Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ultrason Sonochem ; 98: 106521, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37473616

RESUMO

The sonochemical oxidation activity was investigated for gas saturation and gas sparging under various liquid levels and volumes in 300 kHz sonoreactors. The liquid levels and volumes ranged from 5λ (25 mm, 0.47 L) to 50λ (250 mm, 4.30 L) and two gas mixtures, Ar:O2 (75:25) and N2:O2 (75:25), were used. Two types of reaction kinetics were observed to quantitatively analyze the sonochemical oxidation reactions: zero-order (KI dosimetry: C0 = 60.2 mM) and first-order (Bisphenol A (BPA) degradation: C0 = 0.043 mM). The masses of the sonochemical oxidation reactions were calculated and compared rather than the concentrations to more accurately compare the sonochemical oxidation activity under different liquid volume conditions. First, as the liquid level or volume increased for the zero-order reactions, the concentration of I3- ions representing the volume-averaged activity decreased substantially for gas saturation owing to the increase in liquid volume. However, gas sparging substantially enhanced sonochemical oxidation activity, and the mass of I3- ions representing the total activity remained constant as the liquid level increased from 20λ because of the improved liquid mixing and a shift in the sonochemical active zone. Second, as evidenced by the zero-order reactions, the concentration of BPA decreased considerably as the liquid level or volume increased in the first-order reactions. When gas sparging was used, higher reaction constants were obtained for both gas mixtures, ranging from 40λ to 50λ. However, a comparison of the sonochemical oxidation activity in terms of the degraded mass of BPA was inapplicable as the concentration of BPA decreased substantially and a lack of reactants occurred for the lower liquid level and volume conditions as the irradiation time elapsed. Instead, using the first-order reaction constant, a comparison of the required reaction times for a specific removal efficiency (30%, 60%, and 90%) was proposed. Gas sparging can substantially reduce the reaction time required for a liquid level of 40λ or higher.

2.
Ultrason Sonochem ; 97: 106452, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245263

RESUMO

Dissolved gases have a substantial influence on acoustic cavitation and sonochemical oxidation reactions. Little research on the changes in dissolved gases and the resultant changes in sonochemical oxidation has been reported, and most studies have focused only on the initial dissolved gas conditions. In this study, the dissolved oxygen (DO) concentration was measured continuously during ultrasonic irradiation using an optical sensor in different gas modes (saturation/open, saturation/closed, and sparging/closed modes). Simultaneously, the resulting changes in sonochemical oxidation were quantified using KI dosimetry. In the saturation/open mode using five gas conditions of Ar and O2, the DO concentration decreased rapidly when O2 was present because of active gas exchange with the atmosphere, and the DO concentration increased when 100% Ar was used. As a result, the order of the zero-order reaction constant for the first 10 min (k0-10) decreased in the order Ar:O2 (75:25) > 100% Ar ≈ Ar:O2 (50:50) > Ar:O2 (25:75) > 100% O2, whereas that during the last 10 min (k20-30) when the DO concentration was relatively stable, decreased in the order 100% Ar > Ar:O2 (75:25) > Ar:O2 (50:50) ≈ Ar:O2 (20:75) > 100% O2. In the saturation/closed mode, the DO concentration decreased to approximately 70-80% of the initial level because of ultrasonic degassing, and there was no influence of gases other than Ar and O2. Consequently, k0-10 and k20-30 decreased in the order Ar:O2 (75:25) > Ar:O2 (50:50) > Ar:O2 (25:75) > 100% Ar > 100% O2. In the sparging/closed mode, the DO concentration was maintained at approximately 90% of the initial level because of the more active gas adsorption induced by gas sparging, and the values of k0-10 and k20-30 were almost the same as those in the saturation/closed mode. In the saturation/open and sparging/closed modes, the Ar:O2 (75:25) condition was most favorable for enhancing sonochemical oxidation. However, a comparison of k0-10 and k20-30 indicated that there would be an optimal dissolved gas condition that was different from the initial gas condition. In addition, the mass-transfer and ultrasonic-degassing coefficients were calculated using changes in the DO concentration in the three modes.

3.
Chemosphere ; 324: 138197, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841456

RESUMO

The intensification of biochar into fluidized bed membrane bioreactor was investigated to mitigate membrane fouling. Different biochars from algal biomass were produced and used as biomaterials for wastewater treatment. In this study, different macroalgal biochar was synthesized at different pyrolysis temperatures and characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Brunauer Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FTIR) techniques to implicate their effect on membrane fouling reduction in fluidized bed membrane bioreactor. The combined effect of macroalgal biochars and biocarriers with gas sparging was evaluated for fouling mitigation. Macroalgal biochar curtailed membrane fouling effectively at low gas sparging rate. Transmembrane pressure (TMP) was reduced to 0.053 bar; under the fluidization of biochar-650 and biocarriers with gas sparging; from 0.27 bar (gas sparging only). Combined effect of gas sparging, biocarriers and biochar-650 instigated 92.1% fouling reduction in comparative to gas sparging alone. Mechanical scouring driven by biocarriers could reduce fouling due to removing surface deposit of foulants from membrane surface effectively and biochar can efficiently adsorb foulants because of its active functional groups resulting in reduction of colloidal fouling. The addition of divalent ions (Ca2+) further enhanced the fouling reduction in fluidized bed membrane bioreactor.


Assuntos
Águas Residuárias , Purificação da Água , Membranas Artificiais , Reatores Biológicos , Purificação da Água/métodos
4.
Ultrason Sonochem ; 92: 106250, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459904

RESUMO

The sonochemical generation of NO2- and NO3- is considered to be one of the reasons for the low sonochemical oxidation activity in the presence of N2 in the liquid phase. In this study, the generation characteristics of NO2- and NO3- were investigated using the same 28 kHz sonoreactor and the 12 gas conditions used in Part I of this study. Three gas modes, saturation/closed, saturation/open, and sparging/closed, were applied. N2:Ar (25:75), N2:Ar (50:50), and O2:N2 (25:75) in the saturation/closed mode generated the three highest values of NO2- and NO3-. Ar and O2 were vital for generating relatively large concentrations of NO2- and NO3-. The absorption of N2 from the air resulted in high generation of NO2- and NO3- for Ar 100 % and Ar/O2 mixtures under the saturation/open mode. In addition, gas sparging enhanced the generation of NO2- and NO3- for N2:Ar (25:75), O2:N2 (25:75), and N2 significantly because of the change in the sonochemically active zone and the increase in the mixing intensity in the liquid phase, as discussed in Part I. The ratio of NO3- to NO2- was calculated using their final concentrations, and a ratio higher than 1 was obtained for the condition of Ar 100 %, Ar/O2 mixtures, and O2 100 %, wherein a relatively high oxidation activity was detected. From a summary of the results and findings of previous studies, it was revealed that the observations of NO2- + NO3- could be more appropriate for investigating the NO2- and NO3- generation characteristics. In addition, H2O2/NO2-/NO3- related activity rather than H2O2 activity was suggested to quantify the OH radical activity more appropriately in the presence of N2.


Assuntos
Peróxido de Hidrogênio , Dióxido de Nitrogênio , Oxirredução , Nitratos
5.
Ultrason Sonochem ; 90: 106214, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36327919

RESUMO

Cavitational/sonochemical activity can be significantly enhanced or reduced depending on the gases dissolved in the liquid. Although many researchers have suggested the order of importance of dissolved gas conditions that affect the degree of sonoluminescence (SL), sonochemiluminescence (SCL), and compound degradation, the most suitable gas condition for sonochemical oxidation reactions is currently unknown. In this study (Part I), the effects of gas saturation and sparging on the generation of H2O2 were investigated in a 28-kHz sonoreactor system. Four gas modes, saturation/closed, saturation/open, sparging/closed, and sparging/open, were applied to Ar, O2, N2, and binary gas mixtures. The change in dissolved oxygen (DO) concentration during ultrasonic irradiation was measured and was used as an indicator of whether the gaseous exchange between liquid and air altered the gas content of the liquid. Considerable difference in the DO concentration was observed for the gas saturation/open mode, ranging from -11.5 mg/L (O2 100 %) to +4.3 mg/L (N2 100 %), while no significant difference was observed in the other gas modes. The change in the gas content significantly reduced the linearity for H2O2 generation, which followed pseudo-zero-order kinetics, and either positively or negatively affected H2O2 generation. Ar:O2 (75:25) and Ar:O2 (50:50) resulted in the highest and second-highest H2O2 generation for both gas saturation and sparging, respectively. In addition, gas sparging resulted in much higher H2O2 generation for all gas conditions compared to gas saturation; this was because of the significant change in the cavitational active zone and concentrated ultrasonic energy, which formed a bulb-shaped active zone, especially for the Ar/O2 mixtures adjacent to the transducer at the bottom. The sparging flow rate and position also significantly affected H2O2 generation; the highest H2O2 generation was obtained when the sparger was placed at the bottom adjacent to the transducer, with a flow rate of 3 L/min. In Part II, the generation of nitrogen oxides, including nitrite (NO2-) and nitrate (NO3-), was investigated using the same ultrasonic system with three gas modes: saturation/open, saturation/closed, and sparging/closed.


Assuntos
Gases , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Nitratos , Nitritos , Oxirredução
6.
Membranes (Basel) ; 12(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35877892

RESUMO

The use of membrane filtration as a downstream process for microbial biomass harvesting is hampered due to the low permeate flux values achieved during the microfiltration of fermentation broths. Several hydrodynamic methods for increasing permeate flux by creating turbulent flow patterns inside the membrane module are used to overcome this problem. The main goal of this study was to investigate the combined use of a Kenics static mixer and gas sparging during cross-flow microfiltration of Bacillus velezensis IP22 cultivation broth. Optimization of the microfiltration process was performed by using the response surface methodology. It was found that the combined use of a static mixer and gas sparging leads to a considerable increase in the permeate flux, up to the optimum steady-state permeate flux value of 183.42 L·m-2·h-1 and specific energy consumption of 0.844 kW·h·m-3. The optimum steady-state permeate flux is almost four times higher, whilst, at the same time, the specific energy consumption is almost three times lower compared to the optimum results achieved using gas sparging alone. The combination of Kenics static mixer and gas sparging during cross-flow microfiltration is a promising technique for the enhancement of steady-state permeate flux with simultaneously decreasing specific energy consumption.

7.
Environ Technol ; 43(16): 2405-2417, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33494654

RESUMO

In this study anodic oxidation of Cr2(SO4)3 was carried out in an air-sparged divided parallel plate cell. Variables studied were current density, Cr2(SO4)3 concentration, and superficial air velocity. The rate constant of Cr2(SO4)3 oxidation was found to increase with increasing current density and Cr2(SO4)3 concentration. The effect of air sparging was found to depend on Cr2(SO4)3 concentrations, at high Cr2(SO4)3 concentration (> 0.1 M) air sparging does not affect the rate constant of the reaction denoting that the reaction is charge transfer controlled. As Cr2(SO4)3 concentration decreases below 0.1 M the reaction becomes under mixed diffusion and chemical control and the rate constant increases with increasing air superficial velocity, the lower Cr2(SO4)3 concentration the higher the contribution of diffusion to the reaction rate. The current efficiency of the process ranged from 20 to 85% depending on current density and Cr2(SO4)3 concentration. Electrical energy consumption which ranged from 1.8 to 14.4 kW h/kg of Cr6+ was found to increase with increasing current density and decreases with increasing Cr2(SO4)3 concentration. Air sparging was found to decrease electrical energy consumption in the case of dilute solutions << 0.1 M Cr2(SO4)3.

8.
Membranes (Basel) ; 11(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564499

RESUMO

Production of highly efficient biomass-based microbial biopesticides significantly depends on downstream processing in terms of obtaining as high concentration of viable cells as possible. Microfiltration is one of the recommended operations for microbial biomass separation, but its main limitation is permeate flux decrease due to the membrane fouling. The effect of air sparging as a hydrodynamic technique for improvement of permeate flux during microfiltration of Bacillus velezensis cultivation broth was investigated. Modeling of the microfiltration was performed using the response surface methodology, while desirability function approach and genetic algorithm were applied for optimization, i.e., maximization of permeate flux and minimization of specific energy consumption. The results have revealed antagonistic relationship between the investigated dependent variables. The optimized values of superficial feed velocity and transmembrane pressure were close to the mean values of the investigated value ranges (0.68 bar and 0.96 m/s, respectively), while the optimized value of superficial air velocity had a more narrow distribution around 0.25 m/s. The results of this study have revealed a significant improvement of microfiltration performance by applying air sparging, thus this flux improvement method should be further investigated in downstream processing of different bacterial cultivation broths.

9.
Water Res ; 139: 177-186, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649702

RESUMO

Knowledge of leveraging biomass characteristics is essential for achieving a microbial community with a desired structure to optimize anaerobic bioreactor performance. This study investigates the successive granule transformations in a high-rate anaerobic system with intermittent gas sparging and sequential increases in organic loading rates (OLRs), by establishing the correlations between the granule microstructures and reactor operating parameters. Over the course of a 196-day lab-scale trial, the granules were visualized in various stages using scanning electron microscopy, and digital image processing was applied for further quantifying their surface properties. Correlation analyses revealed that irregularities of the granule microstructures (surface properties, specific surface area and pore volume) emerged at stage 4 when the OLR was 13.31 kg COD/m3·day and in stage 5 in the absence of gas sparging. The loading ratio (substrate surface loading to upward velocity) was identified to be the main parameter controlling the granule transformations, and the surface structures were classified into three categories for further interpretation. Confocal laser scanning microscopy analyses showed that the granule core started to hollow out from stage 4. It is also found that a rough granule surface helped accelerate the growth of the granular diameter under gas sparging. Overall, this study not only establish quantitative correlations between the granules microstructures and reactor operating parameters, but also shed light on the use of intermittent gas sparging to control the surface properties of anaerobic granules in high-rate anaerobic bioreactors.


Assuntos
Anaerobiose , Reatores Biológicos , Biomassa , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos
10.
Appl Microbiol Biotechnol ; 101(17): 6841-6847, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28631221

RESUMO

Fermentation with acetogens can be affected by cultivation gas phase, but to date, there is not enough evidence on that matter for Clostridium thermocellum and Moorella thermoacetica. In this work, the effects of sparged CO2 as well as sparged and non-sparged N2 on these microorganisms were studied using glucose and cellobiose as substrates. It was revealed that sparged CO2 and non-sparged N2 supported growth and acetic acid production by C. thermocellum and M. thermoacetica, while sparged N2 inhibited both of the microorganisms. Notably, part of the sparged CO2 was fermented by the co-culture system and contributed to an overestimation of the products from the actual substrate as well as an erring material balance. The best condition for the co-culture was concluded to be N2 without sparging. These results demonstrate the importance of cultivation conditions for efficient fermentation by anaerobic clostridia species.


Assuntos
Ácido Acético/metabolismo , Clostridium thermocellum/metabolismo , Fermentação , Gases , Moorella/metabolismo , Anaerobiose , Dióxido de Carbono/farmacologia , Celobiose/farmacologia , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/crescimento & desenvolvimento , Técnicas de Cocultura , Glucose/farmacologia , Hidrogênio , Moorella/efeitos dos fármacos , Moorella/crescimento & desenvolvimento , Nitrogênio/farmacologia
11.
Environ Technol ; 38(20): 2562-2572, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27931165

RESUMO

The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m2 h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água/métodos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Filtração , Esgotos , Águas Residuárias
12.
Water Res ; 104: 147-155, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522025

RESUMO

This study proposes a novel approach to resolve the challenging issue of sludge bed clogging in a granular sulfate-reducing upflow sludge bed (GSRUSB) reactor by means of introducing intermittent gas sparging to advance it into a super high-rate anaerobic bioreactor. Over a 196-day lab-scale trial, the GSRUSB system was operated from nominal hydraulic retention time of 4-hr to 40-min and achieved the highest organic loading rate of 13.31 kg COD/m3·day which is substantially greater than the typical loading of 2.0-3.5 kg COD/m3·day in a conventional upflow anaerobic sludge bed reactor treating dilute organic strength wastewater. The average organic removal efficiency and total dissolved sulfide of this system were 90 ± 4.2% and 158 ± 28 mg S/L, while organics residual in the effluent was 34 ± 14 mg COD/L. The control stage (without gas sparging) revealed that the sludge bed clogging happened concomitantly with the significant drop in extracellular polymeric substance content of granular sludge, through relevant chemical measurements and confocal laser scanning microscopy analyses. On the other hand, compared with increasing the effluent recirculation ratio (from 1.4 to 5), the three-dimensional computational fluid dynamics modeling in combination with energy dissipation analysis demonstrated that the gas sparging (at a superficial gas velocity of 0.8 m s-1) can create a 23 times higher liquid shear as well as enhanced particle attrition. Overall, this study not only developed a super high-rate anaerobic bioreactor for saline sewage treatment, but also shed light on the role of intermittent gas sparging in control of sludge bed clogging for anaerobic bioreactors.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Águas Residuárias
13.
J Chem Technol Biotechnol ; 90(3): 384-390, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32313351

RESUMO

BACKGROUND: The enhanced removal of viruses in wastewater treatments plant is important due to concerns about public health. Bacteriophages (or phages) are often used to model the behavior of pathogenic human viruses as they are similar in size, structure and behavior. This study investigated the removal of phages MS-2 (25 nm) and T4 (200 nm) in an anaerobic membrane bioreactor (AnMBR) with a membrane pore size of 0.4 µm. RESULTS: The membrane reactor without biomass was assessed and its log removal was 0.7 ± 0.4 log for the MS-2 phage, and 2.3 ± 0.2 log for the T4. When anaerobic biomass was added to the reactor the log removal for both phages increased, and this was thought to be due to a complex relationship with the biofilm on the membrane. CONCLUSIONS: Overall MS-2 rejections ranged from 1.75 up to 5.5 log, with the highest rejections observed at the highest sparging rates after extensive fouling had occurred. For T4, removal in the AnMBR ranged from 5 log up to complete removal (>log 7). © 2014 Society of Chemical Industry.

14.
Bioresour Technol ; 162: 350-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24768909

RESUMO

Response surface methodology (RSM) and central composite design (CCD) were applied for modeling and optimization of cross-flow microfiltration of Chlorella sp. suspension. The effects of operating conditions, namely transmembrane pressure (TMP), feed flow rate (Qf) and optical density of feed suspension (ODf), on the permeate flux and their interactions were determined. Analysis of variance (ANOVA) was performed to test the significance of response surface model. The effect of gas sparging technique and different gas-liquid two phase flow regimes on the permeate flux was also investigated. Maximum flux enhancement was 61% and 15% for Chlorella sp. with optical densities of 1.0 and 3.0, respectively. These results indicated that gas sparging technique was more efficient in low concentration microalgae microfiltration in which up to 60% enhancement was achieved in slug flow pattern. Additionally, variations in the transmission of exopolysaccharides (EPS) and its effects on the fouling phenomenon were evaluated.


Assuntos
Incrustação Biológica , Filtração/métodos , Gases/análise , Membranas Artificiais , Microalgas/metabolismo , Estatística como Assunto , Análise de Variância , Biopolímeros/análise , Chlorella/metabolismo , Hidrodinâmica , Permeabilidade , Análise de Regressão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA