Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Control Release ; 375: 776-787, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39284526

RESUMO

In vitro and ex-vivo target identification strategies often fail to predict in vivo efficacy, particularly for glioblastoma (GBM), a highly heterogenous tumor rich in resistant cancer stem cells (GSCs). An in vivo screening tool can improve prediction of therapeutic efficacy by considering the complex tumor microenvironment and the dynamic plasticity of GSCs driving therapy resistance and recurrence. This study proposes lipid nanoparticles (LNPs) as an efficient in vivo CRISPR-Cas9 gene editing tool for target validation in mesenchymal GSCs. LNPs co-delivering mRNA (mCas9) and single-guide RNA (sgRNA) were successfully formulated and optimized facilitating both in vitro and in vivo gene editing. In vitro, LNPs achieved up to 67 % reduction in green fluorescent protein (GFP) expression, used as a model target, outperforming a commercial transfection reagent. Intratumoral administration of LNPs in GSCs resulted in ∼80 % GFP gene knock-out and a 2-fold reduction in GFP signal by day 14. This study showcases the applicability of CRISPR-Cas9 LNPs as a potential in vivo screening tool in GSCs, currently lacking effective treatment. By replacing GFP with a pool of potential targets, the proposed platform presents an exciting prospect for therapeutic target validation in orthotopic GSCs, bridging the gap between preclinical and clinical research.

2.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39337267

RESUMO

Like most tumors, glioblastoma multiforme (GBM), the deadliest brain tumor in human adulthood, releases extracellular vesicles (EVs). Their content, reflecting that of the tumor of origin, can be donated to nearby and distant cells which, by acquiring it, become more aggressive. Therefore, the study of EV-transported molecules has become very important. Particular attention has been paid to EV proteins to uncover new GBM biomarkers and potential druggable targets. Proteomic studies have mainly been performed by "bottom-up" mass spectrometry (MS) analysis of EVs isolated by different procedures from conditioned media of cultured GBM cells and biological fluids from GBM patients. Although a great number of dysregulated proteins have been identified, the translation of these findings into clinics remains elusive, probably due to multiple factors, including the lack of standardized procedures for isolation/characterization of EVs and analysis of their proteome. Thus, it is time to change research strategies by adopting, in addition to harmonized EV selection techniques, different MS methods aimed at identifying selected tumoral protein mutations and/or isoforms due to post-translational modifications, which more deeply influence the tumor behavior. Hopefully, these data integrated with those from other "omics" disciplines will lead to the discovery of druggable pathways for novel GBM therapies.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Proteômica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Espectrometria de Massas/métodos
3.
FEBS Open Bio ; 14(6): 1028-1034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740554

RESUMO

Glioblastoma (GBM) poses a significant challenge in oncology and stands as the most aggressive form of brain cancer. A primary contributor to its relentless nature is the stem-like cancer cells, called glioblastoma stem cells (GSCs). GSCs have the capacity for self-renewal and tumorigenesis, leading to frequent GBM recurrences and complicating treatment modalities. While natural killer (NK) cells exhibit potential in targeting and eliminating stem-like cancer cells, their efficacy within the GBM microenvironment is limited due to constrained infiltration and function. To address this limitation, novel investigations focusing on boosting NK cell activity against GSCs are imperative. This study presents two streamlined image-based assays assessing NK cell migration and cytotoxicity towards GSCs. It details protocols and explores the strengths and limitations of these methods. These assays could aid in identifying novel targets to enhance NK cell activity towards GSCs, facilitating the development of NK cell-based immunotherapy for improved GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células Matadoras Naturais , Células-Tronco Neoplásicas , Células Matadoras Naturais/imunologia , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Movimento Celular/imunologia , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos
4.
Cells ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607010

RESUMO

Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.


Assuntos
Vesículas Extracelulares , Glioblastoma , Receptores Purinérgicos P2X7 , Secretoma , Humanos , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/patologia , Proteoma/metabolismo , Proteômica , Receptores Purinérgicos P2X7/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473989

RESUMO

The vacuolar proton-translocating ATPase (V-ATPase) is a transmembrane multi-protein complex fundamental in maintaining a normal intracellular pH. In the tumoral contest, its role is crucial since the metabolism underlying carcinogenesis is mainly based on anaerobic glycolytic reactions. Moreover, neoplastic cells use the V-ATPase to extrude chemotherapy drugs into the extra-cellular compartment as a drug resistance mechanism. In glioblastoma (GBM), the most malignant and incurable primary brain tumor, the expression of this pump is upregulated, making it a new possible therapeutic target. In this work, the bafilomycin A1-induced inhibition of V-ATPase in patient-derived glioma stem cell (GSC) lines was evaluated together with temozolomide, the first-line therapy against GBM. In contrast with previous published data, the proposed treatment did not overcome resistance to the standard therapy. In addition, our data showed that nanomolar dosages of bafilomycin A1 led to the blockage of the autophagy process and cellular necrosis, making the drug unusable in models which are more complex. Nevertheless, the increased expression of V-ATPase following bafilomycin A1 suggests a critical role of the proton pump in GBM stem components, encouraging the search for novel strategies to limit its activity in order to circumvent resistance to conventional therapy.


Assuntos
Glioblastoma , Glioma , Macrolídeos , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Glioma/patologia , Glioblastoma/patologia , Resistência a Medicamentos , Fenótipo , Células-Tronco Neoplásicas/metabolismo
6.
Biochem Biophys Res Commun ; 703: 149665, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38359612

RESUMO

BACKGROUND: Intrinsic brain tumours such as glioblastoma (GBM) are believed to develop from neuroglial stem or progenitor cells. GBM accounts for approximately half of gliomas. GBM has a poor prognosis and a low 5-year survival rate. Pentraxin 3 (PTX3) is overexpressed in GBM, but the potential mechanism is unclear. METHODS: Glioblastoma data from the TCGA and CGGA databases were used to analyse PTX3 expression. Subsequently, in vivo and in vitro experiments were conducted to verify the effect of PTX3 silencing in glioma cells on EMT like process and GSC maintenance. The JASPAR database was used to predict the downstream genes of PTX3. POSTN is a novel target gene of PTX3 in gliomas, and this finding was validated using a luciferase reporter gene assay. Western blotting and KEGG enrichment analysis were used to predict the downstream pathway of POSTN, and it was found that the MAPK/ERK pathway might be related to the function of POSTN. RESULTS: GBM tissues have higher levels of PTX3 expression than normal brain tissues (NBTs). In functional tests, PTX3 promoted the EMT like process of GBM cells while maintaining the stem cell characteristics of GBM stem cells and enhancing their self-renewal. Moreover, we performed a dual luciferase reporter experiment to confirm that PTX3 binds to the POSTN promoter region. In addition, the expression of key proteins in the MAPK/ERK signalling pathway was increased after PTX3 overexpression. CONCLUSION: POSTN is a direct target of PTX3 that promotes GBM growth via the MAPK/ERK signalling pathway.


Assuntos
Neoplasias Encefálicas , Proteína C-Reativa , Glioblastoma , Glioma , Componente Amiloide P Sérico , Humanos , Glioblastoma/patologia , Glioma/genética , Neoplasias Encefálicas/patologia , Luciferases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Moléculas de Adesão Celular/metabolismo
7.
Neuro Oncol ; 26(1): 70-84, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37551745

RESUMO

BACKGROUND: Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS: We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS: CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS: Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Neoplasias Encefálicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 9 Dependente de Ciclina/metabolismo
8.
Cancers (Basel) ; 15(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136381

RESUMO

Glioblastoma (GBM) represents a paramount challenge as the most formidable primary brain tumor characterized by its rapid growth, aggressive invasiveness, and remarkable heterogeneity, collectively impeding effective therapeutic interventions. The cancer stem cells within GBM, GBM stem cells (GSCs), hold pivotal significance in fueling tumor advancement, therapeutic refractoriness, and relapse. Given their unique attributes encompassing self-renewal, multipotent differentiation potential, and intricate interplay with the tumor microenvironment, targeting GSCs emerges as a critical strategy for innovative GBM treatments. Natural killer (NK) cells, innate immune effectors recognized for their capacity to selectively detect and eliminate malignancies without the need for prior sensitization, offer substantial therapeutic potential. Harnessing the inherent capabilities of NK cells can not only directly engage tumor cells but also augment broader immune responses. Encouraging outcomes from clinical investigations underscore NK cells as a potentially effective modality for cancer therapy. Consequently, NK cell-based approaches hold promise for effectively targeting GSCs, thereby presenting an avenue to enhance treatment outcomes for GBM patients. This review outlines GBM's intricate landscape, therapeutic challenges, GSC-related dynamics, and elucidates the potential of NK cell as an immunotherapeutic strategy directed towards GSCs.

9.
J Transl Med ; 21(1): 863, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017538

RESUMO

BACKGROUND: Glioblastoma, the most common primary malignant tumor of the brain, is associated with poor prognosis. Glioblastoma cells exhibit high proliferative and invasive properties, and glioblastoma stem cells (GSCs) have been shown to play a crucial role in the malignant behavior of glioblastoma cells. This study aims to investigate the molecular mechanisms involved in GSCs maintenance and malignant progression. METHODS: Bioinformatics analysis was performed based on data from public databases to explore the expression profile of Mitotic arrest deficient 2 like 2 (MAD2L2) and its potential function in glioma. The impact of MAD2L2 on glioblastoma cell behaviors was assessed through cell viability assays (CCK8), colony formation assays, 5-Ethynyl-2'-deoxyuridine (EDU) incorporation assays, scratch assays, and transwell migration/invasion assays. The findings from in vitro experiments were further validated in vivo using xenograft tumor model. GSCs were isolated from the U87 and LN229 cell lines through flow cytometry and the stemness characteristics were verified by immunofluorescence staining. The sphere-forming ability of GSCs was examined using the stem cell sphere formation assay. Bioinformatics methods were conducted to identified the potential downstream target genes of MAD2L2, followed by in vitro experimental validation. Furthermore, potential upstream transcription factors that regulate MAD2L2 expression were confirmed through chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS: The MAD2L2 exhibited high expression in glioblastoma samples and showed significant correlation with patient prognosis. In vitro and in vivo experiments confirmed that silencing of MAD2L2 led to decreased proliferation, invasion, and migration capabilities of glioblastoma cells, while decreasing stemness characteristics of glioblastoma stem cells. Conversely, overexpression of MAD2L2 enhanced these malignant behaviors. Further investigation revealed that MYC proto-oncogene (c-MYC) mediated the functional role of MAD2L2 in glioblastoma, which was further validated through a rescue experiment. Moreover, using dual-luciferase reporter gene assays and ChIP assays determined that the upstream transcription factor E2F-1 regulated the expression of MAD2L2. CONCLUSION: Our study elucidated the role of MAD2L2 in maintaining glioblastoma stemness and promoting malignant behaviors through the regulation of c-MYC, suggesting its potential as a therapeutic target.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Proliferação de Células , Células-Tronco Neoplásicas/patologia , Glioma/patologia , Modelos Animais de Doenças , Luciferases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Mad2/genética , Proteínas Mad2/metabolismo
10.
J Exp Clin Cancer Res ; 42(1): 244, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735434

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS: Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS: Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS: In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Células-Tronco , Biomarcadores , Carcinogênese
11.
J Exp Clin Cancer Res ; 42(1): 242, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723588

RESUMO

BACKGROUND: Glioma exhibit heterogeneous susceptibility for targeted ferroptosis. How circRNAs alterations in glioma promote iron metabolism and ferroptosis defense remains unclarified. METHODS: The highly enriched circRNAs in glioblastoma (GBM) were obtained through analysis of sequencing datasets. Quantitative real-time PCR (qRT-PCR) was used to determine the expression of circRNF10 in glioma and normal brain tissue. Both gain-of-function and loss-of-function studies were used to assess the effects of circRNF10 on ferroptosis using in vitro and in vivo assays. The hypothesis that ZBTB48 promotes ferroptosis defense was established using bioinformatics analysis and functional assays. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to examine the interaction between circRNF10 and target proteins including ZBTB48, MKRN3 and IGF2BP3. The posttranslational modification mechanism of ZBTB48 was verified using coimmunoprecipitation (co-IP) and ubiquitination assays. The transcription activation of HSPB1 and IGF2BP3 by ZBTB48 was confirmed through luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays. The stabilizing effect of IGF2BP3 on circRNF10 was explored by actinomycin D assay. Finally, a series of in vivo experiments were performed to explore the influences of circRNF10 on the glioma progression. RESULTS: A novel circular RNA, hsa_circ_0028912 (named circRNF10), which is significantly upregulated in glioblastoma tissues and correlated with patients' poor prognosis. Through integrated analysis of the circRNA-proteins interaction datasets and sequencing results, we reveal ZBTB48 as a transcriptional factor binding with circRNF10, notably promoting upregulation of HSPB1 and IGF2BP3 expression to remodel iron metabolism and facilitates the launch of a circRNF10/ZBTB48/IGF2BP3 positive feedback loop in GSCs. Additionally, circRNF10 can competitively bind to MKRN3 and block E3 ubiquitin ligase activity to enhance ZBTB48 expression. Consequently, circRNF10-overexpressed glioma stem cells (GSCs) display lower Fe2+ accumulation, selectively priming tumors for ferroptosis evading. CONCLUSION: Our research presents abnormal circRNAs expression causing a molecular and metabolic change of glioma, which we leverage to discover a therapeutically exploitable vulnerability to target ferroptosis.


Assuntos
Ferroptose , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Retroalimentação , Ferroptose/genética , RNA Circular/genética , Glioma/genética , Ferro , Proteínas de Ligação a DNA , Fatores de Transcrição , Ubiquitina-Proteína Ligases
12.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511047

RESUMO

Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Óxido Nítrico/metabolismo , Dacarbazina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Ciclo Celular , Células-Tronco/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
13.
J Transl Med ; 21(1): 493, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481592

RESUMO

BACKGROUND: Glioblastoma (GBM) is recognized as among the most aggressive forms of brain tumor. Patients typically present with a five-year survival rate of less than 6% with traditional surgery and chemoradiotherapy, which calls for novel immunotherapies like chimeric antigen receptor T (CAR-T) cells therapy. In response to endoplasmic reticulum (ER) stress in multiple tumor cells including GBM, the glucose-regulated protein 78 (GRP78) expression increases and the protein is partially translocated to the cell surface, while it is restricted to the cytoplasm and the nucleus in normal cells. METHODS: In this study, to target the cell surface GRP78 (csGRP78), CAR-T cells based on its binding peptide were generated. In vitro two GBM cell lines and glioma stem cells (GSCs) were used to confirm the localization of csGRP78 and the cytotoxicity of the CAR-T cells. In vivo a GBM xenograft model was used to assess the killing activity and the safety of the CAR-T cells. RESULTS: We confirmed the localization of csGRP78 at the cell surface of two GBM cell lines (U-251MG and U-87MG) and in GSCs. Co-culture experiments revealed that the CAR-T cells could specifically kill the GBM tumor cells and GSCs with specific IFN-γ release. Furthermore, in the tumor xenograft model, the CAR-T cells could decrease the number of GSCs and significantly suppress tumor cell growth. Importantly, we found no obvious off-target effects or T cell infiltration in major organs following systemic administration of these cells. CONCLUSIONS: The csGRP78 targeted CAR-T cells efficiently kill GBM tumor cells and GSCs both in vitro and in vivo, and ultimately suppress the xenograft tumors growth without obvious tissue injuries. Therefore, our study demonstrates that csGRP78 represents a valuable target and the csGRP78-targeted CAR-T cells strategy is an effective immunotherapy against GBM.


Assuntos
Glioblastoma , Glioma , Receptores de Antígenos Quiméricos , Humanos , Animais , Glioblastoma/terapia , Proteínas de Membrana , Chaperona BiP do Retículo Endoplasmático , Células-Tronco Neoplásicas , Modelos Animais de Doenças
14.
J Neurooncol ; 163(1): 47-59, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37140883

RESUMO

PURPOSE: Patient-derived cancer cell lines can be very useful to investigate genetic as well as epigenetic mechanisms of transformation and to test new drugs. In this multi-centric study, we performed genomic and transcriptomic characterization of a large set of patient-derived glioblastoma (GBM) stem-like cells (GSCs). METHODS: 94 (80 I surgery/14 II surgery) and 53 (42 I surgery/11 II surgery) GSCs lines underwent whole exome and trascriptome analysis, respectively. RESULTS: Exome sequencing revealed TP53 as the main mutated gene (41/94 samples, 44%), followed by PTEN (33/94, 35%), RB1 (16/94, 17%) and NF1 (15/94, 16%), among other genes associated to brain tumors. One GSC sample bearing a BRAF p.V600E mutation showed sensitivity in vitro to a BRAF inhibitor. Gene Ontology and Reactome analysis uncovered several biological processes mostly associated to gliogenesis and glial cell differentiation, S - adenosylmethionine metabolic process, mismatch repair and methylation. Comparison of I and II surgery samples disclosed a similar distribution of mutated genes, with an overrepresentation of mutations in mismatch repair, cell cycle, p53 and methylation pathways in I surgery samples, and of mutations in receptor tyrosine kinase and MAPK signaling pathways in II surgery samples. Unsupervised hierarchical clustering of RNA-seq data produced 3 clusters characterized by distinctive sets of up-regulated genes and signaling pathways. CONCLUSION: The availability of a large set of fully molecularly characterized GCSs represents a valuable public resource to support the advancement of precision oncology for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Transcriptoma , Proteínas Proto-Oncogênicas B-raf/genética , Células-Tronco Neoplásicas/patologia , Medicina de Precisão , Neoplasias Encefálicas/patologia
15.
Pathol Res Pract ; 247: 154572, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257245

RESUMO

Glioblastoma (GBM) is the most malignant primary brain tumor. The 5-year survival rate of the patients is poor, and they are prone to relapse and the treatment is limited. Therefore, the search for biological targets is one of the key measures for the treatment and prognosis of GBM. Ubiquitin-specific peptidase 18 (USP18) plays a regulatory role in tumorigenesis. In this study, we found that USP18 was up-regulated in GBM, promoted the growth and proliferation of glioblastoma stem cells (GSCs), affected the epithelial-mesenchymal transition (EMT), and was associated with poor clinical prognosis of patients. Finally, our findings reveal a critical role for USP18 in GBM malignancy, targeting USP18 may open new avenues for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Fenótipo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Ubiquitina Tiolesterase/genética
16.
Int J Biol Sci ; 19(6): 1681-1697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063420

RESUMO

Gliomas are the most aggressive type of malignant brain tumors. Recent studies have demonstrated that the existence of glioma stem cells (GSCs) is critical for glioma recurrence, metastasis, and chemo- or radio-therapy resistance. Temozolomide (TMZ) has been used as an initial therapy for gliomas. However, the overall survival time is still limiting due to the lack of effective targets and treatment options. Therefore, identifying novel biomarkers for gliomas, especially for GSCs, is important to improve the clinical outcome in the future. In this study, we identify a human-specific long non-coding RNA (lncRNA, ENSG00000250377), termed GSCAR (glioma stem cell associated lncRNA), which is highly expressed in glioma cancerous tissues and cell lines. We reveal that GSCAR positively correlates with tumor grade. Glioma patients with GSCAR high expression exhibit shortened overall survival time, compared to patients with GSCAR low expression. Furthermore, we show that GSCAR knockdown by shRNAs or antisense oligonucleotide (ASO) reduces tumor cell proliferation, migration and xenograft tumor formation abilities. Mechanistic study shows that GSCAR acts as a ceRNA (competing endogenous RNA) for miR-6760-5p to promote the expression of oncogene SRSF1 (serine and arginine rich splicing factor 1). In addition, GSCAR mediates the protein complex formation between DHX9 (DExH-Box helicase 9) and IGF2BP2 (insulin-like growth factor 2 mRNA-binding protein 2), leading to the stabilization of SOX2 (sex-determining region Y-box 2) mRNA and then the transcriptional activation of GSCAR. Depleting GSCAR reduces SOX2 expression and GSC self-renewal ability, but promotes tumor cell responses to TMZ. These findings uncover that GSCAR/miR-6760-5p/SRSF1 axis and GSCAR/DHX9-IGF2BP2/SOX2 positive feedback loop are critical for glioma progression, which could be used as prognostic biomarkers and therapeutic targets in the future.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo , Glioma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Processamento de Serina-Arginina/genética
17.
Life Sci ; 320: 121558, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889666

RESUMO

Glioma is the most common tumor of the primary central nervous system, and its malignant phenotype has been shown to be closely related to glioma stem cells (GSCs). Although temozolomide has significantly improved the therapeutic outcome of glioma with a high penetration rate of the blood-brain barrier, resistance is often present in patients. Moreover, evidence has shown that the crosstalk between GSCs and tumor-associated microglia/macrophages (TAMs) affect the clinical occurrence, growth, and multi-tolerance of chemoradiotherapy in gliomas. Here, we highlight its vital roles in the maintenance of the stemness of GSCs and the ability of GSCs to recruit TAMs to the tumor microenvironment and promote their polarization into tumor-promoting macrophages, hence providing groundwork for future research into new treatment strategies of cancer.


Assuntos
Neoplasias Encefálicas , Glioma , Microglia , Células-Tronco Neoplásicas , Macrófagos Associados a Tumor , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Humanos , Animais , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/patologia , Glioma/radioterapia , Transdução de Sinais , Ativação de Macrófagos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Microambiente Tumoral
18.
Front Oncol ; 13: 1153803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923429
19.
J Transl Med ; 21(1): 22, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635757

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been shown to be essential for the emergence and growth of different cancers. However, further research is required to validate the function of circRNA in glioblastoma (GBM). METHODS: CircNDC80 expression in both normal brain tissues (NBTs) and glioma tissues was determined using real-time PCR. The impact of circNDC80 on GBM cell proliferation, migration, and invasion was then confirmed by CCK-8, colony formation, EdU incorporation, Transwell, and wound healing assays. To determine how circNDC80 affects the capacity of glioma stem cells (GSCs) to maintain their stemness and self-renewal, a CellTiter-Glo assay, clonogenic assay and extreme limiting dilution assay were utilized. To ascertain the impact of circNDC80 in vivo, intracranial xenograft models were established. RESULTS: When compared to NBT, glioblastoma tissue had a higher level of circNDC80 expression. In functional assays, circNDC80 promoted glioblastoma cell proliferation, migration, and invasion, while sustaining the stemness and fostering the self-renewal of glioma stem cells. In addition, a dual luciferase reporter assay and circRIP were used to verify that circNDC80 simultaneously affects the expression of ECE1 mRNA by sponging miR-139-5p, and a rescue experiment was used to verify the above results further. CONCLUSIONS: According to our research, circNDC80 is an oncogenic factor that promotes glioblastoma through the miR-139-5p/ECE1 pathway. This implies that circNDC80 may be employed as a novel therapeutic target and a possible predictive biomarker.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , RNA Circular , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica , Enzimas Conversoras de Endotelina , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo
20.
Cancer Sci ; 114(2): 561-573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36314076

RESUMO

Ror1 plays a crucial role in cancer progression by regulating cell proliferation and migration. Ror1 is expressed abundantly in various types of cancer cells and cancer stem-like cells. However, the molecular mechanisms regulating expression of Ror1 in these cells remain largely unknown. Ror1 and its putative ligand Wnt5a are expressed highly in malignant gliomas, especially in glioblastomas, and the extents of Ror1 expression are correlated positively with poorer prognosis in patients with gliomas. We show that Ror1 expression can be upregulated in glioblastoma cells under spheroid culture, but not adherent culture conditions. Notch and hypoxia signaling pathways have been shown to be activated in spheroid-forming glioblastoma stem-like cells (GSCs), and Ror1 expression in glioblastoma cells is indeed suppressed by inhibiting either Notch or hypoxia signaling. Meanwhile, either forced expression of the Notch intracellular domain (NICD) in or hypoxic culture of glioblastoma cells result in enhanced expression of Ror1 in the cells. Consistently, we show that both NICD and hypoxia-inducible factor 1 alpha bind to upstream regions within the Ror1 gene more efficiently in GSCs under spheroid culture conditions. Furthermore, we provide evidence indicating that binding of Wnt5a to Ror1, upregulated by Notch and hypoxia signaling pathways in GSCs, might promote their spheroid-forming ability. Collectively, these findings indicate for the first time that Notch and hypoxia signaling pathways can elicit a Wnt5a-Ror1 axis through transcriptional activation of Ror1 in glioblastoma cells, thereby promoting their stem cell-like property.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Glioma/patologia , Transdução de Sinais , Hipóxia/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA