Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(16): e2311176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215457

RESUMO

Membranes are the key structures to separate and spatially organize cellular systems. Their rich dynamics and transformations during the cell cycle are orchestrated by specific membrane-targeted molecular machineries, many of which operate through energy dissipation. Likewise, man-made light-activated molecular rotary motors have previously shown drastic effects on cellular systems, but their physical roles on and within lipid membranes remain largely unexplored. Here, the impact of rotary motors on well-defined biological membranes is systematically investigated. Notably, dramatic mechanical transformations are observed in these systems upon motor irradiation, indicative of motor-induced membrane expansion. The influence of several factors on this phenomenon is systematically explored, such as motor concentration and membrane composition., Membrane fluidity is found to play a crucial role in motor-induced deformations, while only minor contributions from local heating and singlet oxygen generation are observed. Most remarkably, the membrane area expansion under the influence of the motors continues as long as irradiation is maintained, and the system stays out-of-equilibrium. Overall, this research contributes to a comprehensive understanding of molecular motors interacting with biological membranes, elucidating the multifaceted factors that govern membrane responses and shape transitions in the presence of these remarkable molecular machines, thereby supporting their future applications in chemical biology.


Assuntos
Lipídeos , Humanos , Membrana Celular/química
2.
Data Brief ; 45: 108716, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426033

RESUMO

Endogenous hemorphins are being intensively investigated as therapeutic agents in neuropharmacology, and also as biomarkers in mood regulation, inflammation and oncology. The datasets collected herein report physicochemical parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes in the presence of VV-hemorphin-5 (Val-Val-Tyr-Pro-Trp-Thr-Gln) and analogues, modified at position 1 and 7 by the natural amino acid isoleucine or the non-proteinogenic 2-aminoisobutyric, 2,3-diaminopropanoic or 2,4-diaminobutanoic amino acids. These peptides have been previously screened for nociceptive activity and were chosen accordingly. The present article contains fluorescence spectroscopy data of Laurdan- and di-8-ANEPPS- labelled large unilamellar vesicles (LUV) providing the degree of hydration and dipole potential of lipid bilayers in the presence of VV-hemorphin-5 analogues. Lipid packing is accessible from Laurdan intensity profiles and generalized polarization datasets reported herein. The data presented on fluorescence intensity ratios of di-8-ANEPPS dye provide dipole potential values of phosphatidylcholine-valorphin membranes. Vesicle size and electrophoretic mobility datasets included refer to the effect of valorphins on the size distribution and ζ -potential of POPC LUVs. Investigation of physicochemical properties of peptides such as diffusion coefficients and heterogeneous rate constant relates to elucidation of transport mechanisms in living cells. Voltammetric data of valorphins are presented together with square-wave voltammograms of investigated peptides for calculation of their heterogeneous electron transfer rate constants. Datasets from the thermal shape fluctuation analysis of quasispherical 'giant' unilamellar vesicles (GUV) are provided to quantify the influence of hemorphin incorporation on the membrane bending elasticity. Isothermal titration calorimetric data on the thermodynamics of peptide-lipid interactions and the binding affinity of valorphin analogues to phosphatidylcholine membranes are reported. Data of frequency-dependent deformation of GUVs in alternating electric field are included together with the values of the specific electrical capacitance of POPC-valorphin membranes. The datasets reported in this article can underlie the formulation and implementation of peptide-based strategies in pharmacology and biomedicine.

3.
FEBS Open Bio ; 5: 515-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26155459

RESUMO

Antibiotic drug resistance is a serious issue for the treatment of bacterial infection. Understanding the resistance to antibiotics is a key issue for developing new drugs. We used penicillin and sulbactam as model antibiotics to study their interaction with model membranes. Cholesterol was used to target the membrane for comparison with the well-known insertion model. Lamellar X-ray diffraction (LXD) was used to determine membrane thickness using successive drug-to-lipid molar ratios. The aspiration method for a single giant unilamellar vesicle (GUV) was used to monitor the kinetic binding process of antibiotic-membrane interactions in an aqueous solution. Both penicillin and sulbactam are found positioned outside the model membrane, while cholesterol inserts perpendicularly into the hydrophobic region of the membrane in aqueous solution. This result provides structural insights for understanding the antibiotic-membrane interaction and the mechanism of antibiotics.

4.
Biochem Biophys Rep ; 3: 76-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29124169

RESUMO

We report a new and improved method to prepare, by gentle hydration of lipid films, oil-free giant unilamellar vesicles (GUVs), in which enzymatic reactions can be encapsulated. The traditional method of gentle hydration requires very low concentrations of metal ions, whereas enzymatic reactions generally require mono- and divalent metal ions at physiological concentrations. In order to improve the production of oil-free GUVs that can confine enzymatic reactions, we developed a novel method also based on gentle hydration, but in which the precursor lipid film was doped with both 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEGylated lipid) and sugar. Close examination of the size, shape, and lamellarity of vesicles prepared in this manner demonstrated that the process improves the production of oil-free GUVs even at low temperatures and physiological salt concentrations. PEGylated lipid and sugar were found to synergistically improve GUV formation. Finally, we demonstrate the successful enzymatic synthesis of RNA within oil-free GUVs that were prepared on ice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA