Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 815
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39021415

RESUMO

BACKGROUND: Granule cells in the hippocampus project axons to hippocampal CA3 pyramidal cells where they form large mossy fiber terminals. We have reported that these terminals contain the gap junction protein connexin36 (Cx36) specifically in the stratum lucidum of rat ventral hippocampus, thus creating morphologically mixed synapses that have the potential for dual chemical/electrical transmission. METHODOLOGY: Here, we used various approaches to characterize molecular and electrophysiological relationships between the Cx36-containing gap junctions at mossy fiber terminals and their postsynaptic elements and to examine molecular relationships at mixed synapses in the brainstem. RESULTS: In rat and human ventral hippocampus, many of these terminals, identified by their selective expression of vesicular zinc transporter-3 (ZnT3), displayed multiple, immunofluorescent Cx36-puncta representing gap junctions, which were absent at mossy fiber terminals in the dorsal hippocampus. In rat, these were found in close proximity to the protein constituents of adherens junctions (i.e., N-cadherin and nectin-1) that are structural hallmarks of mossy fiber terminals, linking these terminals to the dendritic shafts of CA3 pyramidal cells, thus indicating the loci of gap junctions at these contacts. Cx36-puncta were also associated with adherens junctions at mixed synapses in the brainstem, supporting emerging views of the structural organization of the adherens junction-neuronal gap junction complex. Electrophysiologically induced long-term potentiation (LTP) of field responses evoked by mossy fiber stimulation was greater in the ventral than dorsal hippocampus. CONCLUSIONS: The electrical component of transmission at mossy fiber terminals may contribute to enhanced LTP responses in the ventral hippocampus.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39021417

RESUMO

BACKGROUND: Sexually dimorphic spinal motoneurons (MNs) in the dorsomedial nucleus (DMN) and dorsolateral nucleus (DLN) as well as those in the cremaster nucleus are involved in reproductive behaviours, and the cremaster nucleus additionally contributes to testicular thermoregulation. It has been reported that MNs in DMN and DLN are extensively linked by gap junctions forming electrical synapses composed of connexin36 (Cx36) and there is evidence that subpopulation of MNs in the cremaster nucleus are also electrically coupled by these synapses. METHODOLOGY: We used immunofluorescence methods to detect enhanced green fluorescent protein (eGFP) reporter for Cx36 expression in these motor nuclei. RESULTS: We document in male mice that about half the MNs in each of DMN and DLN express eGFP, while the remaining half do not. Further, we found that the eGFP+ vs. eGFP- subsets of MNs in each of these motor nuclei innervate different target muscles; eGFP+ MNs in DMN and DLN project to sexually dimorphic bulbocavernosus and ischiocavernosus muscles, while the eGFP- subsets project to sexually non-dimorphic anal and external urethral sphincter muscles. Similarly, eGFP+ vs. eGFP- cremaster MNs were found to project to anatomically distinct portions of the cremaster muscle. By immunofluorescence, nearly all motoneurons in both DMN and DLN displayed punctate labelling for Cx36, including at eGFP+/eGFP+, eGFP+/eGFP- and eGFP-/eGFP- cell appositions. CONCLUSIONS: Most if not all motoneurons in DMN and DLN are electrically coupled, including sexually dimorphic and non-dimorphic motoneurons with each other, despite absence of eGFP reporter in the non-dimorphic populations in these nuclei that have selective projections to sexually non-dimorphic target muscles.

3.
ACS Chem Neurosci ; 15(14): 2633-2642, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38967483

RESUMO

In order to investigate the effectiveness and safety of miR-23b-3p in anti-seizure activity and to elucidate the regulatory relationship between miR-23b-3p and Cx43 in the nervous system, we have established a lithium chloride-pilocarpine (PILO) status epilepticus (SE) model. Rats were randomly divided into the following groups: seizure control (PILO), valproate sodium (VPA+PILO), recombinant miR-23b-3p overexpression (miR+PILO), miR-23b-3p sponges (Sponges+PILO), and scramble sequence negative control (Scramble+PILO) (n = 6/group). After experiments, we got the following results. In the acute phase, the time required for rats to reach stage IV after PILO injection was significantly longer in VPA+PILO and miR+PILO. In the chronic phase after SE, the frequency of spontaneous recurrent seizures (SRSs) in VPA+PILO and miR+PILO was significantly reduced. At 10 min before seizure cessation, the average energy expression of fast ripples (FRs) in VPA+PILO and miR+PILO was significantly lower than in PILO. After 28 days of seizure, Cx43 expression in PILO was significantly increased, and Beclin1expression in all groups was significantly increased. After 28 days of SE,the number of synapses in the CA1 region of the hippocampus was significantly higher in the VPA+PILO and miR+PILO groups compared to that in the PILO group. After 28 days of SE ,hippocampal necrotic cells in the CA3 region were significantly lower in the VPA+PILO and miR+PILO groups compared to those in the PILO group. There were no significant differences in biochemical indicators among the experimental group rats 28 days after SE compared to the seizure control group. Based on the previous facts, we can reach the conclusion that MiR-23b-3p targets and blocks the expression of hippocampal Cx43 which can reduce the formation of pathological FRs, thereby alleviating the severity of seizures, improving seizure-induced brain damage.


Assuntos
Conexina 43 , Hipocampo , MicroRNAs , Ratos Sprague-Dawley , Estado Epiléptico , Animais , Masculino , Ratos , Lesões Encefálicas/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Pilocarpina/toxicidade , Convulsões/metabolismo , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-39010839

RESUMO

Gap junctions are channels that allow for direct transmission of electrical signals between cells. However, the ability of one cell to be impacted or controlled by other cells through gap junctions remains unclear. In this study, heterocellular coupling between ON α retinal ganglion cells (RGCs) and displaced amacrine cells (ACs) in the mouse retina was utilized as a model. The impact of the extent of coupling of interconnected ACs on the synchronized firing between coupled ON α RGC-ACs pairs was investigated. It was observed that the synchronized firing between the ON α RGC-ACs pairs was increased by the dopamine 1 receptor antagonist SCH23390, while it was eradicated by the agonist SKF38393. Subsequently, coupled ON α RGC-AC pairs were infected with the channelrhodopsin-2(ChR2) mutation L132C. The spikes of ON α RGCs (without ChR2) could be triggered by ACs (with ChR2) through the gap junction, and vice versa. Furthermore, it was observed that ON α RGCs stimulated with 3-10 Hz currents by whole-cell patch could elicit synchronous spikes in the coupled ACs, and vice versa. The study implies that the synchronized firing between ON α RGC-AC pairs could potentially be affected by the coupling of interconnected ACs, and another cell type could selectively control the firing of one cell type, and information could be forcefully transmitted. The key role of gap junctions in synchronizing firing and driving cells between α RGCs and coupled ACs in the mouse retina is highlighted.

5.
Cell Rep ; 43(7): 114504, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996064

RESUMO

Astroglial networks closely interact with neuronal populations, but their functional contribution to neuronal representation of sensory information remains unexplored. The superior colliculus (SC) integrates multi-sensory information by generating distinct spatial patterns of neuronal functional responses to specific sensory stimulation. Here, we report that astrocytes from the mouse SC form extensive networks in the retinorecipient layer compared to visual cortex. This strong astroglial connectivity relies on high expression of gap-junction proteins. Genetic disruption of this connectivity functionally impairs SC retinotopic and orientation preference responses. These alterations are region specific, absent in primary visual cortex, and associated at the circuit level with a specific impairment of collicular neurons synaptic transmission. This has implications for SC-related visually induced innate behavior, as disrupting astroglial networks impairs light-evoked temporary arrest. Our results indicate that astroglial networks shape synaptic circuit activity underlying SC functional visual responses and play a crucial role in integrating visual cues to drive sensory-motor behavior.

6.
Biomater Adv ; 163: 213939, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954876

RESUMO

The bone turnover capability influences the acquisition and maintenance of osseointegration. The architectures of osteocyte three-dimensional (3D) networks determine the direction and activity of bone turnover through osteocyte intercellular crosstalk, which exchanges prostaglandins through gap junctions in response to mechanical loading. Titanium nanosurfaces with anisotropically patterned dense nanospikes promote the development of osteocyte lacunar-canalicular networks. We investigated the effects of titanium nanosurfaces on intercellular network development and regulatory capabilities of bone turnover in osteocytes under cyclic compressive loading. MLO-Y4 mouse osteocyte-like cell lines embedded in type I collagen 3D gels on titanium nanosurfaces promoted the formation of intercellular networks and gap junctions even under static culture conditions, in contrast to the poor intercellular connectivity in machined titanium surfaces. The osteocyte 3D network on the titanium nanosurfaces further enhanced gap junction formation after additional culturing under cyclic compressive loading simulating masticatory loading, beyond the degree observed on machined titanium surfaces. A prostaglandin synthesis inhibitor cancelled the dual effects of titanium nanosurfaces and cyclic compressive loading on the upregulation of gap junction-related genes in the osteocyte 3D culture. Supernatants from osteocyte monolayer culture on titanium nanosurfaces promoted osteocyte maturation and intercellular connections with gap junctions. With cyclic loading, titanium nanosurfaces induced expression of the regulatory factors of bone turnover in osteocyte 3D cultures, toward higher osteoblast activation than that observed on machined surfaces. Titanium nanosurfaces with anisotropically patterned dense nanospikes promoted intercellular 3D network development and regulatory function toward osteoblast activation in osteocytes activated by cyclic compressive loading, through intercellular crosstalk by prostaglandin.

7.
Adv Exp Med Biol ; 1441: 417-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884723

RESUMO

This chapter will describe basic structural and functional features of the contractile apparatus of muscle cells of the heart, namely, cardiomyocytes and smooth muscle cells. Cardiomyocytes form the contractile myocardium of the heart, while smooth muscle cells form the contractile coronary vessels. Both muscle types have distinct properties and will be considered with respect to their cellular appearance (brick-like cross-striated versus spindle-like smooth), arrangement of contractile proteins (sarcomeric versus non-sarcomeric organization), calcium activation mechanisms (thin-filament versus thick-filament regulation), contractile features (fast and phasic versus slow and tonic), energy metabolism (high oxygen versus low oxygen demand), molecular motors (type II myosin isoenzymes with high adenosine diphosphate [ADP]-release rate versus myosin isoenzymes with low ADP-release rates), chemomechanical energy conversion (high adenosine triphosphate [ATP] consumption and short duty ratio versus low ATP consumption and high duty ratio of myosin II cross-bridges [XBs]), and excitation-contraction coupling (calcium-induced calcium release versus pharmacomechanical coupling). Part of the work has been published (Neuroscience - From Molecules to Behavior", Chap. 22, Galizia and Lledo eds 2013, Springer-Verlag; with kind permission from Springer Science + Business Media).


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Humanos , Contração Miocárdica/fisiologia , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cálcio/metabolismo , Metabolismo Energético , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Acoplamento Excitação-Contração/fisiologia
8.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849852

RESUMO

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Assuntos
Fibroblastos Associados a Câncer , Comunicação Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Animais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Junções Comunicantes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Análise Espaço-Temporal , Junções Íntimas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo
9.
Front Cell Neurosci ; 18: 1404440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711617

RESUMO

[This corrects the article DOI: 10.3389/fncel.2023.1281786.].

10.
Cell Rep ; 43(5): 114158, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722742

RESUMO

Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.


Assuntos
Astrócitos , Junções Comunicantes , Hipocampo , Canais de Potássio KCNQ , Potássio , Animais , Camundongos , Potenciais de Ação/fisiologia , Astrócitos/metabolismo , Conexinas/metabolismo , Conexinas/genética , Junções Comunicantes/metabolismo , Hipocampo/metabolismo , Canais de Potássio KCNQ/metabolismo , Canais de Potássio KCNQ/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/metabolismo , Neurônios/metabolismo , Potássio/metabolismo , Masculino , Feminino
11.
Math Biosci ; 374: 109224, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821258

RESUMO

Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic ß-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse ß-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between ß-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of ß-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a ß-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type ß-cell cluster, restores coordinated Ca2+ oscillations in a ß-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous ß-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic ß-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.


Assuntos
Células Secretoras de Insulina , Canais KATP , Regulação para Cima , Células Secretoras de Insulina/metabolismo , Animais , Camundongos , Canais KATP/genética , Canais KATP/metabolismo , Conexinas/genética , Conexinas/metabolismo , Mutação com Ganho de Função , Proteína delta-2 de Junções Comunicantes , Sinalização do Cálcio , Modelos Biológicos , Cálcio/metabolismo , Humanos
12.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791387

RESUMO

Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.


Assuntos
Células do Cúmulo , Oócitos , Oócitos/metabolismo , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Humanos , Animais , Feminino , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Junções Comunicantes/metabolismo , Fosforilação Oxidativa , Cálcio/metabolismo , Canais de Potássio/metabolismo , Comunicação Celular
13.
Mol Oncol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567664

RESUMO

In recent years, the discovery of functional and communicative cellular tumour networks has led to a new understanding of malignant primary brain tumours. In this review, the authors shed light on the diverse nature of cell-to-cell connections in brain tumours and propose an innovative treatment approach to address the detrimental connectivity of these networks. The proposed therapeutic outlook revolves around three main strategies: (a) supramarginal resection removing a substantial portion of the communicating tumour cell front far beyond the gadolinium-enhancing tumour mass, (b) morphological isolation at the single cell level disrupting structural cell-to-cell contacts facilitated by elongated cellular membrane protrusions known as tumour microtubes (TMs), and (c) functional isolation at the single cell level blocking TM-mediated intercellular cytosolic exchange and inhibiting neuronal excitatory input into the malignant network. We draw an analogy between the proposed therapeutic outlook and the Alcatraz Federal Penitentiary, where inmates faced an impassable sea barrier and experienced both spatial and functional isolation within individual cells. Based on current translational efforts and ongoing clinical trials, we propose the Alcatraz-Strategy as a promising framework to tackle the harmful effects of cellular brain tumour networks.

15.
Methods Mol Biol ; 2801: 57-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578413

RESUMO

The 21-member connexin family found in humans is the building block of both single-membrane spanning channels (hemichannels) and double-membrane spanning intercellular channels. These large-pore channels are dynamic and typically have a short life span of only a few hours. Imaging connexins from the time of synthesis in the endoplasmic reticulum through to their degradation can be challenging given their distinct assembly states and transient residences in many subcellular compartments. Here, we describe how connexins can be effectively imaged on a confocal microscope in living cells when tagged with fluorescent proteins and when immunolabeled with high affinity anti-connexin antibodies in fixed cells. Temporal and spatial localization of multiple connexins and disease-linked connexin mutants at the subcellular level extensively informs on the mechanisms governing connexin regulation in health and disease.


Assuntos
Conexinas , Junções Comunicantes , Humanos , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Transporte Biológico , Microscopia Confocal
16.
Methods Mol Biol ; 2757: 147-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668965

RESUMO

Ctenophores or comb jellies are representatives of an enigmatic lineage of early branching metazoans with complex tissue and organ organization. Their biology and even microanatomy are not well known for most of these fragile pelagic and deep-water species. Here, we present immunohistochemical protocols successfully tested on more than a dozen ctenophores. This chapter also illustrates neural organization in several reference species of the phylum (Pleurobrachia bachei, P. pileus, Mnemiopsis leidyi, Bolinopsis microptera, Beroe ovata, and B. abyssicola) as well as numerous ciliated structures in different functional systems. The applications of these protocols illuminate a very complex diversification of cell types comparable to many bilaterian lineages.


Assuntos
Ctenóforos , Imuno-Histoquímica , Animais , Ctenóforos/anatomia & histologia , Imuno-Histoquímica/métodos , Neuroanatomia/métodos
17.
Cancers (Basel) ; 16(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672615

RESUMO

Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.

18.
Biomed Pharmacother ; 174: 116550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593702

RESUMO

Physiological and pathological processes such as homeostasis, embryogenesis, development, tumorigenesis, and cell movement depend on the intercellular communication through gap junctions (GJIC). Connexin (Cx)-based GJ channels are formed of two apposing hemichannels in the contiguous cells and provide a direct pathway for electrical and metabolic intercellular communication. The main modulators of GJ conductance are transjunctional voltage, intracellular pH, Ca2+, Mg2+, and phosphorylation. Chemical modulators of GJIC are being used in cases of various intercellular communication-dependent diseases. In this study, we used molecular docking, dual whole-cell patch-clamp, and Western blotting to investigate the impact of connexin phosphorylation on GJ chemical gating by α-pinene and other GJ inhibitors (octanol, carbenoxolone, mefloquine, intracellular pH, glycyrrhetinic acid, and sevoflurane) in HeLa cells expressing exogenous Cx43 (full length and truncated at amino acid 258) and other connexins typical of heart and/or nervous system (Cx36, Cx40, Cx45, and Cx47), and in cells expressing endogenous Cx43 (Novikoff and U-87). We found that Ca2+-regulated kinases, such as Ca2+/calmodulin-dependent kinase II, atypical protein kinase C, cyclin-dependent kinase, and Pyk2 kinase may allosterically modulate the potency of α-pinene through phosphorylation of Cx43 C-terminus. The identified new phenomenon was Cx isoform-, inhibitor-, and cell type-dependent. Overall, these results suggest that compounds, the potency of which depends on receptor phosphorylation, might be of particular interest in developing targeted therapies for diseases accompanied by high kinase activity, such as cardiac arrhythmias, epilepsy, stroke, essential tremor, inflammation, and cancer.


Assuntos
Conexina 43 , Junções Comunicantes , Simulação de Acoplamento Molecular , Humanos , Conexina 43/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Fosforilação/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Células HeLa
19.
J Neurophysiol ; 131(6): 965-981, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568843

RESUMO

Communication between cells in the nervous system is dependent on both chemical and electrical synapses. Factors that can affect chemical synapses have been well studied, but less is known about factors that influence electrical synapses. Retinoic acid, the vitamin A metabolite, is a known regulator of chemical synapses, but few studies have examined its capacity to regulate electrical synapses. In this study, we determine that retinoic acid is capable of rapidly altering the strength of electrical synapses in an isomer- and cell-dependent manner. Furthermore, we provide evidence that this acute effect might be independent of either the retinoid receptors or the activation of a protein kinase. In addition to the rapid modulatory effects of retinoic acid, we provide data to suggest that retinoic acid is also capable of regulating the formation of electrical synapses. Long-term exposure to both all-trans-retinoic acid or 9-cis-retinoic acid reduced the proportion of cell pairs forming electrical synapses, as well as reduced the strength of electrical synapses that did form. In summary, this study provides insights into the role that retinoids might play in both the formation and modulation of electrical synapses in the central nervous system.NEW & NOTEWORTHY Retinoids are known modulators of chemical synapses and mediate synaptic plasticity in the nervous system, but little is known of their effects on electrical synapses. Here, we show that retinoids selectively reduce electrical synapses in a cell- and isomer-dependent manner. This modulatory action on existing electrical synapses was rapid and nongenomic in nature. We also showed for the first time that longer retinoid exposures inhibit the formation of electrical synapses.


Assuntos
Sinapses Elétricas , Tretinoína , Tretinoína/farmacologia , Animais , Sinapses Elétricas/efeitos dos fármacos , Sinapses Elétricas/fisiologia , Lymnaea , Alitretinoína/farmacologia
20.
Food Chem Toxicol ; 187: 114594, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485042

RESUMO

Trichloroethylene (TCE), extensively used as an organic solvent in various industrial applications, has been identified as a causative factor in inducing hypersensitivity syndrome (THS). Currently, there is no specific treatment for THS, and most patients experience serious adverse outcomes due to extensive skin damage leading to severe infection. However, the pathogenesis of THS-associated skin damage remains unclear. This study aims to elucidate the mechanism underlying skin damage from the perspective of intercellular communication and gap junctions in THS. Our results verified that hyperactivation of connexin43 gap junctions, caused by the aberrantly elevated expression of connexin43, triggers a bystander effect that promotes apoptosis and inflammation in THS via the TNF-TNFRSF1B and mitochondria-associated pathways. Additionally, we identified the gap junction inhibitor Carbenoxolone disodium (CBX) as a promising agent for the treatment of skin damage in THS. CBX protects against inflammatory cell infiltration in the skin and decreases immune cell imbalance in the peripheral blood of THS mice. Furthermore, CBX reduces connexin43 expression, apoptosis and inflammation in THS mice. The study reveals new insights into the mechanisms underlying TCE-induced skin damage, offering a potential treatment strategy for the development of effective therapies targeting severe dermatitis induced by chemical exposure.


Assuntos
Tricloroetileno , Humanos , Animais , Camundongos , Tricloroetileno/toxicidade , Tricloroetileno/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Solventes , Junções Comunicantes/metabolismo , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA