Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
1.
Prev Nutr Food Sci ; 29(3): 354-364, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39371519

RESUMO

Exogenous proline can improve the growth, aroma intensities, and bioactive compounds of rice. This study evaluated the effects of gamma irradiation under proline conditions on the 2-acetyl-1-pyrroline (2AP), phenolic, and flavonoid contents of rice. Moreover, the bioactive compounds of gamma-irradiated rice under proline conditions that inhibited α-glucosidase and α-amylase were evaluated by in silico study. A low gamma dose (40 Gy) induced the highest rice growth under 5 mM proline concentration. The highest 2AP content was stimulated at a gamma dose of 5-100 Gy under 10 mM proline concentration. At 500 and 1,000 Gy gamma dose, the highest flavonoid and phenolic contents of rice were stimulated. 1-(2-Hydroxy-5-methylphenyl)-ethanone, which had the highest binding affinity (-7.9 kcal/mol) against α-glucosidase, was obtained at 500 and 1,000 Gy gamma dose under 5 and 10 mM proline concentrations. Meanwhile, 6-amino-1,3,5-triazine-2,4(1H,3H)-dione, which had the highest binding affinity (-6.3 kcal/mol) against α-amylase, was obtained under 10 mM proline concentration in non-gamma-irradiated rice. The results indicate that using a combination of gamma irradiation and exogenous proline is suitable for producing new rice varieties. Moreover, the bioactive compounds that were obtained in new rice varieties exhibited health benefits, especially for diabetes mellitus treatment (inhibition of α-glucosidase and α-amylase).

2.
Bot Stud ; 65(1): 30, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377879

RESUMO

BACKGROUND: Cucumber (Cucumis sativus L.) is a model crop to study cell biology, including the development of haploids and doubled haploids in vegetable crops. In plant breeding, haploid and doubled haploids are valuable tools for developing pure homozygous inbred lines and accelerating genetic progress by reducing the time required for breeding cycles. Besides, the haploids are also valuable in genomic studies. We are reporting the induction of haploids in cucumber involving gynoecious and parthenocarpic genotypes for the first time. This study aimed to assess the efficient induction of haploids through pollination with gamma-irradiated pollen in cucumber. The effect of gamma irradiation dose on pollen viability and germination, fruit setting percentage, seed development, and haploid embryo development in cucumber hybrid genotypes were studied in detail. The goal was to utilize this information to produce haploid plants for genomics and transformation works in this model vegetable crop. RESULTS: Pollination was done on six cucumber genotypes using varying doses of gamma rays (100, 200, 300, 400, and 500 Gy). Genotypes, doses of irradiation, and embryo developmental stage influenced the successful generation of in-vitro haploid plants. The optimal timeframe for embryo rescue was found to be 25 to 30 days after pollination. Haploid embryos were effectively induced using irradiated pollen at 400 to 500 Gy doses. Parthenogenetic plantlets were analyzed, and their ploidy level was confirmed through stomatal physiology, cytology (mitosis), and flow cytometry methods. CONCLUSION: Through parthenogenic embryo development, it is possible to induce a large number of haploids in cucumber. This technique's power lies in its ability to streamline the breeding process, enhance genetic gain, and produce superior cultivars that contribute to sustainable agriculture and food security.

3.
Sci Rep ; 14(1): 20523, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227447

RESUMO

A recent scientific investigation has shown promising results of selenium nanoparticles (SeNPs) for the anticancer and antimicrobial activities. This study aims to evaluate the effects of PVP SeNPs on bacterial strains, including Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). Also, its antitumor activity against the MRC-5 carcinoma cell line. SeNPs were prepared via gamma irradiation using PVP as a capping agent, and their size and morphological structure were determined using HRTEM. The size of the SeNPs ranged from 36 to 66.59 nm. UV-vis spectra confirmed the formation of SeNPs, while FTIR measurement confirmed a change in the PVP structure after adding selenium nanoparticles. The highest effect was reported on HepG2 by an IC50 with a value of 8.87 µg/ml, followed by HeLa, PC3, MCF-7, and Caco2 cell lines, respectively. Furthermore, ZOI reached 36.33 ± 3.05 mm. The best value of the minimum inhibitory concentration (MIC) was 0.313 µg/ml. Scanning electron microscope (SEM) imaging against bacteria showed deformations and distortions in their structures. Transmission electron (TEM) revealed ultrastructure changes in treated bacteria because of the free radicals that made cytotoxicity which confirmed by Electron spin resonance (ESR).


Assuntos
Antibacterianos , Raios gama , Testes de Sensibilidade Microbiana , Selênio , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Selênio/química , Selênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Bactérias/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Nanopartículas/química , Pseudomonas aeruginosa/efeitos dos fármacos
4.
Curr Issues Mol Biol ; 46(9): 10606-10617, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39329980

RESUMO

Citrus unshiu Marc. cv. Miyagawa-wase is one of the most widely cultivated citrus varieties on Jeju Island in Republic of Korea. Mutation breeding is a useful tool for inducing genetic diversity by causing genomic mutations in a short period of time. We previously conducted mutation breeding using gamma irradiation to develop new varieties of C. unshiu. Here, we describe one of these varieties, Yein-early, which has a redder peel, greater hardness, and higher sugar content compared with the wild type (WT). Yein-early leaves also showed a unique phenotype compared with the WT, characterized by longer longitudinal length, shorter transverse length, stronger curling, and longer petiole length. Genome resequencing of Yein-early and the WT uncovered significant single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). These variations were crucial in identifying molecular markers unique to Yein-early. In addition, we developed an allele-specific PCR marker specifically targeting a homozygous SNP in Yein-early that distinguishes it from the WT and other citrus varieties. This study contributes to the understanding of pigment synthesis in fruits and provides a valuable tool for selection of the novel Yein-early variety in citrus breeding programs.

5.
Food Chem ; 463(Pt 3): 141401, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39326314

RESUMO

This study comparatively studied the effects of three thermal pretreatment methods, i.e., wet-heat (WT), roasting (RT) and microwave (MT), on the quality attributes and irradiation markers of sesame oil obtained from sesame seeds without and with gamma irradiation. Results showed that gamma irradiation had negligible effect on the quality of sesame seeds and their extracted oils. The effects of thermal pretreatments on irradiated and non-irradiated sesame seeds and their oils were similar, little synergistic effects were observed. The RT-treated oils had more carotenoids, chlorophyll, total phenols, tocopherols, and heterocyclic volatiles content, as well as longer oxidation induction time, but darker color compared with their WT- and MT-treated counterparts. All oil samples had identical FTIR spectra. Eight radiolytic hydrocarbons were identified in the irradiated sesame oils. Thermal pretreatments reduced the content of radiolytic hydrocarbons, but did not significantly change their composition. Our study helps to identify products from irradiated sesame seeds.

6.
Sci Rep ; 14(1): 22025, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322750

RESUMO

Non-conventional heavy metal oxide glasses have attracted great interest owing to their unique optical properties and their radiation shielding behavior. Non-conventional glasses of main chemical composition (100 - x) PbO-xBi2O3 where x = 35, 30, 25, 20, 15, 10, and 5 were prepared through the conventional melting and annealing approach. X-ray diffraction measurements denoted the amorphous nature of the prepared glasses. The optical absorption in the UV-visible range recorded strong UV-near visible absorption spectra that correlated to trivalent Bi3+ ions. The optical band gap Eopt, Urbach energy ∆E, and the refractive index were identified for the prepared glasses employing the cognizant theories. The variations in the optical parameters have been associated with the increasing Bi2O3 and the doses of γ- irradiation. The photoluminescent properties of the prepared non-conventional binary Bi2O3-PbO glasses were recorded in the visible range after UV excitation and the color coordinates are located and distributed in the hue violet degree. FT-IR spectroscopic measurements before and after gamma irradiation were applied to investigate the structural changes in the binary heavy metal PbO-Bi2O3 glasses. FTIR data specified that the glass network is composed of different structural building units from BiO3/BiO6 and PbO3/PbO4 depending on the addition ratio between PbO and Bi2O3.

7.
Plants (Basel) ; 13(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39204742

RESUMO

In this study, we investigated the effects of gamma irradiation on the antioxidant activity and metabolite profiles of Euphorbia maculata calli (PC3012). Gamma irradiation at various doses (0, 0.05, 0.5, and 10 kGy) significantly enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS+) radical scavenging activities of the callus extracts of PC3012 in a dose-dependent manner. High-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) analyses revealed that irradiation increased the lysophospholipid content, although no new antioxidant compounds were formed. Furthermore, a PLS-DA analysis revealed evident metabolic differences between non-irradiated and irradiated samples, which were further verified by statistical validation. These findings suggest that gamma irradiation induces specific biochemical modifications that enhance the bioactive properties of PC3012 calli. This technology exhibits potential for utilization in the natural product and food sectors, particularly in the development of functional foods and nutraceuticals with improved health benefits.

8.
Nanomaterials (Basel) ; 14(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39195363

RESUMO

The impact of radiation on MoS2-based devices is an important factor in the utilization of two-dimensional semiconductor-based technology in radiation-sensitive environments. In this study, the effects of gamma irradiation on the electrical variations in MoS2 field-effect transistors with buried local back-gate structures were investigated, and their related effects on Al2O3 gate dielectrics and MoS2/Al2O3 interfaces were also analyzed. The transfer and output characteristics were analyzed before and after irradiation. The current levels decreased by 15.7% under an exposure of 3 kGy. Additionally, positive shifts in the threshold voltages of 0.50, 0.99, and 1.15 V were observed under irradiations of 1, 2, and 3 kGy, respectively, compared to the non-irradiated devices. This behavior is attributable to the comprehensive effects of hole accumulation in the Al2O3 dielectric interface near the MoS2 side and the formation of electron trapping sites at the interface, which increased the electron tunneling at the MoS2 channel/dielectric interface.

9.
Cell Biochem Funct ; 42(5): e4092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978266

RESUMO

Throughout radiotherapy, radiation of the hepatic tissue leads to damage of the hepatocytes. We designed the current study to examine how cerium oxide nanoparticles (CONPs) modulate gamma irradiation-induced hepatotoxicity in rats. Animals received CONPs (15 mg/kg body weight [BW], ip) single daily dose for 14 days, and they were exposed on the seventh day to a single dose of gamma radiation (6 Gy). Results showed that irradiation increased serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities. Furthermore, it elevated oxidative stress biomarker; malondialdehyde (MDA) and inhibited the activities of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in hepatic tissues homogenate. Additionally, hepatic apoptotic markers; caspase-3 (Casp-3) and Casp-9 were elevated and the B-cell lymphoma-2 (Bcl-2) gene level was decreased in rats exposed to radiation dose. We observed that CONPs can modulate these changes, where CONPs reduced liver enzyme activities, MDA, and apoptotic markers levels, in addition, it elevated antioxidant enzyme activities and Bcl-2 gene levels, as well as improved histopathological changes in the irradiated animals. So our results concluded that CONPs had the ability to act as radioprotector defense against hepatotoxicity resulted during radiotherapy.


Assuntos
Antioxidantes , Apoptose , Cério , Raios gama , Fígado , Nanopartículas , Cério/farmacologia , Cério/química , Animais , Raios gama/efeitos adversos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos , Masculino , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Fígado/metabolismo , Fígado/patologia , Nanopartículas/química , Ratos Wistar , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Alanina Transaminase/metabolismo , Alanina Transaminase/sangue , Malondialdeído/metabolismo , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/sangue , Superóxido Dismutase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
10.
mSphere ; 9(7): e0047624, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38980074

RESUMO

Sterilization is commonly used to remove or reduce the biotic constraints of a soil to allow recolonization by soil-dwelling organisms, with autoclaving and gamma irradiation being the most frequently used approaches. Many studies have characterized sterilization impacts on soil physicochemical properties, with gamma irradiation often described as the preferred approach, despite the lower cost and higher scalability of autoclaving. However, few studies have compared how sterilization techniques impact soil recolonization by microorganisms. Here, we compared how two sterilization approaches (autoclaving; gamma irradiation) and soil washing impacted microbial recolonization of soil from a diverse soil inoculum. Sterilization method had little impact on microbial alpha diversity across recolonized soils. For sterile soil regrowth microcosms, species richness and diversity were significantly reduced by autoclaving relative to gamma irradiation, particularly for fungi. There was no impact of sterilization method on bacterial composition in recolonized soils and minimal impact on fungal composition (P = 0.05). Washing soils had a greater impact on microbial composition than sterilization method, and sterile soil regrowth had negligible impacts on microbial recolonization. These data suggest that sterilization method has no clear impact on microbial recolonization, at least across the soils tested, indicating that soil autoclaving is an appropriate and economical approach for biotically clearing soils.IMPORTANCESterilized soils represent soil-like environments that act as a medium to study microbial colonization dynamics in more "natural" settings relative to artificial culturing environments. Soil sterilization is often carried out by gamma irradiation or autoclaving, which both alter soil properties, but gamma irradiation is thought to be the gentler technique. Gamma irradiation can be cost prohibitive and does not scale well for larger experiments. We sought to examine how soil sterilization technique can impact microbial colonization, and additionally looked at the impact of soil washing which is believed to remove soil toxins that inhibit soil recolonization. We found that both gamma-irradiated and autoclaved soils showed similar colonization patterns when reintroducing microorganisms. Soil washing, relative to sterilization technique, had a greater impact on which microorganisms were able to recolonize the soil. When allowing sterilized soils to regrow (i.e., persisting microorganisms), gamma irradiation performed worse, suggesting that gamma irradiation does not biotically clear soils as well as autoclaving. These data suggest that both sterilization techniques are comparable, and that autoclaving may be more effective at biotically clearing soil.


Assuntos
Bactérias , Fungos , Raios gama , Microbiologia do Solo , Solo , Esterilização , Esterilização/métodos , Bactérias/efeitos da radiação , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Solo/química , Fungos/efeitos da radiação , Fungos/crescimento & desenvolvimento , Microbiota/efeitos da radiação , Temperatura Alta , Biodiversidade
11.
Materials (Basel) ; 17(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998316

RESUMO

This study introduces a gamma pretreatment of water hyacinth powder for activated carbon (AC) production with improved electrochemical properties for supercapacitor applications. The structural and morphological changes of post-irradiation were meticulously analyzed using scanning electron microscopy (SEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) analysis, and X-ray photoelectron spectroscopy (XPS). The pretreatment significantly modifies the pore structure and reduces the particle size of the resulting activated carbon (WHAC). Nitrogen adsorption-desorption isotherms indicated a substantial increase in micropore volume with escalating doses of gamma irradiation. Electrochemically, the activated carbon produced from pretreated WH at 100 kGy exhibited a marked increase in specific capacitance, reaching 257.82 F g-1, a notable improvement over the 95.35 F g-1 of its untreated counterpart, while maintaining 99.40% capacitance after 7000 cycles. These findings suggest that gamma-pretreated biomasses are promising precursors for fabricating high-performance supercapacitor electrodes, offering a viable and environmentally friendly alternative for energy storage technology development.

12.
Vet World ; 17(5): 1084-1097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38911085

RESUMO

Background and Aim: Irradiation is one of the most effective microbial decontamination treatments for eliminating foodborne pathogens and enhancing chicken meat safety. The effect of gamma irradiation on the overall quality of chicken meat and its products must be observed to provide a comprehensive explanation to the public. This meta-analysis examined the effects of gamma irradiation on the oxidation parameters, microbial activity, physicochemical characteristics, sensory parameters, and nutrient quality of chicken meat and meat products. Materials and Methods: We conducted a literature search using various search engines (Scopus®, PubMed®, and Google Scholar®) with "irradiation," "gamma," "chicken," and "meat" as keywords. Gamma irradiation treatment was set as a fixed effect, and the difference between experiments was set as a random effect. This study used a mixed-model methodology. After evaluation, we selected 43 articles (86 studies) for inclusion in the database. Results: Gamma irradiation significantly increased (p < 0.01) thiobarbituric acid-reactive substance levels on days 0, 7, and 14 of storage. Gamma irradiation reduced total aerobic bacteria, coliforms, Salmonella, yeast, and mold activity (p < 0.01). According to our meta-analysis, 21.75 kGy was the best dose for reducing total aerobic bacteria. On day 0, gamma irradiation did not affect the color parameters (L*, a*, b*). However, a significant difference (p < 0.01) was noted for a* and b* parameters between the control and irradiation treatments at 7 and 14 days. Although irradiation treatment was less consistent in sensory parameters, overall acceptability decreased on days 0, 7, and 14 after storage (p < 0.05). Regarding nutrient composition, gamma irradiation reduced moisture content and free fatty acid (FFA) content (p < 0.05). Although irradiation significantly reduces the microbial population, it increases the oxidation of chicken meat and its products. Irradiation decreases FFA content and overall acceptability, but it does not affect flavor, tenderness, juiciness, or cooking loss. Conclusion: Gamma irradiation positively reduces the microbial activity in chicken meat and its products but increases the oxidation parameters. Although gamma irradiation does not alter the flavor, tenderness, juiciness, or cooking loss, gamma irradiation can reduce the FFA content and overall acceptability.

13.
J Hazard Mater Adv ; 14: None, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933367

RESUMO

Water pollution caused by chromium released from tannery is a serious concern to the environment and public health. Chromium removal from tannery effluent is a crying need before discharging to the surface water. In this study, acrylic acid-grafted sawdust was prepared by Tectona grandis sawdust grafting with acrylic acid employing gamma irradiation in the presence of air and Mohr's salt. It was treated with NaOH and the characterization of surface morphology and functional groups of modified sawdust was studied by SEM and FTIR.. The effects of solution pH, adsorbent dosage, adsorption time, and initial Cr(III) ion concentration were investigated by batch sorption studies. The process was found to be pH, temperature and concentration dependent. Langmuir and Freundlich isotherms were applied to realize the adsorption process in depth, and it was found that the Langmuir isotherm model fitted well with experimental data (R2 value of 0.983). The maximum monolayer adsorption capacity of acrylic acid-grafted sawdust for Cr(III) from aquous solution was found to be 21.55 mg g-1 at 25 °C. Pseudo-first-order and pseudo-second-order kinetic models were employed to analyze the kinetics of the process, and it was found that the experimental process followed the pseudo-second-order kinetic model, i.e. chemisorption. This study revealed that acrylic acid-grafted sawdust has a decent potential for the removal of Cr(III) from tannery effluents.

14.
Sci Rep ; 14(1): 13484, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866836

RESUMO

Current study is the first ever storage cum market trial of radiation processed (28 tons) of potato conducted in India at a commercial scale. The objective was to affirm the efficacy of very low dose of gamma radiation processing of potato for extended storage with retained quality and to understand the plausible mechanism at the gene modulation level for suppression of potato sprouting. Genes pertaining to abscisic acid (ABA) biosynthesis were upregulated whereas its catabolism was downregulated in irradiated potatoes. Additionally, genes related to auxin buildup were downregulated in irradiated potatoes. The change in the endogenous phytohormone contents in irradiated potato with respect to the control were found to be correlated well with the differential expression level of certain related genes. Irradiated potatoes showed retention of processing attributes including cooking and chip-making qualities, which could be attributed to the elevated expression of invertase inhibitor in these tubers. Further, quality retention in radiation treated potatoes may also be related to inhibition in the physiological changes due to sprout inhibition. Ecological and economical analysis of national and global data showed that successful adoption of radiation processing may gradually replace sprout suppressants like isopropyl N-(3-chlorophenyl) carbamate (CIPC), known to leave residue in the commodity, stabilize the wholesale annual market price, and provide a boost to the industries involved in product manufacturing.


Assuntos
Regulação da Expressão Gênica de Plantas , Tubérculos , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/efeitos da radiação , Tubérculos/genética , Tubérculos/metabolismo , Tubérculos/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Armazenamento de Alimentos/métodos , Raios gama , Reguladores de Crescimento de Plantas/metabolismo , Irradiação de Alimentos/métodos , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Nanomaterials (Basel) ; 14(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869537

RESUMO

Silver nanoparticles (Ag NPs) have been produced by low-dose (1-20 kGy) gamma irradiation of silver nitrate in the presence of graphene-based material (graphene oxide or electrochemically exfoliated graphene). The large surface area of those graphene-based materials combined with the presence of oxygen-containing functional groups on the surface provided successful nucleation and growth of Ag nanoparticles, which resulted in a uniformly covered graphene surface. The obtained Ag nanoparticles were spherical with a predominant size distribution of 10-50 nm for graphene oxide and 10-100 nm for electrochemically exfoliated graphene. The photothermal efficiency measurement showed a temperature increase upon exposure to a 532 nm laser for all samples and the highest photothermal efficiency was measured for the graphene oxide/Ag NP sample prepared at 5 kGy. Electromagnetic interference (EMI) shielding efficiency measurements showed poor shielding for the composites prepared with graphene oxide. On the other hand, all composites prepared with electrochemically exfoliated graphene showed EMI shielding to some extent, and the best performance was measured for the samples prepared at 5 and 20 kGy doses.

16.
J Biomol Struct Dyn ; : 1-15, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695559

RESUMO

In this work, the effect of γ-irradiated surfactants on drug-protein binding has been assessed. Irradiated aqueous solutions of Pluronic F-127, Pluronic L-35, Tween 20, and Tween 80 surfactants were used. Gamma irradiation was carried out for three different doses, to these four surfactants viz., 6, 30, and 36 kGy. Two drugs, Ornidazole (ONZ) and Telmisartan (TMS) were used for the binding study. The effect of four irradiated surfactants in the presence of drug - Bovine serum albumin (BSA) protein was analyzed. The drug solutions in methanol-aqueous media were combined with BSA in the initial step. In the next two succeeding steps, drug-BSA interaction in the presence of unirradiated and irradiated surfactants were carried out. The results of drug-BSA due to addition of irradiated and unirradiated surfactants were compared. The interaction processes were assessed through UV Spectroscopy, DLS, zeta potential, turbidity, and docking studies. Improved binding was observed for both the drugs and four surfactants for irradiated surfactants as determined from the binding constant values using UV spectroscopic studies. The DLS measurements demonstrated no general trend of increase or decrease in micellar size with absorbed dose. The binding and change in the size of micelles were observed to be highly drug and surfactant-specific. Among the four surfactants, irradiated Pluronic F-127 showed higher binding affinity. To the best of our knowledge, this is the first report on the effect of γ-irradiated surfactant on drug-BSA interaction. This can be applied to other drug-protein systems to tune their interaction to the required level.Communicated by Ramaswamy H. Sarma.

17.
Nanotechnology ; 35(33)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722286

RESUMO

The tunability of the transition metal dichalcogenide properties has gained attention from numerous researchers due to their wide application in various fields including quantum technology. In the present work, WS2has been deposited on fluorine doped tin oxide substrate and its properties have been studied systematically. These samples were irradiated using gamma radiation for various doses, and the effect on structural, morphological, optical and electrical properties has been reported. The crystallinity of the material is observed to be decreased, and the results are well supported by x-ray diffraction, Raman spectroscopy techniques. The increase in grain boundaries has been supported by the agglomeration observed in the scanning electron microscopy micrographs. The XPS results of WS2after gamma irradiation show evolution of oxygen, carbon, C=O, W-O and SO4-2peaks, confirming the addition of impurities and formation of point defect. The gamma irradiation creates point defects, and their density increases considerably with increasing gamma dosage. These defects crucially altered the structural, optical and electrical properties of the material. The reduction in the optical band gap with increased gamma irradiation is evident from the absorption spectra and respective Tauc plots. TheI-Vgraphs show a 1000-fold increase in the saturation current after 100 kGy gamma irradiation dose. This work has explored the gamma irradiation effect on the WS2and suggests substantial modification in the material and enhancement in electrical properties.

18.
Ann Clin Microbiol Antimicrob ; 23(1): 31, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600513

RESUMO

BACKGROUND: Anti-virulence therapy is a promising strategy to treat multi-drug resistant (MDR) pathogens. Pseudomonas aeruginosa is a potent opportunistic pathogen because of an array of virulence factors that are regulated by quorum sensing systems. METHODS: The virulence features of four multi-drug resistant P. aeruginosa strains were investigated upon exposure to the sub-lethal dose of gamma rays (1 kGy), and sub-inhibitory concentrations of bioactive metabolites recovered from local halophilic strains in comparison to control. Then, the gene expression of AHL-mediated quorum sensing systems (las/rhl) was quantitatively determined in treated and untreated groups by real-time PCR. RESULTS: The bioactive metabolites recovered from halophilic strains previously isolated from saline ecosystems were identified as Halomonas cupida (Halo-Rt1), H. elongate (Halo-Rt2), Vigibacillus natechei (Halo-Rt3), Sediminibacillus terrae (Halo-Rt4) and H. almeriensis (Halo-Rt5). Results revealed that both gamma irradiation and bioactive metabolites significantly reduced the virulence factors of the tested MDR strains. The bioactive metabolites showed a maximum efficiency for inhibiting biofilm formation and rhamnolipids production whereas the gamma irradiation succeeded in decreasing other virulence factors to lower levels in comparison to control. Quantitative-PCR results showed that AHL-mediated quorum sensing systems (las/rhl) in P. aeruginosa strains were downregulated either by halo-bacterial metabolites or gamma irradiation in all treatments except the upregulation of both lasI internal gene and rhlR intact gene in P. aeruginosa NCR-RT3 and both rhlI internal gene and rhlR intact gene in P. aeruginosa U3 by nearly two folds or more upon exposure to gamma irradiation. The most potent result was observed in the expression of lasI internal gene that was downregulated by more than ninety folds in P. aeruginosa NCR-RT2 after treatment with metabolites of S. terrae (Halo-Rt4). Analyzing metabolites recovered from H. cupida (Halo-Rt1) and H. elongate (Halo-Rt2) using LC-ESI-MS/MS revealed many chemical compounds that have quorum quenching properties including glabrol, 5,8-dimethoxyquinoline-2-carbaldehyde, linoleoyl ethanolamide, agelasine, penigequinolones derivatives, berberine, tetracosanoic acid, and liquidambaric lactone in the former halophile and phloretin, lycoctonine, fucoxanthin, and crassicauline A in the latter one. CONCLUSION: QS inhibitors can significantly reduce the pathogenicity of MDR P. aeruginosa strains; and thus can be an effective and successful strategy for treating antibiotic resistant traits.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Biofilmes , Ecossistema , Espectrometria de Massas em Tandem , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica
19.
Methods Mol Biol ; 2787: 141-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656487

RESUMO

Induced mutations have been an important tool for plant breeding and functional genomics for more than 80 years. Novel mutations can be induced by treating seed or other plant cells with chemical mutagens or ionizing radiation. The majority of released mutant crop varieties were developed using ionizing radiation. This has been shown to create a variety of different DNA lesions including large (e.g., >=10,000 bps) copy number variations (CNV). Detection of induced DNA lesions from whole genome sequence data is useful for choosing a mutagen dosage prior to committing resources to develop a large mutant population for forward or reverse-genetic screening. Here I provide a method for detecting large induced CNV from mutant plants that utilizes a new tool to streamline the process of obtaining read coverage directly from BAM files, comparing non-mutagenized controls and mutagenized samples, and plotting the results for visual evaluation. Example data is provided from low coverage sequence data from gamma-irradiated vegetatively propagated triploid banana.


Assuntos
Variações do Número de Cópias de DNA , Genoma de Planta , Musa/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênicos , Melhoramento Vegetal/métodos , Análise de Sequência de DNA/métodos
20.
Gels ; 10(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667645

RESUMO

Gelatin nanofibers are known as wound-healing biomaterials due to their high biocompatible, biodegradable, and non-antigenic properties compared to synthetic-polymer-fabricated nanofibers. The influence of gamma radiation doses on the structure of gelatin nanofiber dressings compared to gelatin of their origin is little known, although it is very important for the production of stable bioactive products. Different-origin gelatins were extracted from bovine and donkey hides, rabbit skins, and fish scales and used for fabrication of nanofibers through electrospinning of gelatin solutions in acetic acid. Nanofibers with sizes ranging from 73.50 nm to 230.46 nm were successfully prepared, thus showing the potential of different-origin gelatin by-products valorization as a lower-cost alternative to native collagen. The gelatin nanofibers together with their origin gelatins were treated with 10, 20, and 25 kGy gamma radiation doses and investigated for their structural stability through chemiluminescence and FTIR spectroscopy. Chemiluminescence analysis showed a stable behavior of gelatin nanofibers and gelatins up to 200 °C and increased chemiluminescent emission intensities for nanofibers treated with gamma radiation, at temperatures above 200 °C, compared to irradiated gelatins and non-irradiated nanofibers and gelatins. The electron paramagnetic (EPR) signals of DMPO adduct allowed for the identification of long-life HO● radicals only for bovine and donkey gelatin nanofibers treated with a 20 kGy gamma radiation dose. Microbial contamination with aerobic microorganisms, yeasts, filamentous fungi, Staphylococcus aureus, Escherichia coli, and Candida albicans of gelatin nanofibers treated with 10 kGy gamma radiation was under the limits required for pharmaceutical and topic formulations. Minor shifts of FTIR bands were observed at irradiation, indicating the preservation of secondary structure and stable properties of different-origin gelatin nanofibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA