Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Leukoc Biol ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365278

RESUMO

Galectins constitute a family of soluble lectins with unique capacity to induce macroscale rearrangements upon interacting with cell membrane glycoconjugates. Galectin-8 (Gal-8) is acknowledged for its role in facilitating antigen uptake and processing upon engaging with cell surface glycoconjugates on antigen-presenting cells (APCs). Gal-8 consists of two covalently fused N- and C-terminal carbohydrate recognition domains (N- and C-CRD), each exhibiting distinct glycan specificity. In this study, we utilized single N- and C-CRD recombinant proteins to dissect the nature of Gal-8-glycan interactions during antigen internalization enhancement. Single C-CRD was able to replicate the effect of full-length Gal-8 (FLGal-8) on antigen internalization in BMDCs. Antigen uptake enhancement was diminished in the presence of lactose or when N-glycosylation-deficient macrophages served as APCs, underscoring the significance of glycan recognition. Measurement of the elastic modulus using Atomic Force Microscopy unveiled that FLGal-8- and C-CRD-stimulated macrophages exhibited heightened membrane stiffness compared to untreated cells, providing a plausible mechanism for their involvement in endocytosis. C-CRD proved to be as efficient as FLGal-8 in promoting antigen degradation, suggesting its implication in antigen-processing induction. Lastly, C-CRD was able to replicate FLGal-8-induced antigen presentation in the MHC-II context both in vitro and in vivo. Our findings support the notion that Gal-8 binds through its C-CRD to cell surface N-glycans, thereby altering membrane mechanical forces conducive to soluble antigen endocytosis, processing, and presentation to cognate CD4 T-cells. These findings contribute to a deeper comprehension of Gal-8 and its mechanisms of action, paving the way for the development of more efficacious immunotherapies.

2.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337581

RESUMO

Galectins are a class of lectins that are extensively expressed in all organisms. Galectins are involved in a range of functions, including early development, tissue regeneration, cancer and inflammation. It has been shown that galectin-8 is expressed in the villous and extravillous trophoblast (EVT) cells of the human placenta; however, its physiological role in pregnancy establishment has not been elucidated. Taking these factors into account, we investigated the functional role of galectin-8 in HTR-8/SVneo cells-a human EVT cell line-and human primary cytotrophoblast cells isolated from a first-trimester placenta. We analyzed the effects of recombinant human galectin-8 (rh galectin-8) on the adhesion, migration and invasion of HTR-8/SVneo cells. We used qPCR, cell-based ELISA (cELISA) and gelatin zymography to study the effects of galectin-8 on mediators of these processes, such as integrin subunits alpha-1 and beta-1 and matrix metalloproteinases (MMPs)-2 and -9, on the mRNA and protein levels. Further, we studied the effects of galectin-8 on primary cytotrophoblast cells' invasion. Galectin-8 stimulated the adhesion, migration and invasion of HTR-8/SVneo cells, as well as the invasion of primary cytotrophoblasts. In addition, the MMP-2 and -9 levels were increased, while the expression of integrins alpha-1 and beta-1 was not affected. Galectin-8 has the ability to positively affect EVTs' invasion, so it can be considered a significant factor in the trophoblast cell invasion process.


Assuntos
Adesão Celular , Movimento Celular , Galectinas , Metaloproteinase 2 da Matriz , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/citologia , Galectinas/metabolismo , Movimento Celular/efeitos dos fármacos , Gravidez , Feminino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Linhagem Celular , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Placenta/metabolismo , Placenta/citologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo
3.
Int J Biol Macromol ; 277(Pt 2): 134371, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094876

RESUMO

Galectin-8 is a small soluble lectin with two carbohydrate recognition domains (CRDs). N- and C-terminal CRDs of Gal-8 differ in their specificity for glycan ligands. Here, we wanted to find out whether oligomerization of individual CRDs of galectin-8 affects its biological activity. Using green fluorescent protein polygons (GFPp) as an oligomerization scaffold, we generated intrinsically fluorescent CRDs with altered valency. We show that oligomers of C-CRD are characterized by significant cell surface affinity. Furthermore, the multivalency of the resulting variants has an impact on cellular activities such as cell signaling, heparin binding and proliferation. Our data indicates that tunable valence is a useful tool for modifying the biological activity of CRDs of galectins.


Assuntos
Galectinas , Galectinas/metabolismo , Galectinas/química , Humanos , Ligantes , Ligação Proteica , Engenharia de Proteínas/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Multimerização Proteica , Proliferação de Células , Heparina/química , Heparina/metabolismo
4.
Fish Shellfish Immunol ; 153: 109849, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173981

RESUMO

Galectin-8 (Gal-8) is a versatile carbohydrate-binding protein with pivotal roles in immune regulation and cellular processes. This study introduces a novel galectin-8 protein, LcGal-8, from the large yellow croaker (Larimichthys crocea), showcasing typical characteristics of tandem-repeat-type galectins, including the absence of a signal peptide or transmembrane region and the presence of conserved sugar-binding motifs. Phylogenetic analysis reveals its conservation among fish species. Expression profiling indicates widespread distribution in immune tissues, particularly the spleen, implicating involvement in immune processes. The subcellular localization analysis reveals that LcGal-8 is present in both the cytoplasm and nucleus. Upon bacterial challenge, LcGal-8 is up-regulated in immune tissues, suggesting a role in host defense. Functional assays demonstrate that LcGal-8 can agglutinate gram-negative bacteria. The recombinant LcGal-8 protein agglutinates red blood cells from the large yellow croaker independently of Ca2⁺, however, this activity is inhibited by lipopolysaccharide (LPS) at 2.5 µg/mL. Fluorescence detection kits and scanning electron microscopy (SEM) confirm the agglutination and bactericidal effects of LcGal-8 against various gram-negative bacteria, including Vibrio harveyi, Aeromondaceae hydrophila, Aeromondaceae veronii, Pseudomonas plecoglossicida, Edwardsiella tarda. These findings contribute valuable insights into the genetic basis of disease resistance in the large yellow croaker and could support molecular breeding strategies to enhance disease resistance.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Galectinas , Imunidade Inata , Perciformes , Animais , Sequência de Aminoácidos , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Galectinas/genética , Galectinas/imunologia , Galectinas/química , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Perciformes/imunologia , Perciformes/genética , Filogenia , Alinhamento de Sequência/veterinária
5.
Front Immunol ; 15: 1395714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840921

RESUMO

Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of ß-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.


Assuntos
Adesão Celular , Endotélio Vascular , Galectinas , Humanos , Galectinas/metabolismo , Animais , Endotélio Vascular/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/imunologia , Células Neoplásicas Circulantes/patologia , Células Endoteliais/metabolismo , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/metabolismo
6.
Biomed Pharmacother ; 177: 116923, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936192

RESUMO

Acute kidney injury (AKI), characterized by a sudden decline in kidney function involving tubular damage and epithelial cell death, can lead to progressive tissue fibrosis and chronic kidney disease due to interstitial fibroblast activation and tissue repair failures that lack direct treatments. After an AKI episode, surviving renal tubular cells undergo cycles of dedifferentiation, proliferation and redifferentiation while fibroblast activity increases and then declines to avoid an exaggerated extracellular matrix deposition. Appropriate tissue recovery versus pathogenic fibrotic progression depends on fine-tuning all these processes. Identifying endogenous factors able to affect any of them may offer new therapeutic opportunities to improve AKI outcomes. Galectin-8 (Gal-8) is an endogenous carbohydrate-binding protein that is secreted through an unconventional mechanism, binds to glycosylated proteins at the cell surface and modifies various cellular activities, including cell proliferation and survival against stress conditions. Here, using a mouse model of AKI induced by folic acid, we show that pre-treatment with Gal-8 protects against cell death, promotes epithelial cell redifferentiation and improves renal function. In addition, Gal-8 decreases fibroblast activation, resulting in less expression of fibrotic genes. Gal-8 added after AKI induction is also effective in maintaining renal function against damage, improving epithelial cell survival. The ability to protect kidneys from injury during both pre- and post-treatments, coupled with its anti-fibrotic effect, highlights Gal-8 as an endogenous factor to be considered in therapeutic strategies aimed at improving renal function and mitigating chronic pathogenic progression.


Assuntos
Injúria Renal Aguda , Fibrose , Ácido Fólico , Galectinas , Animais , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Ácido Fólico/farmacologia , Galectinas/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BL
7.
Dev Comp Immunol ; 157: 105182, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636700

RESUMO

Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to ß-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 µg/mL or 100 µg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H2O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet.


Assuntos
Antioxidantes , Proteínas de Peixes , Galectinas , Smegmamorpha , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Smegmamorpha/imunologia , Smegmamorpha/genética , Galectinas/metabolismo , Galectinas/genética , Antioxidantes/metabolismo , Doenças dos Peixes/imunologia , Citocinas/metabolismo , Imunidade Inata , Poli I-C/imunologia , Lactococcus/fisiologia , Lipopolissacarídeos/imunologia , Quimiocinas/metabolismo , Quimiocinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Novirhabdovirus/fisiologia , Novirhabdovirus/imunologia , Antivirais/metabolismo
8.
Med Res Rev ; 44(5): 2236-2265, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38613488

RESUMO

Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind ß-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.


Assuntos
Galectinas , Neoplasias , Galectinas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/imunologia , Animais , Imunidade , Imunidade Inata
9.
J Ginseng Res ; 48(2): 202-210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465210

RESUMO

Background: Panax ginseng Meyer polysaccharides exhibit various biological functions, like antagonizing galectin-3-mediated cell adhesion and migration. Galectin-8 (Gal-8), with its linker-joined N- and C-terminal carbohydrate recognition domains (CRDs), is also crucial to these biological processes, and thus plays a role in various pathological disorders. Yet the effect of ginseng-derived polysaccharides in modulating Gal-8 function has remained unclear. Methods: P. ginseng-derived pectin was chromatographically isolated and enzymatically digested to obtain a series of polysaccharides. Biolayer Interferometry (BLI) quantified their binding affinity to Gal-8, and their inhibitory effects on Gal-8 was assessed by hemagglutination, cell migration and T-cell apoptosis. Results: Our ginseng-derived pectin polysaccharides consist mostly of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG). BLI shows that Gal-8 binding rests primarily in RG-I and its ß-1,4-galactan side chains, with sub-micromolar KD values. Both N- and C-terminal Gal-8 CRDs bind RG-I, with binding correlated with Gal-8-mediated function. Conclusion: P. ginseng RG-I pectin ß-1,4-galactan side chains are crucial to binding Gal-8 and antagonizing its function. This study enhances our understanding of galectin-sugar interactions, information that may be used in the development of pharmaceutical agents targeting Gal-8.

10.
Biomedicines ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397905

RESUMO

Ovarian cancer (OC) still registers a high prevalence in female gynecological pathology. Given the aggressiveness of the tumor and the lack of response to conventional therapies, a current research interest is the identification of new prognostic markers. Gal-8, a member of the galectin family of molecules, involved in tumorigenesis, disease progression, and metastasis, has been assigned as a valuable tumor prognostic factor, and its inhibition may open new perspectives in cancer therapeutic management. Few studies have been carried out so far to evaluate OCs' galectin profiles. Our study aimed to characterize the Gal-8 profile in different types of ovarian neoplasia and to demonstrate its prognostic value. Our study group comprised 46 cases of OCs that were histologically and immunohistochemically investigated, introduced to Gal-8 immunoreactivity, qualitatively and semi-quantitatively evaluated, and correlated with clinicopathological characteristics. Gal-8 immunoexpression was identified in tumor epithelial cells, showing a dominant nuclear labeling, followed by cytoplasmic and mixed, nuclear, and cytoplasmic labeling. Significant differences between tumor histotypes were found in the statistical analysis between low and high Gal-8 immunoscore levels and clinicopathological features: HGSC (eng.= high-grade serous carcinoma) vs. LGSC (eng. = low-grade serous carcinoma), pathogenic types (type I vs. type II), and tumor grades. Our results reflect Gal-8 expression variability depending on the histological type and subtype, the progression stages, and the degree of differentiation of ovarian tumors, supporting its value as a prognostic factor. Our findings open perspectives for larger studies to validate our results, along with a potential Gal-8 transformation into a future therapeutic target.

11.
Cell Rep Med ; 5(1): 101374, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232701

RESUMO

LILRB4 is an immunosuppressive receptor, and its targeting drugs are undergoing multiple preclinical and clinical trials. Currently, the absence of a functional LILRB4 ligand in solid tumors not only limits the strategy of early antibody screening but also leads to the lack of companion diagnostic (CDx) criteria, which is critical to the objective response rate in early-stage clinical trials. Here, we show that galectin-8 (Gal-8) is a high-affinity functional ligand of LILRB4, and its ligation induces M-MDSC by activating STAT3 and inhibiting NF-κB. Significantly, Gal-8, but not APOE, can induce MDSC, and both ligands bind LILRB4 noncompetitively. Gal-8 expression promotes in vivo tumor growth in mice, and the knockout of LILRB4 attenuates tumor growth in this context. Antibodies capable of functionally blocking Gal-8 are able to suppress tumor growth in vivo. These results identify Gal-8 as an MDSC-driving ligand of LILRB4, and they redefine a class of antibodies for solid tumors.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Ligantes , Neoplasias/terapia , NF-kappa B
12.
Neuro Oncol ; 26(5): 872-888, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158714

RESUMO

BACKGROUND: Glioma stem cells (GSCs) are the root cause of relapse and treatment resistance in glioblastoma (GBM). In GSCs, hypoxia in the microenvironment is known to facilitate the maintenance of stem cells, and evolutionally conserved autophagy regulates cell homeostasis to control cell population. The precise involvement of autophagy regulation in hypoxic conditions in maintaining the stemness of GSCs remains unclear. METHODS: The association of autophagy regulation and hypoxia was first assessed by in silico analysis and validation in vitro. Glioma databases and clinical specimens were used to determine galectin-8 (Gal-8) expression in GSCs and human GBMs, and the regulation and function of Gal-8 in stemness maintenance were evaluated by genetic manipulation in vitro and in vivo. How autophagy was stimulated by Gal-8 under hypoxia was systematically investigated. RESULTS: Hypoxia enhances autophagy in GSCs to facilitate self-renewal, and Gal-8 in the galectin family is specifically involved and expressed in GSCs within the hypoxic niche. Gal-8 is highly expressed in GBM and predicts poor survival in patients. Suppression of Gal-8 prevents tumor growth and prolongs survival in mouse models of GBM. Gal-8 binds to the Ragulator-Rag complex at the lysosome membrane and inactivates mTORC1, leading to the nuclear translocation of downstream TFEB and initiation of autophagic lysosomal biogenesis. Consequently, the survival and proliferative activity of GSCs are maintained. CONCLUSIONS: Our findings reveal a novel Gal-8-mTOR-TFEB axis induced by hypoxia in the maintenance of GSC stemness via autophagy reinforcement, highlighting Gal-8 as a candidate for GSCs-targeted GBM therapy.


Assuntos
Autofagia , Neoplasias Encefálicas , Galectinas , Glioma , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Galectinas/metabolismo , Animais , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Glioma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Células Tumorais Cultivadas , Proliferação de Células , Camundongos Nus , Microambiente Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Prognóstico , Hipóxia/metabolismo
13.
FASEB J ; 37(12): e23300, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997673

RESUMO

Primary cilium is a specialized sensory organelle that transmits environmental information into cells. Its length is tightly controlled by various mechanisms such as the frequency or the cargo size of the intraflagellar transport trains which deliver the building materials such as tubulin subunits essential for the growing cilia. Here, we show the sialoglycan interacting galectin 8 regulates the process of primary ciliogenesis. As the epithelia become polarized, there are more galectin 8 being apically secreted and these extracellular galectin 8 molecules apparently bind to a lipid raft enriched domain at the base of the primary cilia through interacting with lipid raft components, such as GD3 ganglioside and scaffold protein caveolin 1. Furthermore, the binding of galectin 8 at this critical region triggers rapid growth of primary cilia by perturbing the barrier function of the transition zone (TZ). Our study also demonstrates the functionality of this barrier depends on intact organization of lipid rafts at the cilia as genetically knockout of Cav1 and pharmacologically inhibition of lipid raft both phenocopy the effect of apical addition of recombinant galectin 8; that is, rapid elongation of primary cilia and redistribution of cilia proteins from TZ to the growing axoneme. Indeed, as cilia elongated, endogenous galectin 8, caveolin 1, and TZ component, TMEM231, also transited from the TZ to the growing axoneme. We also noted that the interaction between caveolin 1 and TMEM231 could be perturbed by exogenous galectin 8. Taken together, we proposed that galectin 8 promoted primary cilia elongation through impeding the barrier function of the TZ by interfering with the interaction between caveolin 1 and TMEM231.


Assuntos
Caveolina 1 , Cílios , Caveolina 1/metabolismo , Cílios/metabolismo , Transporte Biológico , Tubulina (Proteína)/metabolismo , Microdomínios da Membrana/metabolismo
14.
Diagnostics (Basel) ; 13(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37892036

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents the most frequent pancreatic malignancy, with stromal and epithelial heterogeneity reflected in outcome variability. Therefore, a molecular classification is promoted based on the validation of new diagnostic and prognostic markers. Galectin-8 (Gal8) has been pointed out as a prognostic factor for survival in several types of tumors. Due to limited existing data on PDAC, our study aimed to evaluate the Gal8 profile in PDAC alongside its prognostic status. A total of 87 cases of PDAC were immunohistochemically investigated, and Gal8 immunoexpression was qualitatively and semi-quantitatively assessed and correlated with classical clinicopathological parameters and survival. Gal8 immunoexpression was identified to be mostly nuclear and cytoplasmic, followed by exclusively cytoplasmic and exclusively nuclear. A statistical analysis between Gal8 profiles defined by negative, low, or high scores and clinicopathological characteristics showed significant differences in tumor size, pN stage, and lympho-vascular invasion. Although a Cox regression analysis did not support the prognostic status of Gal8, and we did not confirm its relationship with OS, our results show that exclusively nuclear labeling was associated with an increased mean OS compared with cytoplasmic and nuclear labeling (29.37 vs. 17.93 months). To the best of our knowledge, this is the first study to report a detailed pattern of Gal8 immunostaining in PDAC and to correlate this pattern with clinicopathological characteristics and survival. Our results show that Gal8 immunoexpression is associated with a more aggressive phenotype, thus opening perspectives for larger studies to validate Gal8 as a prognostic factor.

15.
Front Immunol ; 14: 1147356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457740

RESUMO

Galectins are a family of carbohydrate-binding proteins found in vertebrates in great abundance and diversity in terms of both structure and ligand-binding properties as well as physiological function. Proteins with clear relationships to vertebrate galectins are already found in primitive Bilateria. The increasing amount of accessible well-annotated bilaterian genomes has allowed us to reveal, through synteny analyses, a new hypothesis about the phylogenetic history of the galectin family in this animal group. Thus, we can trace the genomic localization of the putative ancestral Bilateria galectin back to the scallops as a still very primitive slow-evolving bilaterian lineage. Intriguingly, our analyses show that the primordial galectin of the Deuterostomata most likely exhibited galectin-8-like characteristics. This basal standing galectin is characterized by a tandem-repeat type with two carbohydrate recognition domains as well as by a sialic acid binding property of the N-terminal domain, which is typical for galectin-8. With the help of synteny, the amplification of this potential primordial galectin to the broad galectin cosmos of modern jawed vertebrates can be reconstructed. Therefore, it is possible to distinguish between the paralogs resulting from small-scale duplication and the ohnologues generated by whole-genome duplication. Our findings support a substantially new hypothesis about the origin of the various members of the galectin family in vertebrates. This allows us to reveal new theories on the kinship relationships of the galectins of Gnatostomata. In addition, we focus for the first time on the galectines of the Cyclostomata, which as a sister group of jawed vertebrates providing important insights into the evolutionary history of the entire subphylum. Our studies also highlight a previously neglected member of the galectin family, galectin-related protein 2. This protein appears to be a widespread ohnologue of the original tandem-repeat ancestor within Gnathostomata that has not been the focus of galectin research due to its nonclassical galactose binding sequence motif and the fact that it was lost during mammalian evolution.


Assuntos
Galectinas , Vertebrados , Animais , Filogenia , Galectinas/metabolismo , Vertebrados/genética , Comunicação Celular , Carboidratos , Mamíferos/metabolismo
16.
Am J Cancer Res ; 13(6): 2517-2529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424827

RESUMO

Galectin-8 (Gal-8), encoded by LGALS8 gene, is a unique member of the Galectin family with diverse biological functions, including tumor-modulating capabilities. Recently, evidence has accumulated supporting an essential role for Gal-8 in regulating innate and adaptive immunity, with high expression in tumors and other immune dysregulation diseases. This study reveals the role of Gal-8-induced tumor immunosuppression by analyzing animal models and clinical data of tumor-infiltrating cells. In Gal-8 expressing tumor, we found that suppressive immune cells, including Tregs and MDSCs, expanded while CD8+ cells decreased, providing direct evidence that Gal-8 regulates the tumor immune microenvironment. In addition, we not only analyzed the expression of Gal-8 in clinical samples of breast and colorectal cancer but also classified the tissue expression patterns. Further analysis revealed that Gal-8 correlates with lymph node metastasis and immunophenotyping. Consistent with animal experiments, our analysis of LGALS8 gene expression showed its negative association with infiltrated active CD8+ T cells and immune stimulatory modulators in cancers. Our study identified the potential prognostic and therapeutic value of Gal-8, and further research on developing corresponding targeted therapeutic strategies is awaited.

17.
Int J Biol Macromol ; 245: 125456, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331541

RESUMO

Numerous articles have reported the involvement of linker in regulating bioactivity of tandem-repeat galectins. We hypothesize that linker interacts with N/C-CRDs to regulate the bioactivity of tandem-repeat galectins. To further investigate structural molecular mechanism of linker in regulating bioactivity of Gal-8, Gal-8LC was crystallized. Gal-8LC structure revealed formation of ß-strand S1 by Asn174 to Pro176 from linker. S1-strand interacts with C-terminal of C-CRD via hydrogen bond interactions, mutually influencing their spatial structures. Our Gal-8 NL structure have demonstrated that linker region from Ser154 to Gln158 interacts with the N-terminal of Gal-8. Ser154 to Gln158 and Asn174 to Pro176 are likely involved in regulation of Gal-8's biological activity. Our preliminary experiment results revealed different hemagglutination and pro-apoptotic activities between full-length and truncated forms of Gal-8, indicating involvement of linker in regulating these activities. We generated several mutant and truncated forms of Gal-8 (Gal-8 M3, Gal-8 M5, Gal-8TL1, Gal-8TL2, Gal-8LC-M3 and Gal-8_177-317). Ser154 to Gln158 and Asn174 to Pro176 were found to be involved in regulating hemagglutination and pro-apoptotic activities of Gal-8. Ser154 to Gln158 and Asn174 to Pro176 are critical functional regulatory regions within linker. Our study holds significant importance in providing a profound understanding of how linker regulates biological activity of Gal-8.


Assuntos
Galectinas , Hemaglutinação , Humanos , Galectinas/química
18.
Osteoarthritis Cartilage ; 31(6): 753-765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36702375

RESUMO

OBJECTIVE: The lymphatic system plays a crucial role in the maintenance of tissue fluid homeostasis and the immunological response to inflammation. Galectin-8 (Gal-8) regulates pathological lymphangiogenesis but the effects of which on inflammation-related condylar bone loss in temporomandibular joint (TMJ) have not been well studied. DESIGN: We used TNFα-transgenic (TNFTG) mice and their wildtype (WT) littermates to compare their inflammatory phenotype in TMJs. Next, lymphatic endothelial cells (LECs) were used to examine the effects of which on osteoclast formation, pro-inflammatory factor expression, and inflammatory lymphangiogenesis with or without thiodigalactoside (TDG, a Gal-8 inhibitor) treatment. At last, two murine models (TNFTG arthritic model and forced mouth opening model) were used to explore TDG as a potential drug for the treatment of inflammation-related condylar bone loss. RESULTS: In comparison to WT mice, lymphatic areas of lymphatic vessel endothelial receptor 1 (LYVE1)+/podoplanin (PDPN)+ and Gal-8+/PDPN+, TRAP-positive osteoclast number, and condylar bone loss are increased in TNFTG mice. Inhibition of Gal-8 in LECs by TDG, reduces TNFα-induced osteoclast formation, pro-inflammatory factor expression, and inflammatory lymphangiogenesis. In addition, Gal-8 promotes TNFα-activated AKT/ERK/NF-κB pathways by binding to PDPN. Finally, the administration of TDG attenuates inflammatory lymphangiogenesis, inhibits osteoclast activity, and reduces condylar bone loss in TNFTG arthritic mice and forced mouth opening mice. CONCLUSIONS: Our findings reveal the important role of Gal-8-promoted pathological lymphangiogenesis in inflammation-related condylar bone loss.


Assuntos
Linfangiogênese , Fator de Necrose Tumoral alfa , Camundongos , Animais , Linfangiogênese/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Galectinas/metabolismo , Galectinas/farmacologia
19.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232695

RESUMO

Bone Marrow Stromal Cell Antigen 2 (BST2) is a type II transmembrane protein expressed on various cell types that tethers the release of viruses. Natural killer (NK) cells express low levels of BST2 under normal conditions but exhibit increased expression of BST2 upon activation. In this study, we show for the first time that murine BST2 can control the cytotoxicity of NK cells. The cytoplasmic tail of murine BST2 contains an immunoreceptor tyrosine-based inhibitory motif (ITIM). The absence of BST2 on NK cells can enhance their cytotoxicity against tumor cells compared to wild type NK cells. NK cells isolated from NZW mice, which express ITIM-deficient BST2, also showed higher cytotoxicity than wild type NK cells. In addition, we found that galectin-8 and galectin-9 were ligands of BST2, since blocking galectin-8 or -9 with monoclonal antibodies enhanced the cytotoxicity of NK cells. These results suggested that BST2 might be a novel NK cell inhibitory receptor as it was involved in regulating NK cell cytotoxicity through its interaction with galectins.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Citotoxicidade Imunológica , Células Matadoras Naturais , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/imunologia , Proteínas de Transporte/imunologia , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Galectinas/imunologia , Células Matadoras Naturais/imunologia , Ligantes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Tirosina/metabolismo
20.
Carbohydr Polym ; 292: 119677, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725172

RESUMO

Polysaccharides from fungi have many bioactivities. Previous studies showed that galactomannans from Penicillium oxalicum antagonize galectin-8-mediated activity. Here, two intracellular and two extracellular galactomannans were purified and their structures were comparatively characterized by NMR, partial acid hydrolysis and methylation. All four of them were identified to be galactomannans with similar mannan backbones having 1,2-/1,6-linkages (~3:1) and various amounts of galactofuranan side chains. The interaction of those polysaccharides with galectin-8 was assessed by hemagglutination and biolayer interferometry. These results show that side chains are important for the interaction, and the more the side chains, the stronger the interaction. But the side chains alone did not show act on galectin-8, which indicated that the cooperation between backbone and side chains is another necessary factor for this interaction. Our findings provide important information about structure-activity relationships and the galactofuranose-containing galactomannans might be as potential therapeutic of galectin-8 related diseases.


Assuntos
Mananas , Penicillium , Galactose/análogos & derivados , Galectinas , Mananas/química , Mananas/farmacologia , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA