Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Geochem Health ; 46(11): 432, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316208

RESUMO

Ludhiana, a pollution hot spot in North India, has seen a rapid deterioration in air quality over the years due to urbanization and industrialization. This study interprets the variations of particulate matter (PM) and gaseous pollutants (Nitrogen oxide, Nitrogen dioxide, NOX, Sulphur dioxide, Carbon monoxide, Benzene, Toluene, Ozone, and Ammonia) for the data observed from 2017 to 2023 in Ludhiana. This also covers the analysis focused on capturing the changes that occurred at the times of lockdown imposed during the Coronavirus Disease (COVID-19). The maximum 24-h averaged mass concentration values exceeded the National Ambient Air Quality Standards (NAAQS) of 100 µg/m3 for PM10 concentration and 60 µg/m3 for PM2.5 concentration in 2018 by the factor of 5 and 8. With the onset of the COVID-19 lockdown in 2020 year, PM10 and PM2.5 reached the minimum level while CO, T, O3, and NO2 increased by the factor of 3.9, 1.9, 1.4, and 1.3 from their previous year. This NO2 is a precursor of ozone formation, a higher NO2 to NO ratio observed during the lockdown, confirms the role of nitrogen compounds in the higher ozone formation rate. Based on the NO2/NO ratio, the probability rate of ozone formation determined using survival analysis is observed to be 94% from 2017 to 2023. The local sources' contribution to these air pollutants during Pre-Lockdown, Lockdown, and Post-Lockdown are analyzed using principal component analysis. The impact of the lockdown on ozone concentration sources has been observed. During the Pre- and Post-Lockdown phases, three sources (PC1, PC2, and PC3) were positively identified. Ozone levels are linked to PC3 in these phases, but during the lockdown, a negative loading in PC3 and positive loadings in PC1 and PC2 indicate a decrease in ozone from reduced emissions and an increase from secondary reactions involving nitrogen compounds. Moreover, the Toluene to Benzene concentration ratio is > 2, indicating the source of their origin from industrial emission or other non-traffic sources. Health assessment for the years 2017-2019 reveals a significant decrease in the number of cases of all-cause mortality, ischemic heart disease, stroke, and chronic obstructive pulmonary disease associated with reducing PM2.5 concentrations to national and international standards.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Material Particulado , Índia/epidemiologia , Poluentes Atmosféricos/análise , Material Particulado/análise , COVID-19/epidemiologia , Humanos , Poluição do Ar/análise , Ozônio/análise , Monitoramento Ambiental
2.
Ecotoxicol Environ Saf ; 285: 117046, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39276646

RESUMO

Today, air pollution remains a significant issue, particularly in high-altitude areas where its impact on respiratory disease remains incompletely explored. This study aims to investigate the association between various air pollutants and outpatient visits for respiratory disease in such regions, specifically focussing on Xining from 2016 to 2021. By analysing over 570,000 outpatient visits using a time-stratified case-crossover design and conditional logistic regression, we assessed the independent effects of pollutants like PM2.5, PM10, SO2, NO2, and CO, as well as their interactions. The evaluation of interactions employed measures such as relative excess odds due to interaction (REOI), attributable proportion due to interaction (AP), and synergy index (S). We also conducted a stratified analysis to identify potentially vulnerable populations. Our findings indicated that exposure to PM2.5, PM10, SO2, NO2, and CO significantly increased outpatient visits for respiratory disease, with odds ratios (ORs) of 2.40 % (95 % CI: 2.05 %, 2.74 %), 1.07 % (0.98 %, 1.16 %), 3.86 % (3.23 %, 4.49 %), 4.45 % (4.14 %, 4.77 %), and 6.37 % (5.70 %, 7.04 %), respectively. However, exposure to O3 did not show a significant association. We found significant interactions among PM2.5, SO2, NO2, and CO, where combined exposure further exacerbated the risk of respiratory diseases. For example, in the combination of PM2.5 and SO2, the REOI, AP, and S were 0.07 (95 % CI: 0.06, 0.09), 0.07 (0.06, 0.07), and 1.07 (1.05, 1.09), respectively. Additionally, elderly individuals and females were more sensitive to these pollutants, but no statistically significant interaction effects were observed between different age and gender groups. In conclusion, our study highlights the strong link between air pollution and respiratory disease in high-altitude areas, with combined pollutant exposure posing an even greater risk. It underscores the need for enhanced air quality monitoring and public awareness campaigns, particularly to protect vulnerable populations like the elderly and females.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Altitude , Exposição Ambiental , Material Particulado , Doenças Respiratórias , Humanos , Poluentes Atmosféricos/análise , Feminino , Pessoa de Meia-Idade , Masculino , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Idoso , Adulto , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/induzido quimicamente , Dióxido de Enxofre/análise , Adulto Jovem , Adolescente , Estudos Cross-Over , China/epidemiologia , Criança , Dióxido de Nitrogênio/análise , Modelos Logísticos , Pré-Escolar , Monóxido de Carbono/análise
3.
Talanta ; 280: 126700, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39180872

RESUMO

Epidemiology and public health concerns have primarily relied on the accurate control of gas pollutants, requiring highly efficient gas sensor devices for detecting hazardous gases. Despite the dedication of many efforts in this era, the precise, continuous scrutiny of gases remains elusive for appropriate gas selectivity, prompt response and recovery time, proper repeatability, as well as low cost. Accordingly, nanostructured architectural sensing cues have received enormous attention toward versatile detection and sensing procedures. As a representational nanostructure, the MXene family has been widely introduced to tailor and augment sensor patterns by providing large surface area, tunable surface chemistry, superior electrical conductivity, chemical stability, compatibility with flexible substrates, and potential for multifunctionality. Additionally, they could be synthesized in various formations of film and layered designs, fibrous membranes, and gel-like structures, creating synergetic effects that can provide superior gas-sensing performance. Herein, the synthesis and benefits of MXene nanosheets as gas-sensitive materials, in tandem with the past-to-present progress of MXene-based gas sensors in the formation of films, fibrous, and gel-like configurations, are comprehensively reviewed. As an in-depth reference, the present overview could shed light on further advancing gas sensor architectures developed based on MXene structures.

4.
Sci Rep ; 14(1): 16220, 2024 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003417

RESUMO

Long-term mortality effects of particulate air pollution have been investigated in a causal analytic frame, while causal evidence for associations with gaseous air pollutants remains extensively lacking, especially for carbon monoxide (CO) and sulfur dioxide (SO2). In this study, we estimated the causal relationship of long-term exposure to nitrogen dioxide (NO2), CO, SO2, and ozone (O3) with mortality. Utilizing the data from National Morbidity, Mortality, and Air Pollution Study, we applied a variant of difference-in-differences (DID) method with conditional Poisson regression and generalized weighted quantile sum regression (gWQS) to investigate the independent and joint effects. Independent exposures to NO2, CO, and SO2 were causally associated with increased risks of total, nonaccidental, and cardiovascular mortality, while no evident associations with O3 were identified in the entire population. In gWQS analyses, an interquartile range-equivalent increase in mixture exposure was associated with a relative risk of 1.067 (95% confidence interval: 1.010-1.126) for total mortality, 1.067 (1.009-1.128) for nonaccidental mortality, and 1.125 (1.060-1.193) for cardiovascular mortality, where NO2 was identified as the most significant contributor to the overall effect. This nationwide DID analysis provided causal evidence for independent and combined effects of NO2, CO, SO2, and O3 on increased mortality risks among the US general population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Dióxido de Nitrogênio , Ozônio , Dióxido de Enxofre , Humanos , Estados Unidos/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Dióxido de Enxofre/análise , Dióxido de Enxofre/efeitos adversos , Ozônio/análise , Ozônio/efeitos adversos , Ozônio/toxicidade , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/toxicidade , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Mortalidade , Monóxido de Carbono/análise , Monóxido de Carbono/efeitos adversos , Doenças Cardiovasculares/mortalidade , Material Particulado/efeitos adversos , Material Particulado/análise , Adolescente , Adulto Jovem
5.
J Hazard Mater ; 469: 133871, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428301

RESUMO

Due to the typical volatility of gaseous pollutant methyl mercaptan (CH3SH), the development of a facile, reliable, and accurate onsite environmental surveillance of highly toxic CH3SH faces many challenges, but it is critical to environmental atmosphere assessment and safeguarding public health. Here, we prepared a novel bimetallic carbon dots (Fe&Cu@CDs) nanozyme with high peroxidase-mimicking activity to design a portable hydrogel kit for onsite visual H2O2-self-supplying enzymatic cascade catalytic colorimetric and photothermal signal synergistic amplification dual-modal monitoring of CH3SH in atmospheric environment. Assisted by alcohol oxidase (AOX), CH3SH could be specifically converted into H2O2 for oxidizing chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by Fe&Cu@CDs to produce dark blue ox-TMB with absorption at 652 nm and photothermal characters. Consequently, a CH3SH concentration-dependent change both in naked-eye color and photothermal effect-triggered temperature were observed. By hybridizing AOX-assisted Fe&Cu@CDs + TMB with agarose, a H2O2-self-supplying colorimetric and photothermal signal synergistic amplification sensory hydrogel kit integrated with Color Picker APP-installed smartphone and 660 nm laser-equipped handheld thermal imager for CH3SH was proposed with acceptable results in atmospheric environment around wastepile (e.g., solid waste and food waste piles), which exhibited great potentials to further develop commercial onsite monitoring platforms in warning-early abnormal atmospheric CH3SH for safeguarding environmental health.


Assuntos
Peróxido de Hidrogênio , Eliminação de Resíduos , Carbono , Hidrogéis , Alimentos , Colorimetria/métodos
6.
Environ Monit Assess ; 196(3): 271, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363415

RESUMO

Some studies have shown the effect of air pollution on migraine. However, it needs to be confirmed in larger-scale studies, as scientific evidence is scarce regarding the association between air pollution and migraine. Therefore, this systematic review aims to determine whether there are associations between outdoor air pollution and migraine. A literature search was performed in Scopus, Medline (via PubMed), EMBASE, and Web of Science. A manual search for resources and related references was also conducted to complete the search. All observational studies investigating the association between ambient air pollution and migraine, with inclusion criteria, were entered into the review. Fourteen out of 1417 identified articles met the inclusion criteria and entered the study. Among the gaseous air pollutants, there was a correlation between exposure to nitrogen dioxide (NO2) (78.3% of detrimental relationships) and carbon monoxide (CO) (68.0% of detrimental relationships) and migraine, but no apparent correlation has been found for sulfur dioxide (SO2) (21.2% of detrimental relationships) and ozone (O3) (55.2% of detrimental relationships). In the case of particulate air pollutants, particulate matter with a diameter of 10 µm or less (PM10) (76.0% of detrimental relationships) and particulate matter with a diameter of 2.5 µm or less (PM2.5) (61.3% of detrimental relationships) had relationships with migraine. In conclusion, exposure to NO2, CO, PM10, and PM2.5 is associated with migraine headaches, while no conclusive evidence was found to confirm the correlation between O3 and SO2 with migraine. Further studies with precise methodology are recommended in different cities around the world for all pollutants with an emphasis on O3 and SO2.


Assuntos
Poluição do Ar , Exposição Ambiental , Transtornos de Enxaqueca , Humanos , Poluição do Ar/estatística & dados numéricos , Monóxido de Carbono , Exposição Ambiental/estatística & dados numéricos , Dióxido de Nitrogênio , Ozônio , Material Particulado , Dióxido de Enxofre
7.
Ecotoxicol Environ Saf ; 272: 116109, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364762

RESUMO

Ambient air pollutants exposures may lead to aggravated Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). However, there is still a scarcity of empirical studies that have rigorously estimated this association, especially in regions where air pollution is severe. To fill in the literature gap, we conducted a cross-sectional study involving 2711,207 adults living in five regions of southern Xinjiang Uyghur Autonomous Region in 2021. Using a Space-Time Extra-Trees model, we assessed the four-year (2017-2020) average concentrations of particulate matter with aerodynamic diameter ≤1 µm (PM1), particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), particulate matter with aerodynamic diameter ≤10 µm (PM10), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO), and then assigned these values to the participants. Generalized linear mixed models were employed to examine the relationships between air pollutants and the prevalence of MAFLD, with adjustment for multiple confounding factors. The odds ratios and 95% confidence intervals of MAFLD were 2.002 (1.826-2.195), 1.133 (1.108-1.157), 1.034 (1.027-1.040), 1.077 (1.023-1.134), 2.703 (2.322-3.146) and 1.033 (1.029-1.036) per 10 µg/m3 increase in the 4-year average PM1, PM2.5, PM10, O3, SO2 and CO exposures, respectively. The robustness of the findings was confirmed by a series of sensitivities. In summary, long-term exposure to ambient air pollutants was associated with increased odds of MAFLD, particularly in males and individuals with unhealthy lifestyles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Hepatopatias , Ozônio , Masculino , Adulto , Humanos , Estudos Transversais , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise , China/epidemiologia , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos
8.
Chemosphere ; 350: 140993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141672

RESUMO

BACKGROUND: Ambient air pollution increases the risk of respiratory mortality and morbidity, but evidence concerning effects of air pollution on chronic bronchitis (CB) is scarce. This study aimed to evaluate the associations of a set of air pollutants with the burden of CB, and to explore potential modifiers on the associations. METHODS: In 2020, a total of 6,556,440 adults living in the Northwestern region of China were recruited. The Space-Time Extra-Trees model was employed to assess the annual average concentrations of six air pollutants for the three years (2017-2019) before 2020 , and subsequently allocated to the participants based on the latitude and longitude of their home addresses. We investigated the associations between the levels of various air pollutants and the odds of CB using generalized linear mixed models, and conducted multiple sensitivity analyses and subgroup analyses. RESULTS: The odds of CB displays an approximately linear association with particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), particulate matter with aerodynamic diameter ≤10 µm (PM10), while it shows a non-linear relationship with gaseous pollutants. In the adjusted model, the odds ratios and 95% confidence intervals for CB per 10 µg/m3 increase in PM2.5, PM10, and sulfur dioxide (SO2) were 1.297 (1.262-1.332), 1.072 (1.064-1.080), and 2.587 (2.186-3.063), respectively. Furthermore, several additional sensitivity analyses demonstrated the stability of these associations. Subgroup analyses found that the aforementioned associations were greater among participants aged below 50 years old and those who smoked and had no leisure time exercise. CONCLUSION: Long-term exposure to ambient air pollutants may increase the odds of CB, especially among younger people and those with unhealthy lifestyles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Bronquite Crônica , Poluentes Ambientais , Adulto , Humanos , Idoso , Pessoa de Meia-Idade , Bronquite Crônica/epidemiologia , Bronquite Crônica/etiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , China/epidemiologia , Poluentes Ambientais/análise , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
9.
Environ Sci Technol ; 58(3): 1462-1472, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38155590

RESUMO

The 2021 WHO guidelines stress the importance of measuring ultrafine particles using particle number concentration (PNC) for health assessments. However, commonly used particle metrics such as aerodynamic diameter and number concentrations do not fully capture the diverse chemical makeup of complex particles. To address this issue, our study used high-throughput mass spectrometry to analyze the properties of cooking oil fumes (COFs) in real time and evaluate their impact on BEAS-2B cell metabolism. Results showed insignificant differences in COF number size distributions between soybean oil and olive oil (peak concentrations of 5.20 × 105/cm3), as well as between corn oil and peanut oil (peak concentrations of 4.35 × 105/cm3). Despite the similar major chemical components among the four COFs, variations in metabolic damage were observed, indicating that the relatively small amount of chemical components of COFs can also influence particle behavior within the respiratory system, thereby impacting biological responses. Additionally, interactions between accompanying gaseous COFs and particles may alter their chemical composition through various mechanisms, introducing additional chemicals and modifying existing proportions. Hence, the chemical composition and gaseous components of COFs hold equal importance to the particle number concentration (PNC) when assessing their impact on human health. The absence of these considerations in the current guidelines underscores a research gap. It is imperative to acknowledge that for a more comprehensive approach to safeguarding public health, guidelines must be regularly updated to reflect new scientific findings and robust epidemiological evidence.


Assuntos
Óleos , Material Particulado , Humanos , Material Particulado/análise , Culinária/métodos , Gases/análise , Alimentos
10.
Front Public Health ; 11: 1208514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457252

RESUMO

Objectives: Exposure to air pollution has been linked to an increased risk of premature mortality. However, the acute effects of air pollution on the risk of non-accidental mortality have not been extensively researched in developing countries, and the findings thus far have been inconsistent. Therefore, this study aimed to examine the association between short-term exposure to six pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) and non-accidental mortality in Beijing, China. Methods: Daily data on non-accidental deaths were gathered from 1 January 2017 to 31 December 2018. Air pollution data for the same period were collected from 35 fixed-site air quality monitoring stations in Beijing. Generalized additive models (GAM) based on Poisson regression were used to investigate the association between non-accidental mortality in emergency department visits and the daily average levels of air pollutants. Results: There were 8,676 non-accidental deaths recorded during 2017-2018. After sensitivity analysis, short-term exposure to air pollutants, particularly gaseous pollutants, was linked to non-accidental mortality. Specifically, for every 10 µg/m3 increase (5 µg/m3 in SO2, 0.5 mg/m3 in CO) of SO2 (lag 04), NO2 (lag 04), O3 (lag 05), and CO (lag 04), the relative risk (RR) values were 1.054 (95% CI: 1.009, 1.100), 1.038 (95% CI: 1.013, 1.063), 1.032 (95% CI: 1.011, 1.054), and 1.034 (95% CI: 1.004, 1.066), respectively. In terms of causes of death, short-term exposure to NO2, SO2, and O3 increased the risk of circulatory mortality. Further stratified analysis revealed that the stronger associations were presented in females for O3 while in males for CO. People aged 65 and over were strongly associated with ambient air pollution. Conclusions: Our study showed that ambient air pollutants were associated with non-accidental mortality. Our findings suggested that efforts to control gaseous pollution should be stepped up, and vulnerable groups should be the focus of health protection education.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Masculino , Feminino , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluentes Ambientais/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Serviço Hospitalar de Emergência
11.
Environ Pollut ; 335: 122249, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487872

RESUMO

The tanning sludge (TS) and other tanning solid wastes are produced in significant quantities by the leather industry. To evaluate the combustion properties, acid gaseous pollutant conversion, and ash management, co-firing of TS with various wastes was investigated in a bubbling fluidized bed. TG-FTIR test indicated that tanning solid wastes had superior combustion properties and include more gaseous pollutants than TS. The leather mixed solid waste (LMSW) formed by mixing had better fuel characteristics than TS. The conversion rates of SO2 and HCl of LMSW incineration were 67% and 40%, respectively. The co-combustion of TS and solid wastes reduces the conversion rate of acid gas. Increasing the proportion of high-inorganic chlorine raw material could further reduce the conversion rate and increase the ash fusion temperature appropriately. Because ash and slag were primarily composed of Ca and Fe elements, the addition of calcium carbonate (CaCO3) can increase ash melting point while reducing acid gas emissions. When CaCO3 was added at a calcium to sulfur (Ca/S) ratio of 2, the acid gas emission was reduced by more than 80% and the softening temperature was raised by 90 °C. When Ca/S is greater than 2, the economics of adding CaCO3 decreased.


Assuntos
Poluentes Ambientais , Resíduos Sólidos , Resíduos Sólidos/análise , Incineração , Gases , Cloro , Esgotos , Cinza de Carvão/análise
12.
Environ Sci Pollut Res Int ; 30(31): 76881-76890, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37247141

RESUMO

Air pollution remains a major threat to cardiovascular health and most acute myocardial infarction (AMI) deaths occur at home. However, currently established knowledge on the deleterious effect of air pollution on AMI has been limited to routinely monitored air pollutants and overlooked the place of death. In this study, we examined the association between short-term residential exposure to China's routinely monitored and unmonitored air pollutants and the risk of AMI deaths at home. A time-stratified case-crossover analysis was undertaken to associate short-term residential exposure to air pollution with 0.1 million AMI deaths at home in Jiangsu Province (China) during 2016-2019. Individual-level residential exposure to five unmonitored and monitored air pollutants including PM1 (particulate matter with an aerodynamic diameter ≤ 1 µm) and PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), and O3 (ozone) was estimated from satellite remote sensing and machine learning technique. We found that exposure to five air pollutants, even below the recently released stricter air quality standards of the World Health Organization (WHO), was all associated with increased odds of AMI deaths at home. The odds of AMI deaths increased by 20% (95% confidence interval: 8 to 33%), 22% (12 to 33%), 14% (2 to 27%), 13% (3 to 25%), and 7% (3 to 12%) for an interquartile range increase in PM1, PM2.5, SO2, NO2, and O3, respectively. A greater magnitude of association between NO2 or O3 and AMI deaths was observed in females and in the warm season. The greatest association between PM1 and AMI deaths was found in individuals aged ≤ 64 years. This study for the first time suggests that residential exposure to routinely monitored and unmonitored air pollutants, even below the newest WHO air quality standards, is still associated with higher odds of AMI deaths at home. Future studies are warranted to understand the biological mechanisms behind the triggering of AMI deaths by air pollution exposure, to develop intervention strategies to reduce AMI deaths triggered by air pollution exposure, and to evaluate the cost-effectiveness, accessibility, and sustainability of these intervention strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infarto do Miocárdio , Feminino , Humanos , Dióxido de Nitrogênio/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Infarto do Miocárdio/epidemiologia , China/epidemiologia , Estações do Ano , Exposição Ambiental/análise
13.
Ecotoxicol Environ Saf ; 255: 114802, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934545

RESUMO

OBJECTIVE: We aimed to evaluate the relationship between the composition of particulate matter (PM) and gestational diabetes mellitus (GDM) by a comprehensively review of epidemiological studies. METHODS: We systematically identified cohort studies related to air pollution and GDM risk before February 8, 2023 from six databases (PubMed, Embase, Web of Science Core Collection, China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform and Chongqing VIP Chinese Science and Technology Periodical databases). We calculated the relative risk (RR) and its 95% confidence intervals (CIs) to assess the overall effect by using a random effects model. RESULTS: This meta-analysis of 31 eligible cohort studies showed that exposure to PM2.5, PM10, SO2, and NO2 was associated with a significantly increased risk of GDM, especially in preconception and first trimester. Analysis of the components of PM2.5 found that the risk of GDM was strongly linked to black carbon (BC) and nitrates (NO3-). Specifically, BC exposure in the second trimester and NO3- exposure in the first trimester elevated the risk of GDM, with the RR of 1.128 (1.032-1.231) and 1.128 (1.032-1.231), respectively. The stratified analysis showed stronger correlations of GDM risk with higher levels of pollutants in Asia, except for PM2.5 and BC, which suggested that the specific composition of particulate pollutants had a greater effect on the exposure-outcome association than the concentration. CONCLUSIONS: Our study found that ambient air pollutant is a critical factor for GDM and further studies on specific particulate matter components should be considered in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Gestacional , Gravidez , Feminino , Humanos , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/induzido quimicamente , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Estudos de Coortes , Exposição Ambiental/análise
14.
Environ Sci Pollut Res Int ; 30(12): 32246-32254, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36735120

RESUMO

We conducted a systematic review and meta-analysis of global epidemiological studies of air pollution and angina pectoris, aiming to explore the deleterious air pollutant(s) and vulnerable sub-populations. PubMed and Web of Science databases were searched for eligible articles published between database inception and October 2021. Meta-analysis weighted by inverse-variance was utilized to pool effect estimates based on the type of air pollutant, including particulate matters (PM2.5 and PM10: particulate matter with an aerodynamic diameter ≤ 2.5 µm and ≤ 10 µm), gaseous pollutants (NO2: nitrogen dioxide; CO: carbon monoxide; SO2: sulfur dioxide, and O3: ozone). Study-specific effect estimates were standardized and calculated with percentage change of angina pectoris for each 10 µg/m3 increase in air pollutant concentration. Twelve studies involving 663,276 angina events from Asia, America, Oceania, and Europe were finally included. Meta-analysis showed that each 10 µg/m3 increase in PM2.5 and PM10 concentration was associated with an increase of 0.66% (95%CI: 0.58%, 0.73%; p < 0.001) and 0.57% (95%CI: 0.20%, 0.94%; p = 0.003) in the risk of angina pectoris on the second day of exposure. Adverse effects were also observed for NO2 (0.67%, 95%CI: 0.33%, 1.02%; p < v0.001) on the second day, CO (0.010%, 95%CI: 0.006%, 0.014%; p < 0.001). The elderly and patients with coronary artery disease (CAD) appeared to be at higher risk of angina pectoris. Our findings suggest that short-term exposure to PM2.5, PM10, NO2, and CO was associated with an increased risk of angina pectoris, which may have implications for cardiologists and patients to prevent negative cardiovascular outcomes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Ozônio , Humanos , Idoso , Dióxido de Nitrogênio/análise , Poluentes Ambientais/análise , Populações Vulneráveis , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Ozônio/análise , Angina Pectoris/epidemiologia , Angina Pectoris/induzido quimicamente
15.
J Environ Sci (China) ; 123: 65-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522015

RESUMO

Air pollutant emissions represent a critical challenge in the green development of the non-ferrous metallurgy industry. This work studied the emission characteristics, formation mechanisms, phase transformation and separation of typical air pollutants, such as heavy metal particles, mercury, sulfur oxides and fluoride, during non-ferrous smelting. A series of purification technologies, including optimization of the furnace throat and high-temperature discharge, were developed to collaboratively control and recover fine particles from the flue gas of heavy metal smelting processes, including copper, lead and zinc. Significant improvements have been realized in wet scrubbing technology for removing mercury, fluoride and SO2 from flue gas. Gas-liquid sulfidation technology by applying H2S was invented to recycle the acid scrubbing wastewater more efficiently and in an eco-friendly manner. Based on digital technology, a source reduction method was designed for sulfur and fluoride control during the whole aluminum electrolysis process. New desulfurization technologies were developed for catalytic reduction of the sulfur content in petroleum coke at low temperature and catalytic reduction of SO2 to elemental sulfur. This work has established the technology for coupling multi-pollutant control and resource recovery from the flue gas from non-ferrous metallurgy, which provides the scientific theoretical basis and application technology for the treatment of air pollutants in the non-ferrous metallurgy industry.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Mercúrio , Gases , Fluoretos , Metalurgia , Poluentes Atmosféricos/análise , Mercúrio/análise , Enxofre , Tecnologia , Poluição do Ar/prevenção & controle
16.
Crit Rev Biotechnol ; 43(7): 1019-1034, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001040

RESUMO

Hazardous airborne pollutants are frequently emitted to the atmosphere in the form of a gaseous mixture. Air biofilters as the primary biotechnological choice for waste gas treatment (low inlet concentration and high gas flow rate) should run properly when the feed contains multiple pollutants. Simultaneous removal of pollutants in biofilters has been extensively studied over the last 10 years. In this review, the results and findings of the mentioned studies including different groups of pollutants, such as methane (CH4) and volatile organic compounds (VOCs) are discussed. As the number of pollutants in a mixture increases, their elimination might become more complicated due to interactions between the pollutants. Parallel batch studies might be helpful to better understand these interaction effects in the absence of mass transfer limitations. Setting optimum operating conditions for removal of mixtures in biofilters is challenging because of opposing properties of pollutants. In biofilters, concerns, such as inlet gas composition variation and stability while dealing with abrupt inlet load and concentration changes, must be managed especially at industrial scales. Biofilters designed with multi-layer beds, allow tracking the fate of each pollutant as well as analyzing the diversity of microbial culture across the filter bed. Certain strategies are recommended to improve the performance of biofilters treating mixtures. For example, addition of (bio)surfactants as well as a second liquid phase in biotrickling filters might be considered for the elimination of multiple pollutants especially when hydrophobic pollutants are involved.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36293925

RESUMO

BACKGROUND: Stroke has always been an important problem troubling human health. Short-term exposure to air pollutants is associated with increased hospital admissions. The rise of pollutants such as O3 has caused a huge social and economic burden. This study aims to explore the relationship between short-term exposure to ambient gaseous pollutants and daily hospitalizations for ischemic stroke, utilizing a four-year time-series study in Tianjin. METHODS: Collecting the data of gaseous pollutants (NO2, SO2, CO, O3), meteorological data (including daily average temperature and relative humidity) and the number of hospitalizations due to ischemic stroke in Tianjin Medical University General Hospital from 2013 to 2016. Poisson regression generalized additive model with single-day and multi-day moving average lag structure was used to estimate adverse effects of gaseous pollutants on daily hospitalizations. Subgroup analysis was performed to detect modification effect by gender and age. RESULTS: In total, there were 9081 ischemic stroke hospitalizations. After controlling for the meteorological factors in the same period, no significant findings were found with the increase of NO2, SO2, CO and O3 concentrations at most of the time in the single-pollutant model. Similarly, in the stratified analysis, no associations between gaseous pollutants and ischemic stroke were observed in this study. CONCLUSIONS: Short-term exposure to NO2, SO2, CO and O3 was not distinctly associated with daily hospitalizations for ischemic stroke in Tianjin. Multicenter studies in the future are warranted to explore the associations between gaseous pollution exposure and ischemic stroke.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , AVC Isquêmico , Humanos , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Enxofre/análise , Hospitalização , China/epidemiologia , Material Particulado/análise
18.
Environ Int ; 170: 107591, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36279736

RESUMO

BACKGROUND: Growing studies suggest that air pollution exposure is an emerging driver for neurological diseases, but existing evidence on the association between air pollution and epilepsy is scarce. Here, we aimed to quantitatively estimated the short-term effects of various air pollutants on childhood epilepsy hospitalizations in China. METHODS: We obtained daily electronic health records on childhood epilepsy hospitalizations and air pollutants (PM2.5, PM10-2.5, PM10, SO2, NO2, O3) from 2016 through 2018 in 10 cities of Anhui Province in China. In the first stage, a space-time-stratified case-crossover analysis was employed to evaluate the short-term association of childhood epilepsy hospitalizations with each air pollutant in Anhui Province. In the second stage, short-term effect of air pollution on childhood epilepsy morbidity reported in Anhui Province and in previous studies was pooled with a random-effect meta-analysis model to get the overall effect of different air pollutants in eastern China. RESULTS: This study included 8,181 childhood epilepsy patients from 10 cities in Anhui province of China. The first stage case-crossover analysis in Anhui province found significant associations between higher concentrations of all air pollutants (except O3) and increased risk of childhood epilepsy hospitalizations. Each 10 µg/m3 increase in PM2.5, PM10-2.5, PM10, SO2, and NO2 concentrations was associated with an increase of 1.1 % [95 % confidence interval (CI): 0.1 %-2.1 %], 1.7 % (95 %CI: 0.5 %-2.9 %), 0.8 % (95 %CI: 0.1 %-1.4 %), 8.5 % (95 %CI: 1.5 %-16.0 %), and 4.3 % (95 %CI: 2.3 %-6.3 %) in epilepsy hospitalizations, respectively. We also observed greater effects of particulate matter in cold season. The second stage meta-analysis that additionally included two prior studies with 43,002 patients from other 11 cities found a marginally significant increase in childhood epilepsy attacks associated with PM2.5, PM10, and NO2 in eastern China. CONCLUSIONS: Short-term exposure to both particulate matter and gaseous air pollution was associated with an increased risk of childhood epilepsy exacerbation in eastern China. Our findings suggest that air pollution exposure especially in cold season needs to be considered by children's parents or guardians to prevent epilepsy attacks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Epilepsia , Criança , Humanos , Cidades , China/epidemiologia , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Epilepsia/epidemiologia
19.
Build Environ ; : 109586, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36105610

RESUMO

Building design for natural ventilation and indoor air quality have become increasingly important during the past decades. Investigating airflow routes of airborne transmission and evaluating the potential infection risk in the multi-storey building is helpful to the reduction of airborne transmission. Therefore, this study applies computational fluid dynamics simulations to investigate the inter-unit dispersion pattern of gaseous pollutant between different units through semi-shaded openings. The airflow exchange and pollutant dispersion in a multi-storey building is driven by wind-induced natural ventilation. External shading louvers, which are widely used in building facades to reduce heat gain from solar radiation, are chosen to establish the semi-shaded environment. Experimental validation is performed to make sure the accuracy of numerical settings in airflow investigation of semi-shaded openings. The airflow characteristics around semi-shaded openings is analyzed in the numerical simulations. The re-entry ratio of tracer gas and the airborne infection risk of COVID-19 is investigated in the cases with different louvers' locations and source units. The results show that the airflow is commonly slower in the semi-shaded space between louvers and openings. But the ventilation rate is not always consistent with the airflow speed because of the diversion effect from louver slats. The inter-unit infectious risk in the worst unit rises from 7.82% to 26.17% for windward shading, while it rises from 7.89% to 22.52% for leeward shading. These results are helpful to the further understanding of inter-unit transmission of infectious respiratory aerosols through external openings with complex structures.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36141854

RESUMO

Ambient air pollutants reportedly increase inflammatory responses associated with multiple chronic diseases. We investigated the effects of long-term exposure to ambient air pollution on high-sensitivity C-reactive protein (hs-CRP) using data from 60,581 participants enrolled in the Korean Genome and Epidemiology Study-Health Examinees Study between 2012 and 2017. Community Multiscale Air Quality System with surface data assimilation was used to estimate the participants' exposure to criteria air pollutants based on geocoded residential addresses. Long-term exposure was defined as the 2-year moving average concentrations of PM10, PM2.5, SO2, NO2, and O3. Multivariable linear and logistic regression models were utilized to estimate the percent changes in hs-CRP and odds ratios of systemic low-grade inflammation (hs-CRP > 3 mg/L) per interquartile range increment in air pollutants. We identified positive associations between hs-CRP and PM10 (% changes: 3.75 [95% CI 2.68, 4.82]), PM2.5 (3.68, [2.57, 4.81]), SO2 (1.79, [1.10, 2.48]), and NO2 (3.31, [2.12, 4.52]), while negative association was demonstrated for O3 (-3.81, [-4.96, -2.65]). Elevated risks of low-grade inflammation were associated with PM10 (odds ratio: 1.07 [95% CI 1.01, 1.13]), PM2.5 (1.08 [1.02, 1.14]), and SO2 (1.05 [1.01, 1.08]). The odds ratios reported indicated that the exposures might be risk factors for inflammatory conditions; however, they did not reflect strong associations. Our findings suggest that exposure to air pollutants may play a role in the inflammation process.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Ozônio , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Proteína C-Reativa/metabolismo , Estudos Transversais , Poeira , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Inflamação/induzido quimicamente , Inflamação/epidemiologia , Dióxido de Nitrogênio/análise , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA