc might regulate milk fat synthesis through the GPR41/GPR43-mTORC1 pathway. Consistently, in in vivo experiment, dietary supplementation with NaAc significantly increased milk fat content and fat synthesis-related proteins in mice mammary glands with the activation of mTORC1 and GPCR signaling pathways at peak lactation (p < 0.05). Conclusion: The addition of NaAc promoted the increase of milk fat synthesis in HC11 mammary epithelial cells and mice mammary glands at peak lactation. Mechanistically, NaAc activates GPR41 and GPR43 receptors, leading to the activation of the mTORC1 signaling pathway to promote the synthesis of milk fat.Graphical abstract.

12.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835615

RESUMO

Short-chain fatty acids (SCFAs) play a pivotal role in regulating the proliferation and development of bovine rumen epithelial cells (BRECs). G protein-coupled receptor 41 (GPR41) is involved in the signal transduction in BRECs as a receptor for SCFAs. Nevertheless, the impact of GPR41 on the proliferation of BRECs has not been reported. The results of this research showed that the knockdown of GPR41 (GRP41KD) decreased BRECs proliferation compared with the wild-type BRECs (WT) (p < 0.001). The RNA sequencing (RNA-seq) analysis showed that the gene expression profiles differed between WT and GPR41KD BRECs, with the major differential genes enriched in phosphatidylinositol 3-kinase (PIK3) signaling, cell cycle, and amino acid transport pathways (p < 0.05). The transcriptome data were further validated by Western blot and qRT-PCR. It was evident that the GPR41KD BRECs downregulated the level of the PIK3-Protein kinase B (AKT)-mammalian target of the rapamycin (mTOR) signaling pathway core genes, such as PIK3, AKT, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and mTOR contrasted with the WT cells (p < 0.01). Furthermore, the GPR41KD BRECs downregulated the level of Cyclin D2 p < 0.001) and Cyclin E2 (p < 0.05) compared with the WT cells. Therefore, it was proposed that GPR41 may affect the proliferation of BRECs by mediating the PIK3-AKT-mTOR signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Animais , Bovinos , Proliferação de Células , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rúmen , Serina-Treonina Quinases TOR/metabolismo
13.
FASEB J ; 37(1): e22676, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468834

RESUMO

The G protein-coupled receptors, GPR43 (free fatty acid receptor 2, FFA2) and GPR41 (free fatty acid receptor 3, FFA3), are activated by short-chain fatty acids produced under various conditions, including microbial fermentation of carbohydrates. Previous studies have implicated this receptor energy homeostasis and immune responses as well as in cell growth arrest and apoptosis. Here, we observed the expression of both receptors in human blood cells and a remarkable enhancement in leukemia cell lines (HL-60, U937, and THP-1 cells) during differentiation. A reporter assay revealed that GPR43 is coupled with Gαi and Gα12/13 and is constitutively active without any stimuli. Specific blockers of GPR43, GLPG0974 and CATPB function as inverse agonists because treatment with these compounds significantly reduces constitutive activity. In HL-60 cells, enhanced expression of GPR43 led to growth arrest through Gα12/13 . In addition, the blockage of GPR43 activity in these cells significantly impaired their adherent properties due to the reduction of adhesion molecules. We further revealed that enhanced GPR43 activity induces F-actin formation. However, the activity of GPR43 did not contribute to butyrate-induced apoptosis in differentiated HL-60 cells because of the ineffectiveness of the inverse agonist on cell death. Collectively, these results suggest that GPR43, which possesses constitutive activity, is crucial for growth arrest, followed by the proper differentiation of leukocytes.


Assuntos
Ácidos Graxos Voláteis , Leucócitos , Receptores de Superfície Celular , Humanos , Ácidos Graxos Voláteis/metabolismo , Leucócitos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Diferenciação Celular , Células HL-60
14.
Mol Nutr Food Res ; 67(1): e2200597, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382553

RESUMO

SCOPE: Hepatic steatosis is a major health issue that can be attenuated by a healthy diet. This study investigates the effects and molecular mechanisms of butyrate, a dietary fiber metabolite of gut microbiota, on lipid metabolism in hepatocytes. METHODS AND RESULTS: This study examines the effects of butyrate (0-8 mM) on lipid metabolism in primary hepatocytes. The results show that butyrate (2 mM) consistently inhibits lipogenic genes and activates lipid oxidation-related gene expression in hepatocytes. Furthermore, butyrate modulates lipid metabolism genes, reduces fat droplet accumulation, and activates the calcium/calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 1 (HDAC1)-cyclic adenosine monophosphate response element binding protein (CREB) signaling pathway in the primary hepatocytes and liver of wild-type (WT) mice, but not in G-protein-coupled receptor 41 (GPR41) knockout and 43 (GPR43) knockout mice. This suggests that butyrate regulated hepatic lipid metabolism requires GPR41 and GPR43. Finally, the study finds that dietary butyrate supplementation (5%) ameliorates hepatic steatosis and abnormal lipid metabolism in the liver of mice fed a high-fat and fiber-deficient diet for 15 weeks. CONCLUSION: This work reveals that butyrate improves hepatic lipid metabolism through the GPR41/43-CaMKII/HDAC1-CREB pathway, providing support for consideration of butyrate as a dietary supplement to prevent the progression of NAFLD induced by the Western-style diet.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Butiratos/farmacologia , Butiratos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Dieta , Dieta Hiperlipídica/efeitos adversos , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
15.
Front Vet Sci ; 9: 981640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118357

RESUMO

Bovine liver mainly utilizes the propionate as a gluconeogenic substrate to synthesize the glucose. However, the mechanism underlying the regulatory effects of propionate on the glucose production in bovine hepatocytes remains less known. Previous studies have demonstrated G protein-coupled receptor 41 (GPR41) as receptors for propionate. We hypothesized that propionate may regulate the glucose production by GPR41 in bovine hepatocytes. Therefore, the aim of the study was to investigate the regulatory effects of propionate and GPR41 on glucose production in bovine hepatocytes. Hepatocytes with GPR41 overexpression were incubated in the presence of either 0 or 3 mM propionate for 24 h. These results showed that the expression of phosphoenolpyruvate carboxykinase 2 (PCK2) and pyruvate carboxylase (PC) genes involved in gluconeogenesis was enhanced (P < 0.01) with propionate treatment. Remarkably, the addition of propionate promotes the glucose production in bovine hepatocytes. Expression of GPR41 was increased by the addition of propionate in bovine hepatocytes overexpressed GPR41 by overexpression plasmid AAV1 compared with the absence of propionate. Interestingly, expression of PCK2 was markedly attenuated in GPR41 overexpressed-hepatocytes with propionate. Importantly, overexpression of GPR41 attenuated glucose output in propionate-induced bovine hepatocytes. These findings revealed that GPR41 negatively regulates glucose production by downregulating the expression of PCK2 in propionate-induced bovine hepatocytes.

16.
Curr Hypertens Rep ; 24(11): 509-521, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35838884

RESUMO

PURPOSE OF REVIEW: To discuss the interplay behind how a high-fibre diet leads to lower blood pressure (BP) via the gut microbiome. RECENT FINDINGS: Compelling evidence from meta-analyses support dietary fibre prevents the development of cardiovascular disease and reduces BP. This relation is due to gut microbial metabolites, called short-chain fatty acids (SCFAs), derived from fibre fermentation. The SCFAs acetate, propionate and butyrate lower BP in independent hypertensive models. Mechanisms are diverse but still not fully understood-for example, they include G protein-coupled receptors, epigenetics, immune cells, the renin-angiotensin system and vasculature changes. Lack of dietary fibre leads to changes to the gut microbiota that drive an increase in BP. The mechanisms involved are unknown. The intricate interplay between fibre, the gut microbiota and SCFAs may represent novel therapeutic approaches for high BP. Other gut microbiota-derived metabolites, produced when fibre intake is low, may hold potential therapeutic applications. Further translational evidence is needed.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Hipotensão , Acetatos , Pressão Sanguínea , Butiratos , Fibras na Dieta , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Propionatos , Receptores Acoplados a Proteínas G/metabolismo
17.
Front Immunol ; 13: 857400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572572

RESUMO

The role of IL-22 in adult patients undergoing allogeneic stem cell transplantation (SCT) is of major interest since animal studies showed a protective and regenerative effect of IL-22 in graft versus host disease (GvHD). However, no clinical data exist on the tissue expression. Here we demonstrate that patients not suffering from transplant-related mortality (TRM) show significantly upregulated IL22 expression during histological and clinical GI-GvHD (p = 0.048 and p = 0.022, respectively). In contrast, in GvHD patients suffering from TRM, IL22 was significantly lower (p = 0.007). Accordingly, lower IL22 was associated with a higher probability of TRM in survival analysis (p = 0.005). In a multivariable competing risk Cox regression analysis, low IL22 was identified as an independent risk factor for TRM (p = 0.007, hazard ratio 2.72, 95% CI 1.32 to 5.61). The expression of IL22 seemed to be microbiota dependent as broad-spectrum antibiotics significantly diminished IL22 expression (p = 0.019). Furthermore, IL22 expression significantly correlated with G-protein coupled receptor (GPR)43 (r = 0.263, p = 0.015) and GPR41 expression (r = 0.284, p = 0.009). In conclusion, our findings reveal an essential role of IL-22 for the prognosis of patients undergoing allogeneic SCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Intestinos , Transplante Homólogo
18.
Nutr Rev ; 80(2): 187-199, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027989

RESUMO

Diabetes, obesity, and other metabolic diseases have been recognized as the main factors that endanger human health worldwide. Most of these metabolic syndromes develop when the energy balance in the body is disrupted. Energy balance depends upon the systemic regulation of food intake, glucose homeostasis, and lipid metabolism. Fatty acid-binding G protein-coupled receptors (GPCRs) are widely expressed in various types of tissues and cells involved in energy homeostasis regulation. In this review, the distribution and biological functions of fatty acid-binding GPCRs are summarized, particularly with respect to the gut, pancreas, and adipose tissue. A systematic understanding of the physiological functions of the fatty acid-binding GPCRs involved in energy homeostasis regulation will help in identifying novel pharmacological targets for metabolic diseases.


Assuntos
Doenças Metabólicas , Receptores Acoplados a Proteínas G , Metabolismo Energético/fisiologia , Ácidos Graxos , Humanos , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
19.
Dev Comp Immunol ; 126: 104240, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461159

RESUMO

Accumulating evidence supports the crucial role intestinal microbiota and their metabolites play in the homeostasis of organisms. An important class of metabolites that have been shown to affect the immune system are short chain fatty acids (SCFAs). These SCFAs can affect the host cells via passive diffusion or via ligation to receptors, among others G-protein coupled receptor (GPR) 41 and 43. GPR41 and GPR43 are both part of a family of GPR40-related receptors. Mammalian studies have shown an important role for GPR41 and GPR43 in the modulation of immune responses by SCFAs. However, up till date, no validated coding sequences for orthologues of these SCFA receptors have been published for teleost fish. We used genomic resources and cDNA cloning, to identify and validate ten coding sequences for gpr40L genes in common carp. Phylogenetic analysis showed a division into three subclasses, putatively named class a, b and c, and showed the common carp genes had a closer phylogenetic relationship to mammalian GPR43 than to mammalian GPR41. Synteny analysis revealed a clear conservation of syntenic relationships between gpr40L in the genomes of spotted gar and common carp with the relevant region in the human genome. This conservation of synteny validates the genes identified, as gpr40L. Finally, presence of gpr40L genes was investigated in silico for genomes of 25 different, mostly teleost, fish species largely confirming the observations for gpr40L of common carp with regards to both, subdivision in three subclasses a-c and conservation of synteny. Our data provide an important first step towards an understanding of the role and function of receptors for SCFAs and immunomodulation in fish.


Assuntos
Carpas , Ácidos Graxos não Esterificados , Animais , Carpas/genética , Carpas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Mamíferos , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
20.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681211

RESUMO

The paradigm of ligand-receptor interactions postulated as "one compound-one target" has been evolving; a multi-target, pleiotropic approach is now considered to be realistic. Novel series of 1,4,5,6,7,8-hexahydro-5-oxoquinolines, pyranopyrimidines and S-alkyl derivatives of pyranopyrimidines have been synthesized in order to characterise their pleiotropic, multitarget activity on the FFA3/GPR41, FFA2/GPR43, and HCA2/GPR109A receptors. Hexahydroquinoline derivatives have been known to exhibit characteristic activity as FFA3/GPR41 ligands, but during this study we observed their impact on FFA2/GPR43 and HCA2/GPR109A receptors as well as their electron-donating activity. Oxopyranopyrimidine and thioxopyranopyrimidine type compounds have been studied as ligands of the HCA2/GPR109A receptor; nevertheless, they exhibited equal or higher activity towards FFA3/GPR41 and FFA2/GPR43 receptors. S-Alkyl derivatives of pyranopyrimidines that have not yet been studied as ligands of GPCRs were more active towards HCA2/GPR109A and FFA3/GPR41 receptors than towards FFA2/GPR43. Representative compounds from each synthesized series were able to decrease the lipopolysaccharide-induced gene expression and secretion of proinflammatory cytokines (IL-6, TNF-α) and of a chemokine (MCP-1) in THP-1 macrophages, resembling the effect of HCA2/GPR109A ligand niacin and the endogenous ligand propionate. This study revealed groups of compounds possessing multitarget activity towards several receptors. The obtained data could be useful for further development of multitarget ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA