Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Biosci ; 14(1): 132, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39456033

RESUMO

BACKGROUND: Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the nigrostriatal pathway, leading to dopamine deficiency and motor impairments. Current treatments, such as L-DOPA, provide symptomatic relief but result in off-target effects and diminished efficacy over time. This study explores an alternative approach by investigating the activation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Specifically, we explore the effects of phosphodiesterase (PDE) inhibition and guanylate cyclase-C (GUCY2C) activation on tyrosine hydroxylase Ser40 phosphorylation and their impact on motor behavior in a 6-hydroxydopamine (6-OHDA) Parkinson's disease model. RESULTS: Our findings demonstrate that increasing cyclic nucleotide levels through PDE inhibition and GUCY2C activation significantly enhances tyrosine hydroxylase Ser40 phosphorylation. In a Pitx3-deficient mouse model, which mimics the loss of dopaminergic neurons seen in Parkinson's disease, Ser40 phosphorylation remained manipulable despite reduced tyrosine hydroxylase protein levels. Moreover, we observed no evidence of tyrosine hydroxylase degradation due to Ser40 phosphorylation, challenging previous reports. Furthermore, both PDE inhibition and GUCY2C activation resulted in improved motor behavior in the 6-OHDA Parkinson's disease mouse model, highlighting the potential therapeutic benefits of these approaches. CONCLUSIONS: This study underscores the therapeutic potential of enhancing tyrosine hydroxylase Ser40 phosphorylation to improve motor function in Parkinson's disease. Both PDE inhibition and GUCY2C activation represent promising non-invasive strategies to modulate endogenous dopamine biosynthesis and address motor deficits. These findings suggest that targeting cyclic nucleotide pathways could lead to novel therapeutic approaches, either as standalone treatments or in combination with existing therapies like L-DOPA, aiming to provide more durable symptom relief and potentially mitigate neurodegeneration in Parkinson's disease.

2.
Cancer Biol Ther ; 25(1): 2398801, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39315411

RESUMO

Despite success in treating some hematological malignancies, CAR-T cells have not yet produced similar outcomes in solid tumors due, in part, to the tumor microenvironment, poor persistence, and a paucity of suitable target antigens. Importantly, the impact of the CAR components on these challenges remains focused on the intracellular signaling and antigen-binding domains. In contrast, the flexible hinge and transmembrane domains have been commoditized and are the least studied components of the CAR. Here, we compared the hinge and transmembrane domains derived from either the CD8ɑ or CD28 molecule in identical GUCY2C-targeted third-generation designs for colorectal cancer. While these structural domains do not contribute to differences in antigen-independent contexts, such as CAR expression and differentiation and exhaustion phenotypes, the CD8ɑ structural domain CAR has a greater affinity for GUCY2C. This results in increased production of inflammatory cytokines and granzyme B, improved cytolytic effector function with low antigen-expressing tumor cells, and robust anti-tumor efficacy in vivo compared with the CD28 structural domain CAR. This suggests that CD8α structural domains should be considered in the design of all CARs for the generation of high-affinity CARs and optimally effective CAR-T cells in solid tumor immunotherapy.


Assuntos
Antígenos CD8 , Humanos , Animais , Camundongos , Antígenos CD8/metabolismo , Antígenos CD8/imunologia , Imunoterapia Adotiva/métodos , Receptores de Enterotoxina/metabolismo , Receptores de Enterotoxina/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral
3.
Front Neurosci ; 17: 1272955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027512

RESUMO

Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.

4.
Res Sq ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37886524

RESUMO

Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases, and their second messengers cyclic (c)GMP, support mitochondrial function, protecting against ROS and promoting cell survival in a number of tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of neurodegeneration. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in nigral DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.

5.
Nutrition ; 114: 112096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399692

RESUMO

BACKGROUND: Congenital sodium diarrhea (CSD) is a rare disorder causing electrolyte imbalances due to excessive diarrhea. In pediatric literature, common practice for treating CSD includes parenteral nutrition (PN) for fluid, nutrient, and electrolyte support through the first year of the patient's life. The aim of this study was to report a neonate who showed common symptoms of CSD, including a distended abdomen, large amounts of clear, yellow fluid draining from the rectum, dehydration, and electrolyte abnormalities. CASE SUMMARY: A diagnostic gene panel was completed and confirmed heterozygous variant GUCY2C gene associated with autosomal dominant CSD. The infant was initially treated with PN to maintain fluid, nutrient, and electrolyte status, but was subsequently transitioned to full enteral feeds, showing improvement in symptoms. Frequent therapy adjustments were required to maintain appropriate electrolyte levels during the duration of the hospital stay. At discharge, the infant followed an enteral fluid maintenance plan that provided symptomatic control through the first year of life. CONCLUSION: This case demonstrated the ability to maintain electrolyte levels in a patient through enteral means while avoiding long-term use of intravenous access.


Assuntos
Diarreia , Desequilíbrio Hidroeletrolítico , Recém-Nascido , Lactente , Humanos , Criança , Diarreia/terapia , Diarreia/complicações , Eletrólitos , Desequilíbrio Hidroeletrolítico/complicações , Sódio , Receptores de Enterotoxina
6.
Per Med ; 19(5): 457-472, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35920071

RESUMO

Colorectal cancer remains a major cause of mortality in the USA, despite advances in prevention and screening. Existing therapies focus primarily on generic treatment such as surgical intervention and chemotherapy, depending on disease severity. As personalized medicine and targeted molecular oncology continue to develop as promising treatment avenues, there has emerged a need for effective targets and biomarkers of colorectal cancer. The transmembrane receptor guanylyl cyclase C (GUCY2C) regulates intestinal homeostasis and has emerged as a tumor suppressor. Further, it is universally expressed in advanced metastatic colorectal tumors, as well as other cancer types that arise through intestinal metaplasia. In this context, GUCY2C satisfies many characteristics of a compelling target and biomarker for gastrointestinal malignancies.


Colorectal cancer is a leading cause of death in the USA. In recent years, there has been a shift in the field of oncology from generic treatments, such as surgery and chemotherapy, to personalized molecular therapies, which focus on targeting specific attributes of each patient's unique cancer. Guanylyl cyclase C is a receptor expressed in the intestinal tract, where it regulates fluid secretion and prevents tumor formation. Beyond its function in the healthy intestine, it is expressed in colorectal tumors, and other types of cancer, where it regulates transformation. Therefore, guanylyl cyclase C can serve as a useful target in cancer for prevention and therapy, as well as a marker for tumor cell detection.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Receptores de Enterotoxina
7.
Front Immunol ; 13: 855759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355987

RESUMO

The Gram-positive bacterium Listeria monocytogenes (Lm) is an emerging platform for cancer immunotherapy. To date, over 30 clinical trials have been initiated testing Lm cancer vaccines across a wide variety of cancers, including lung, cervical, colorectal, and pancreatic. Here, we assessed the immunogenicity of an Lm vaccine against the colorectal tumor antigen GUCY2C (Lm-GUCY2C). Surprisingly, Lm-GUCY2C vaccination did not prime naïve GUCY2C-specific CD8+ T-cell responses towards the dominant H-2Kd-restricted epitope, GUCY2C254-262. However, Lm-GUCY2C produced robust CD8+ T-cell responses towards Lm-derived peptides suggesting that GUCY2C254-262 peptide may be subdominant to Lm-derived peptides. Indeed, incorporating immunogenic Lm peptides into an adenovirus-based GUCY2C vaccine previously shown to induce robust GUCY2C254-262 immunity completely suppressed GUCY2C254-262 responses. Comparison of immunogenic Lm-derived peptides to GUCY2C254-262 revealed that Lm-derived peptides form highly stable peptide-MHC complexes with H-2Kd compared to GUCY2C254-262 peptide. Moreover, amino acid substitution at a critical anchoring residue for H-2Kd binding, producing GUCY2CF255Y, significantly improved stability with H-2Kd and rescued GUCY2C254-262 immunogenicity in the context of Lm vaccination. Collectively, these studies suggest that Lm antigens may compete with and suppress the immunogenicity of target vaccine antigens and that use of altered peptide ligands with enhanced peptide-MHC stability may be necessary to elicit robust immune responses. These studies suggest that optimizing target antigen competitiveness with Lm antigens or alternative immunization regimen strategies, such as prime-boost, may be required to maximize the clinical utility of Lm-based vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , Listeria monocytogenes , Listeria , Epitopos , Humanos , Epitopos Imunodominantes , Peptídeos , Receptores de Enterotoxina
8.
JHEP Rep ; 4(4): 100440, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35287291

RESUMO

Background & Aims: MicroRNAs (miRNAs) act as a regulatory mechanism on a post-transcriptional level by repressing gene transcription/translation and play a central role in the cellular stress response. Osmotic changes occur in a variety of diseases including liver cirrhosis and hepatic encephalopathy. Changes in cell hydration and alterations of the cellular volume are major regulators of cell function and gene expression. In this study, the modulation of hepatic gene expression in response to hypoosmolarity was studied. Methods: mRNA analyses of normo- and hypoosmotic perfused rat livers by gene expression arrays were used to identify miRNA and their potential target genes associated with cell swelling preceding cell proliferation. Selected miR-141-3p was also investigated in isolated hepatocytes treated with miRNA mimic, cell stretching, and after partial hepatectomy. Inhibitor perfusion studies were performed to unravel signalling pathways responsible for miRNA upregulation. Results: Using genome-wide transcriptomic analysis, it was shown that hypoosmotic exposure led to differential gene expression in perfused rat liver. Moreover, miR-141-3p was upregulated by hypoosmolarity in perfused rat liver and in primary hepatocytes. In concert with this, miR-141-3p upregulation was prevented after Src-, Erk-, and p38-MAPK inhibition. Furthermore, luciferase reporter assays demonstrated that miR-141-3p targets cyclin dependent kinase 8 (Cdk8) mRNA. Partial hepatectomy transiently upregulated miR-141-3p levels just after the initiation of hepatocyte proliferation, whereas Cdk8 mRNA was downregulated. The mechanical stretching of rat hepatocytes resulted in miR-141-3p upregulation, whereas Cdk8 mRNA tended to decrease. Notably, the overexpression of miR-141-3p inhibited the proliferation of Huh7 cells. Conclusions: Src-mediated upregulation of miR-141-3p was found in hepatocytes in response to hypoosmotic swelling and mechanical stretching. Because of its antiproliferative function, miR-141-3p may counter-regulate the proliferative effects triggered by these stimuli. Lay summary: In this study, we identified microRNA 141-3p as an osmosensitive miRNA, which inhibits proliferation during liver cell swelling. Upregulation of microRNA 141-3p, controlled by Src-, Erk-, and p38-MAPK signalling, results in decreased mRNA levels of various genes involved in metabolic processes, macromolecular biosynthesis, and cell cycle progression.

9.
Mol Imaging Biol ; 23(6): 941-951, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34143379

RESUMO

PURPOSE: A sensitive and specific imaging biomarker to monitor immune activation and quantify pharmacodynamic responses would be useful for development of immunomodulating anti-cancer agents. PF-07062119 is a T cell engaging bispecific antibody that binds to CD3 and guanylyl cyclase C, a protein that is over-expressed by colorectal cancers. Here, we used 89Zr-Df-IAB22M2C (89Zr-Df-Crefmirlimab), a human CD8-specific minibody to monitor CD8+ T cell infiltration into tumors by positron emission tomography. We investigated the ability of 89Zr-Df-IAB22M2C to track anti-tumor activity induced by PF-07062119 in a human CRC adoptive transfer mouse model (with injected activated/expanded human T cells), as well as the correlation of tumor radiotracer uptake with CD8+ immunohistochemical staining. PROCEDURES: NOD SCID gamma mice bearing human CRC LS1034 tumors were treated with four different doses of PF-07062119, or a non-targeted CD3 BsAb control, and imaged with 89Zr-Df-IAB22M2C PET at days 4 and 9. Following PET/CT imaging, mice were euthanized and dissected for ex vivo distribution analysis of 89Zr-Df-IAB22M2C in tissues on days 4 and 9, with additional data collected on day 6 (supplementary). Data were analyzed and reported as standard uptake value and %ID/g for in vivo imaging and ex vivo tissue distribution. In addition, tumor tissues were evaluated by immunohistochemistry for CD8+ T cells. RESULTS: The results demonstrated substantial mean uptake of 89Zr-Df-IAB22M2C (%ID/g) in PF-07062119-treated tumors, with significant increases in comparison to non-targeted BsAb-treated controls, as well as PF-07062119 dose-dependent responses over time of treatment. A moderate correlation was observed between tumor tissue radioactivity uptake and CD8+ cell density, demonstrating the value of the imaging agent for non-invasive assessment of intra-tumoral CD8+ T cells and the mechanism of action for PF-07062119. CONCLUSION: Immune-imaging technologies for quantitative cellular measures would be a valuable biomarker in immunotherapeutic clinical development. We demonstrated a qualification of 89Zr-IAB22M2C PET to evaluate PD responses (mice) to a novel immunotherapeutic.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Zircônio , Animais , Biomarcadores , Linhagem Celular Tumoral , Camundongos , Camundongos SCID , Tomografia por Emissão de Pósitrons/métodos , Receptores de Enterotoxina , Linfócitos T
10.
Am J Med Genet A ; 185(7): 2046-2055, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33949097

RESUMO

Guanylate cyclase 2C (GC-C), encoded by the GUCY2C gene, is implicated in hereditary early onset chronic diarrhea. Several families with chronic diarrhea symptoms have been identified with autosomal dominant, gain-of-function mutations in GUCY2C. We have identified a Mennonite patient with a novel GUCY2C variant (c.2381A > T; p.Asp794Val) with chronic diarrhea and an extensive maternal family history of chronic diarrhea and bowel dilatation. Functional studies including co-segregation analysis showed that all family members who were heterozygous for this variant had GI-related symptoms. HEK-293 T cells expressing the Asp794Val GC-C variant showed increased cGMP production when stimulated with Escherichia coli heat-stable enterotoxin STp (HST), which was reversed when 5-(3-Bromophenyl)-5,11-dihydro-1,3-dimethyl-1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine-2,4,6(3H)-trione (BPIPP; a GC-C inhibitor) was used. In addition, cystic fibrosis transmembrane conductance regulator (CFTR) activity measured with SPQ fluorescence assay was increased in these cells after treatment with HST, indicating a crucial role for CFTR activity in the pathogenesis of this disorder. These results support pathogenicity of the GC-C Asp794Val variant as a cause of chronic diarrhea in this family. Furthermore, this work identifies potential candidate drug, GC-C inhibitor BPIPP, to treat diarrhea caused by this syndrome.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Diarreia/genética , Predisposição Genética para Doença , Receptores de Enterotoxina/genética , Adolescente , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/genética , Criança , Diarreia/tratamento farmacológico , Diarreia/patologia , Enterotoxinas/antagonistas & inibidores , Enterotoxinas/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Feminino , Mutação com Ganho de Função/genética , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Masculino , Linhagem , Adulto Jovem
11.
Expert Rev Precis Med Drug Dev ; 6(2): 117-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34027103

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. AREAS COVERED: We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. EXPERT OPINION: The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.

13.
Biomark Med ; 15(3): 201-217, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470843

RESUMO

Gastrointestinal cancers encompass a diverse class of tumors arising in the GI tract, including esophagus, stomach, pancreas and colorectum. Collectively, gastrointestinal cancers compose a high fraction of all cancer deaths, highlighting an unmet need for novel and effective therapies. In this context, the transmembrane receptor guanylyl cyclase C (GUCY2C) has emerged as an attractive target for the prevention, detection and treatment of many gastrointestinal tumors. GUCY2C is an intestinally-restricted protein implicated in tumorigenesis that is universally expressed by primary and metastatic colorectal tumors as well as ectopically expressed by esophageal, gastric and pancreatic cancers. This review summarizes the current state of GUCY2C-targeted modalities in the management of gastrointestinal malignancies, with special focus on colorectal cancer, the most incident gastrointestinal malignancy.


Assuntos
Receptores de Enterotoxina , Biomarcadores , Neoplasias Gastrointestinais , Humanos , Imunoterapia , Terapia de Alvo Molecular
14.
MAbs ; 13(1): 1850395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33459147

RESUMO

We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.


Assuntos
Anticorpos Biespecíficos/imunologia , Complexo CD3/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Enterotoxina/imunologia , Animais , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Hibridomas , Macaca fascicularis/imunologia , Macaca fascicularis/metabolismo , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Neoplasias/metabolismo , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacocinética , Anticorpos de Cadeia Única/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Expert Rev Clin Pharmacol ; 13(10): 1125-1137, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945718

RESUMO

Introduction: Colorectal cancer remains the second leading cause of cancer death in the United States, underscoring the need for novel therapies. Despite the successes of new targeted agents for other cancers, colorectal cancer suffers from a relative scarcity of actionable biomarkers. In this context, the intestinal receptor, guanylyl cyclase C (GUCY2C), has emerged as a promising target.Areas covered: GUCY2C regulates a tumor-suppressive signaling axis that is silenced through loss of its endogenous ligands at the earliest stages of tumorigenesis. A body of literature supports a cancer chemoprevention strategy involving reactivation of GUCY2C through FDA-approved cGMP-elevating agents such as linaclotide, plecanatide, and sildenafil. Its limited expression in extra-intestinal tissues, and retention on the surface of cancer cells, also positions GUCY2C as a target for immunotherapies to treat metastatic disease, including vaccines, chimeric antigen receptor T-cells, and antibody-drug conjugates. Likewise, GUCY2C mRNA identifies metastatic cells, enhancing colorectal cancer detection, and staging. Pre-clinical and clinical programs exploring these GUCY2C-targeting strategies will be reviewed.Expert opinion: Recent mechanistic insights characterizing GUCY2C ligand loss early in tumorigenesis, coupled with results from the first clinical trials testing GUCY2C-targeting strategies, continue to elevate GUCY2C as an ideal target for prevention, detection, and therapy.


Assuntos
Neoplasias Colorretais/terapia , Terapia de Alvo Molecular , Receptores de Enterotoxina/efeitos dos fármacos , Animais , Quimioprevenção/métodos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Agonistas da Guanilil Ciclase C/administração & dosagem , Agonistas da Guanilil Ciclase C/farmacologia , Humanos , Imunoterapia/métodos , Estadiamento de Neoplasias , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Transdução de Sinais
16.
Cancer Biol Ther ; 21(9): 799-805, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594830

RESUMO

Most sporadic colorectal cancer reflects acquired mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, while germline heterozygosity for mutant APC produces the autosomal dominant disorder Familial Adenomatous Polyposis (FAP) with a predisposition to colorectal cancer. In these syndromes, loss of heterozygosity (LOH) silences the remaining normal allele of APC, through an unknown mechanism, as the initiating step in transformation. Guanylyl cyclase C receptor (GUCY2C) and its hormones, uroguanylin and guanylin, have emerged as a key signaling axis opposing mutations driving intestinal tumorigenesis. Indeed, uroguanylin and guanylin are among the most commonly repressed genes in colorectal cancer. Here, we explored the role of APC heterozygosity in mechanisms repressing hormone expression which could contribute to LOH. In genetic mouse models of APC loss, uroguanylin and guanylin expression were quantified following monoallelic or biallelic deletion of the Apc gene. Induced biallelic loss of APC repressed uroguanylin and guanylin expression. However, monoallelic APC loss in Apcmin/+ mice did not alter hormone expression. Similarly, in FAP patients, normal colonic mucosa (monoallelic APC loss) expressed guanylin while adenomas and an invasive carcinoma (biallelic APC loss) were devoid of hormone expression. Thus, uroguanylin and guanylin expression by normal intestinal epithelial cells persists in the context of APC heterozygosity and is lost only after tumor initiation by APC LOH. These observations reveal a role for loss of the hormones silencing the GUCY2C axis in tumor progression following biallelic APC loss, but not in mechanisms creating the genetic vulnerability in epithelial cells underlying APC LOH initiating tumorigenesis.


Assuntos
Polipose Adenomatosa do Colo/genética , Genes Supressores de Tumor , Receptores de Enterotoxina/genética , Polipose Adenomatosa do Colo/patologia , Animais , Transformação Celular Neoplásica , Inativação Gênica , Humanos , Masculino , Camundongos
17.
Scand J Gastroenterol ; 55(4): 449-453, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32306784

RESUMO

Background: Guanylin (GN) and uroguanylin (UGN) are endogenous ligands for the intestinal receptor guanylate cyclase C (GC-C), an important regulator of intestinal fluid homeostasis. Gene expression and protein levels of GN are suppressed in inflamed intestinal tissue from patients with inflammatory bowel disease (IBD), but knowledge about plasma levels of guanylins in these conditions is sparse. We aimed to investigate the fasting plasma levels of the prohormones proGN and proUGN in patients with Crohn's Disease (CD) and relate these to levels found in persons with other diarrheal conditions, as well as persons with normal bowel habits.Methods: Plasma from patients with CD, patients with Familial GUCY2C Diarrheal Disease (FGDS), diarrhea-predominant irritable bowel syndrome (IBS-D) and healthy controls (HC) was analyzed using ELISA assays.Results: Significantly lower fasting plasma levels of proguanylins were found in CD and FGDS patients, compared to HC. In CD patients, plasma proGN levels correlated negatively with Harvey Bradshaw Index and with number of stools/24 h.Conclusion: Our data indicate that diarrhea may be a determinant for levels of proGN in plasma, and should be further explored in studies of different diarrheal disorders.


Assuntos
Doença de Crohn/sangue , Diarreia/sangue , Hormônios Gastrointestinais/sangue , Síndrome do Intestino Irritável/sangue , Peptídeos Natriuréticos/sangue , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Diarreia/genética , Feminino , Expressão Gênica , Humanos , Síndrome do Intestino Irritável/genética , Masculino , Pessoa de Meia-Idade , Plasma/química , Receptores de Enterotoxina/genética , Adulto Jovem
18.
J Immunother Cancer ; 7(1): 104, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31010434

RESUMO

BACKGROUND: The colorectal cancer antigen GUCY2C exhibits unique split tolerance, evoking antigen-specific CD8+, but not CD4+, T-cell responses that deliver anti-tumor immunity without autoimmunity in mice. Here, the cancer vaccine Ad5-GUCY2C-PADRE was evaluated in a first-in-man phase I clinical study of patients with early-stage colorectal cancer to assess its safety and immunological efficacy. METHODS: Ten patients with surgically-resected stage I or stage II (pN0) colon cancer received a single intramuscular injection of 1011 viral particles (vp) of Ad5-GUCY2C-PADRE. Safety assessment and immunomonitoring were carried out for 6 months following immunization. This trial employed continual monitoring of both efficacy and toxicity of subjects as joint primary outcomes. RESULTS: All patients receiving Ad5-GUCY2C-PADRE completed the study and none developed adverse events greater than grade 1. Antibody responses to GUCY2C were detected in 10% of patients, while 40% exhibited GUCY2C-specific T-cell responses. GUCY2C-specific responses were exclusively CD8+ cytotoxic T cells, mimicking pre-clinical studies in mice in which GUCY2C-specific CD4+ T cells are eliminated by self-tolerance, while CD8+ T cells escape tolerance and mediate antitumor immunity. Moreover, pre-existing neutralizing antibodies (NAbs) to the Ad5 vector were associated with poor vaccine-induced responses, suggesting that Ad5 NAbs oppose GUCY2C immune responses to the vaccine in patients and supported by mouse studies. CONCLUSIONS: Split tolerance to GUCY2C in cancer patients can be exploited to safely generate antigen-specific cytotoxic CD8+, but not autoimmune CD4+, T cells by Ad5-GUCY2C-PADRE in the absence of pre-existing NAbs to the viral vector. TRIAL REGISTRATION: This trial (NCT01972737) was registered at ClinicalTrials.gov on October 30th, 2013. https://clinicaltrials.gov/ct2/show/NCT01972737.


Assuntos
Vacinas Anticâncer/efeitos adversos , Neoplasias Colorretais/terapia , Imunoterapia/métodos , Receptores de Enterotoxina/imunologia , Linfócitos T Citotóxicos/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Idoso , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/sangue , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Terapia Combinada/métodos , Relação Dose-Resposta Imunológica , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Tolerância Imunológica , Imunogenicidade da Vacina , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Receptores de Enterotoxina/genética , Reto/patologia , Reto/cirurgia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia
19.
Semin Cancer Biol ; 56: 168-174, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189250

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer related-deaths. The risk of development of CRC is complex and multifactorial, and includes disruption of homeostasis of the intestinal epithelial layer mediated though dysregulations of tumor suppressing/promoting signaling pathways. Guanylate cyclase 2C (GUCY2C), a membrane-bound guanylate cyclase receptor, is present in the apical membranes of intestinal epithelial cells and maintains homeostasis. GUCY2C is activated upon binding of paracrine hormones (guanylin and uroguanylin) that lead to formation of cyclic GMP from GTP and activation of downstream signaling pathways that are associated with normal homeostasis. Dysregulation/suppression of the GUCY2C-mediated signaling promotes CRC tumorigenesis. High-calorie diet-induced obesity is associated with deficiency of guanylin expression and silencing of GUCY2C-signaling in colon epithelial cells, leading to tumorigenesis. Thus, GUCY2C agonists, such as linaclotide, exhibit considerable role in preventing CRC tumorigenesis. However, phosphodiesterases (PDEs) are elevated in intestinal epithelial cells during CRC tumorigenesis and block GUCY2C-mediated signaling by degrading cyclic GMP to 5`-GMP. PDE5-specific inhibitors, such as sildenafil, show considerable anti-tumorigenic potential against CRC by amplifying the GUCY2C/cGMP signaling pathway, but cannot achieve complete anti-tumorigenic effects. Hence, dual targeting the elevation of cGMP by providing paracrine hormone stimuli to GUCY2C and by inhibition of PDEs may be a better strategy for CRC prevention than alone. This review delineates the involvement of the GUCY2C/cGMP/PDEs signaling pathway in the homeostasis of intestinal epithelial cells. Further, the events are associated with dysregulation of this pathway during CRC tumorigenesis are also discussed. In addition, current updates on targeting the GUCY2C/cGMP/PDEs pathway with GUCY2C agonists and PDEs inhibitors for CRC prevention and treatment are described in detail.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/prevenção & controle , GMP Cíclico/metabolismo , Hormônios/metabolismo , Comunicação Parácrina , Diester Fosfórico Hidrolases/metabolismo , Receptores de Enterotoxina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Quimioprevenção , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/etiologia , Suscetibilidade a Doenças , Hemostasia , Humanos , Terapia de Alvo Molecular , Comunicação Parácrina/efeitos dos fármacos
20.
Toxins (Basel) ; 9(9)2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895923

RESUMO

There is a geographic inequality in the incidence of colorectal cancer, lowest in developing countries, and greatest in developed countries. This disparity suggests an environmental contribution to cancer resistance in endemic populations. Enterotoxigenic bacteria associated with diarrheal disease are prevalent in developing countries, including enterotoxigenic E. coli (ETEC) producing heat-stable enterotoxins (STs). STs are peptides that are structurally homologous to paracrine hormones that regulate the intestinal guanylyl cyclase C (GUCY2C) receptor. Beyond secretion, GUCY2C is a tumor suppressor universally silenced by loss of expression of its paracrine hormone during carcinogenesis. Thus, the geographic imbalance in colorectal cancer, in part, may reflect chronic exposure to ST-producing organisms that restore GUCY2C signaling silenced by hormone loss during transformation. Here, mice colonized for 18 weeks with control E. coli or those engineered to secrete ST exhibited normal growth, with comparable weight gain and normal stool water content, without evidence of secretory diarrhea. Enterotoxin-producing, but not control, E. coli, generated ST that activated colonic GUCY2C signaling, cyclic guanosine monophosphate (cGMP) production, and cGMP-dependent protein phosphorylation in colonized mice. Moreover, mice colonized with ST-producing E. coli exhibited a 50% reduction in carcinogen-induced colorectal tumor burden. Thus, chronic colonization with ETEC producing ST could contribute to endemic cancer resistance in developing countries, reinforcing a novel paradigm of colorectal cancer chemoprevention with oral GUCY2C-targeted agents.


Assuntos
Neoplasias Colorretais , Enterotoxinas , Escherichia coli/metabolismo , Animais , Vacinas Anticâncer , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/prevenção & controle , Países em Desenvolvimento , Humanos , Camundongos , Receptores de Enterotoxina/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA