Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 70(4): 1109-1118, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30481338

RESUMO

In animals, heterotrimeric guanine nucleotide-binding proteins (G proteins) transduce signals perceived by numerous G protein-coupled receptors (GPCRs). However, no canonical GPCRs with guanine nucleotide exchange factor (GEF) activity are present in plant genomes. Accumulated evidence indicates that, instead of GPCRs, the receptor-like kinases (RLKs) function upstream of G proteins in plants. Regulator of G protein signaling 1 (RGS1) functions to convert the GTP-bound Gα to the GDP-bound form through its GTPase-accelerating protein (GAP) activity. Because of the intrinsic differences in the biochemical properties between Arabidopsis and animal Gα, the actions of animal and Arabidopsis RGS1 result in contrasting outcomes in G signaling activation/deactivation. Animal RGSs accelerate the deactivation of the activated G signaling, whereas Arabidopsis RGS1 prevents the activation of G signaling in the resting state. Phosphorylation of Arabidopsis RGS1 triggered by ligand-RLK recognition results in the endocytosis or degradation of RGS1, leading to the separation of RGS1 from Gα and thus the derepression of G signaling. Here, we summarize the involvement of the G proteins in plant immunity, with a special focus on the molecular mechanism of G signaling activation/deactivation regulated by RLKs and RGS1. We also provide a brief perspective on the outstanding questions that need to be addressed to fully understand G signaling in plant immunity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Imunidade Vegetal/genética , Transdução de Sinais/imunologia , Arabidopsis/imunologia , Proteínas de Arabidopsis/imunologia , Proteínas Heterotriméricas de Ligação ao GTP/imunologia
2.
Cell Signal ; 25(12): 2848-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041654

RESUMO

Regulator of G-protein signaling (RGS) proteins potently suppress G-protein coupled receptor (GPCR) signal transduction by accelerating GTP hydrolysis on activated heterotrimeric G-protein α subunits. RGS4 is enriched in the CNS and is proposed as a therapeutic target for treatment of neuropathological states including epilepsy and Parkinson's disease. Therefore, identification of novel RGS4 inhibitors is of interest. An HEK293-FlpIn cell-line stably expressing M3-muscarinic receptor with doxycycline-regulated RGS4 expression was employed to identify compounds that inhibit RGS4-mediated suppression of M3-muscarinic receptor signaling. Over 300,000 compounds were screened for an ability to enhance Gαq-mediated calcium signaling in the presence of RGS4. Compounds that modulated the calcium response in a counter-screen in the absence of RGS4 were not pursued. Of the 1365 RGS4-dependent primary screen hits, thirteen compounds directly target the RGS-G-protein interaction in purified systems. All thirteen compounds lose activity against an RGS4 mutant lacking cysteines, indicating that covalent modification of free thiol groups on RGS4 is a common mechanism. Four compounds produce >85% inhibition of RGS4-G-protein binding at 100µM, yet are >50% reversible within a ten-minute time frame. The four reversible compounds significantly alter the thermal melting temperature of RGS4, but not G-protein, indicating that inhibition is occurring through interaction with the RGS protein. The HEK cell-line employed for this study provides a powerful tool for efficiently identifying RGS-specific modulators within the context of a GPCR signaling pathway. As a result, several new reversible, cell-active RGS4 inhibitors have been identified for use in future biological studies.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao GTP/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Cálcio/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Proteínas de Ligação ao GTP/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Proteínas RGS/antagonistas & inibidores , Proteínas RGS/metabolismo , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA