Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.540
Filtrar
1.
ACS Appl Mater Interfaces ; 16(37): 49701-49710, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39239734

RESUMO

Van der Waals heterostructures open up vast possibilities for applications in optoelectronics, especially since it was recognized that the optical properties of transition-metal dichalcogenides (TMDC) can be enhanced by adjacent hBN layers. However, although many micrometer-sized structures have been fabricated, the bottleneck for applications remains the lack of large-area structures with electrically tunable photoluminescence emission. In this study, we demonstrate the electrical charge carrier tuning for large-area epitaxial MoSe2 grown directly on epitaxial hBN. The structure is produced in a multistep procedure involving Metalorganic Vapor Phase Epitaxy (MOVPE) growth of large-area hBN, a wet transfer of hBN onto a SiO2/Si substrate, and the subsequent Molecular Beam Epitaxy (MBE) growth of monolayer MoSe2. The electrically induced change of the carrier concentration is deduced from the evolution of well-resolved charged and neutral exciton intensities. Our findings show that it is feasible to grow large-area, electrically addressable, high-optical-quality van der Waals heterostructures.

2.
Cell Rep ; 43(9): 114731, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39269901

RESUMO

The Arabidopsis thaliana aluminum-activated malate transporter 9 (AtALMT9) functions as a vacuolar chloride channel that regulates the stomatal aperture. Here, we present the cryoelectron microscopy (cryo-EM) structures of AtALMT9 in three distinct states. AtALMT9 forms a dimer, and the pore is lined with four positively charged rings. The apo-AtALMT9 state shows a putative endogenous citrate obstructing the pore, where two W120 constriction residues enclose a gate with a pore radius of approximately 1.8 Å, representing an open state. Interestingly, channel closure is solely controlled by W120. Compared to wild-type plants, the W120A mutant exhibits more sensitivity to drought stress and is unable to restore the visual phenotype on leaves upon water recovery, reflecting persistent stomatal opening. Furthermore, notable variations are noted in channel gating and substrate recognition of Glycine max ALMT12, AtALMT9, and AtALMT1. In summary, our investigation enhances comprehension of the interplay between structure and function within the ALMT family.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vacúolos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Vacúolos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/genética , Microscopia Crioeletrônica , Mutação , Modelos Moleculares , Ativação do Canal Iônico , Canais de Cloreto
3.
Proc Natl Acad Sci U S A ; 121(40): e2404829121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39298473

RESUMO

Mechanical force controls the opening and closing of mechanosensitive ion channels atop the hair bundles of the inner ear. The filamentous tip link connecting transduction channels to the tallest neighboring stereocilium modulates the force transmitted to the channels and thus changes their probability of opening. Each tip link comprises four molecules: a dimer of protocadherin 15 (PCDH15) and a dimer of cadherin 23, all of which are stabilized by Ca2+ binding. Using a high-speed optical trap to examine dimeric PCDH15, we find that the protein's mechanical properties are sensitive to Ca2+ and that the molecule exhibits limited unfolding at a physiological Ca2+ concentration. PCDH15 can therefore modulate its stiffness without undergoing large unfolding events under physiological conditions. The experimentally determined stiffness of PCDH15 accords with published values for the stiffness of the gating spring, the mechanical element that controls the opening of mechanotransduction channels. When PCDH15 exhibits a point mutation, V507D, associated with nonsyndromic hearing loss, unfolding events occur more frequently under tension and refolding events occur less often than for the wild-type protein. Our results suggest that the maintenance of appropriate tension in the gating spring is critical to the appropriate transmission of force to transduction channels, and hence to hearing.


Assuntos
Proteínas Relacionadas a Caderinas , Caderinas , Humanos , Proteínas Relacionadas a Caderinas/química , Proteínas Relacionadas a Caderinas/metabolismo , Caderinas/metabolismo , Caderinas/genética , Caderinas/química , Cálcio/metabolismo , Orelha Interna/metabolismo , Mecanotransdução Celular , Mutação , Pinças Ópticas , Mutação Puntual , Multimerização Proteica , Precursores de Proteínas , Desdobramento de Proteína
4.
Artigo em Inglês | MEDLINE | ID: mdl-39329316

RESUMO

Biological ion channels exhibit exceptional gating capabilities for regulated transport and filtration across cell membranes. This study explores similar gating functions in artificial nanopores using graphene membranes. By applying direct voltage, we can dynamically control ion distribution around nanopores, allowing for real-time triggering, dynamic flow control, and adaptability to varying pore sizes. We investigate electrostatic modulation of ion transport in a stacked nanoporous graphene configuration, which mitigates defects from growth and transfer processes. Nanopores are created using oxygen plasma, enabling fine-tuning of ion transport. External voltage enhances ion conductivity at positive voltages and reduces it at negative voltages, demonstrating significant modulation by the surface potential-induced electric double layer (EDL). Voltage-dependent ion enrichment and depletion within the nanopores affect the effective surface charge density, facilitating controllable ion sieving. Results show that nanopores, with sizes comparable to hydrated ion diameters, achieve high and tunable voltage-gating functionality, enabling efficient on-demand ion transport. Voltage-gating effectively tunes ion selectivity in multilayer stacked graphene membranes, with negative voltages impeding divalent cations and positive voltages mimicking biological K+ nanochannels. This research lays the foundation for developing nanopores with tunable ion selectivity for applications in energy conversion, ion separation, and nanofluidics.

5.
Front Psychol ; 15: 1446240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315043

RESUMO

The temporal dynamics of the perception of within-word coarticulatory cues remain a subject of ongoing debate in speech perception research. This behavioral gating study sheds light on the unfolding predictive use of anticipatory coarticulation in onset fricatives. Word onset fricatives (/f/ and /s/) were split into four gates (15, 35, 75 and 135 milliseconds). Listeners made a forced choice about the word they were listening to, based on the stimulus gates. The results showed fast predictive use of coarticulatory lip rounding during /s/ word onsets, as early as 15 ms from word onset. For /f/ onsets, coarticulatory backness and height began to be used predictively after 75 ms. These findings indicate that onset times of the occurrence and use of coarticulatory cues can be extremely fast and have a time course that differs depending on fricative type.

6.
Nano Lett ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316522

RESUMO

Borophene stands out among elemental two-dimensional materials due to its extraordinary physical properties, including structural polymorphism, strong anisotropy, metallicity, and the potential for phonon-mediated superconductivity. However, confirming superconductivity in borophene experimentally has been evasive to date, mainly due to the detrimental effects of metallic substrates and its susceptibility to oxidation. In this study, we present an ab initio analysis of superconductivity in the experimentally synthesized hydrogenated ß12 borophene, which has been proven to be less prone to oxidation. Our findings demonstrate that hydrogenation significantly enhances both the stability and superconducting properties of ß12 borophene. Furthermore, we reveal that tensile strain and hole doping, achievable through various experimental methods, significantly enhance the critical temperature, reaching up to 29 K. These findings not only promote further fundamental research on superconducting borophene and its heterostructures, but also position hydrogenated borophene as a versatile platform for low-dimensional superconducting electronics.

7.
Adv Mater ; : e2406145, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221543

RESUMO

Large-scale application of low-cost, high-safety and environment-compatible aqueous Zn metal batteries (ZMBs) is hindered by Zn dendrite failure and side reactions. Herein, highly reversible ZMBs are obtained by addition of trace D-pantothenate calcium additives to engineer a dual-functional interfacial layer, which is enabled by a bioinspired gating effect for excluding competitive free water near Zn surface due to the trapping and immobilization of water by hydroxyl groups, and guiding target Zn2+ transport across interface through carboxyl groups of pantothenate anions, as well as a dynamic electrostatic shielding effect around Zn protuberances from Ca2+ cations to ensure uniform Zn2+ deposition. In consequence, interfacial side reactions are perfectly inhibited owing to reduced water molecules reaching Zn surface, and the uniform and compact deposition of Zn2+ is achieved due to promoted Zn2+ transport and deposition kinetics. The ultra-stable symmetric cells with beyond 9000 h at 0.5 mA cm-2 with 0.5 mAh cm-2 and over 5000 h at 5 mA cm-2 with 1 mAh cm-2, and an average Coulombic efficiency of 99.8% at 1 mA cm-2 with 1 mAh cm-2, are amazingly realized. The regulated-electrolyte demonstrates high compatibility with verified cathodes for stable full cells. This work opens a brand-new pathway to regulate Zn/electrolyte interface to promise reversible ZMBs.

8.
Adv Exp Med Biol ; 1461: 109-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39289277

RESUMO

Voltage-gated proton channel (Hv) has activity of proton transport following electrochemical gradient of proton. Hv is expressed in neutrophils and macrophages of which functions are physiologically temperature-sensitive. Hv is also expressed in human sperm cells and regulates their locomotion. H+ transport through Hv is both regulated by membrane potential and pH difference across biological membrane. It is also reported that properties of Hv such as proton conductance and gating are highly temperature-dependent. Hv consists of the N-terminal cytoplasmic domain, the voltage sensor domain (VSD), and the C-terminal coiled-coil domain, and H+ permeates through VSD voltage-dependently. The functional unit of Hv is a dimer via the interaction between C-terminal coiled-coils assembly domain. We have reported that the coiled-coil domain of Hv has the nature of dissociation around our bodily temperature and mutational change of the coiled-coil affected temperature-sensitive gating, especially its temperature threshold. The temperature-sensitive gating is assessed from two separate points: temperature threshold and temperature dependence. In this chapter, I describe physiological roles and molecular structure mechanisms of Hv by mainly focusing on thermosensitive properties.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Prótons , Temperatura , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/química , Canais Iônicos/genética , Animais , Potenciais da Membrana/fisiologia , Concentração de Íons de Hidrogênio , Domínios Proteicos
9.
Chembiochem ; : e202400558, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268973

RESUMO

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate (donor substrate) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand-gated mechanism in which binding of a small molecule "trigger" activates the first enzyme-bound intermediate, C2α-lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d-GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d-glyceraldehyde (d-GA) can induce LThDP decarboxylation. We hypothesize this ligand-gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α-hydroxy aldehyde moiety of d-GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.

10.
Sci Rep ; 14(1): 20499, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227377

RESUMO

Imaging the internal architecture of fast-vibrating structures at micrometer scale and kilohertz frequencies poses great challenges for numerous applications, including the study of biological oscillators, mechanical testing of materials, and process engineering. Over the past decade, X-ray microtomography with retrospective gating has shown very promising advances in meeting these challenges. However, breakthroughs are still expected in acquisition and reconstruction procedures to keep improving the spatiotemporal resolution, and study the mechanics of fast-vibrating multiscale structures. Thereby, this works aims to improve this imaging technique by minimising streaking and motion blur artefacts through the optimisation of experimental parameters. For that purpose, we have coupled a numerical approach relying on tomography simulation with vibrating particles with known and ideal 3D geometry (micro-spheres or fibres) with experimental campaigns. These were carried out on soft composites, imaged in synchrotron X-ray beamlines while oscillating up to 400 Hz, thanks to a custom-developed vibromechanical device. This approach yields homogeneous angular sampling of projections and gives reliable predictions of image quality degradation due to motion blur. By overcoming several technical and scientific barriers limiting the feasibility and reproducibility of such investigations, we provide guidelines to enhance gated-CT 4D imaging for the analysis of heterogeneous, high-frequency oscillating materials.

11.
Sci Rep ; 14(1): 20470, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227678

RESUMO

In order to ensure the filling integrity of complex counter-gravity casting and improve metallurgical quality, it is necessary to shorten the filling time while avoiding air entrainments. To address this contradiction, a novel nonlinear pressurization method was proposed in this study. Through systematically analyzing the relationship between critical gating velocity and stable filling height, a criterion for iterative calculation of nonlinear pressurization curve was established, and an empirical expression between nonlinear pressurizing speed and the filling height was obtained. Based on the empirical expression, a nonlinear pressurization curve can be designed according to the casting structures and initial pressurizing speeds. The above nonlinear pressure curve design method was validated through water filling experiments. It was proved that the nonlinear pressure curve can shorten the filling time while avoiding air entrainments. It provides important processing control method for improving the low-pressure casting performance of complex castings.

12.
Phys Imaging Radiat Oncol ; 31: 100623, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39224689

RESUMO

Real-time tumor-tracking volumetric modulated arc therapy (RT-VMAT) enabling beam-gating based on continuous X-ray tracking of the three-dimensional position of internal markers is relevant for moving tumors. Dose-volume characteristics and treatment time were evaluated in ten consecutive patients who underwent liver stereotactic body radiation therapy with RT-VMAT. Target dose conformity and sparing of the stomach and the intestine were improved comparing RT-VMAT with RT-3D conformal radiotherapy. The mean treatment time for each fraction was less than 10 min. RT-VMAT could be effective, especially for targets located adjacent to organs at risk.

13.
Diagnostics (Basel) ; 14(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39272732

RESUMO

Cardiac magnetic resonance imaging (MRI) is widely used for non-invasive assessment of cardiac morphology, function, and tissue characteristics due to its exquisite soft-tissue contrast. However, it remains time-consuming and requires proficiency, making it costly and limiting its widespread use. Traditional cardiac MRI is inefficient as signal acquisition is often limited to specific cardiac phases and requires complex view planning, parameter adjustments, and management of both respiratory and cardiac motion. Recent efforts have aimed to make cardiac MRI more efficient and accessible. Among these innovations, the free-running framework enables 5D whole-heart imaging without the need for an electrocardiogram signal, respiratory breath-holding, or complex planning. It uses a fully self-gated approach to extract cardiac and respiratory signals directly from the acquired image data, allowing for more efficient coverage in time and space without the need for electrocardiogram gating, triggering, navigators, or breath-holds. This review provides a comprehensive overview of the free-running framework, detailing its history, concepts, recent improvements, and clinical applications.

14.
Indian J Nucl Med ; 39(3): 177-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39291077

RESUMO

Purpose: The blur introduced by breathing motion degrades the diagnostic accuracy of whole-body F-18 fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) in lesions adjacent to the diaphragm by increasing the apparent size and by decreasing their metabolic activity. This study aims to evaluate the efficacy of motion correction by four-dimensional phase-based respiratory-gated (RG) 18F-FDG PET-CT in improving metabolic parameters of lesions adjacent to the diaphragm (especially in the lungs or liver). Materials and Methods: Eighteen patients with known lung or liver lesions underwent conventional 18F-FDG PET-CT and respiratory-gated PET-CT acquisition of the desired region using a pressure-sensing, phase-based respiratory-gating system. Maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained for these lesions from gated and nongated PET-CT images for analysis. Furthermore, a visual analysis of lesions was done. Statistics: Statistical significance of the RG image parameters was assessed by the two-tailed paired Student's t test and confirmed with the robust nonparametric Wilcoxon's signed-rank test (two-tailed asymptotic). Results: There was an overall significant increase in SUVmax (P 0.001) in all gating methods with a percentage increase maximum of about 18.13%. On gating methods, MTV decreased significantly (P = 0.001) than that of nongating method (maximum reduction of about 32.9%). There was a significant difference (P = 0.02) in TLG between gated and nongated methods. Conclusion: Motion correction with phase-based respiratory gating improves the diagnostic value of 18F-FDG PET-CT imaging for lung and liver lesions by more accurate delineation of the lesion volume and quantitation of SUV and can thus impact staging, diagnosis as well as management in selected patients.

15.
HardwareX ; 19: e00574, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39291288

RESUMO

Ion mobility spectrometry is an emerging technology in trace gas analysis that has moved from typical safety and security applications to many other fields ranging from environmental and food quality monitoring to medicine and life sciences. Nevertheless, further dissemination, including the development of new instruments and the expansion into new fields of application requires the availability of the fundamental components of ion mobility spectrometers. For example, the electronics is essential for the analytical performance, but is only provided by specialized manufacturers due to specific requirements. In this paper, we present a modular, isolated high-voltage switch that can be operated at an isolated potential. The modular design enables tailoring its configuration to the required application. Each module can switch a voltage of up to 3 kV, and can be operated with an offset voltage of up to 7 kV. The switch has rise and fall times of less than 25 ns, making it suitable for a wide range of applications, e.g., in ion mobility spectrometry. Finally, the presented modular, isolated high-voltage switch was used in a push-pull configuration to generate the injection pulse of the ion gate. The new modular, isolated high-voltage switch shows similar performance compared to a commercially available high-voltage switch.

16.
Elife ; 122024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259196

RESUMO

The KCNH family of potassium channels serves relevant physiological functions in both excitable and non-excitable cells, reflected in the massive consequences of mutations or pharmacological manipulation of their function. This group of channels shares structural homology with other voltage-gated K+ channels, but the mechanisms of gating in this family show significant differences with respect to the canonical electromechanical coupling in these molecules. In particular, the large intracellular domains of KCNH channels play a crucial role in gating that is still only partly understood. Using KCNH1(KV10.1) as a model, we have characterized the behavior of a series of modified channels that could not be explained by the current models. With electrophysiological and biochemical methods combined with mathematical modeling, we show that the uncovering of an open state can explain the behavior of the mutants. This open state, which is not detectable in wild-type channels, appears to lack the rapid flicker block of the conventional open state. Because it is accessed from deep closed states, it elucidates intermediate gating events well ahead of channel opening in the wild type. This allowed us to study gating steps prior to opening, which, for example, explain the mechanism of gating inhibition by Ca2+-Calmodulin and generate a model that describes the characteristic features of KCNH channels gating.


Assuntos
Canais de Potássio Éter-A-Go-Go , Ativação do Canal Iônico , Ativação do Canal Iônico/fisiologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Animais , Domínios Proteicos , Mutação , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/química
17.
Diagnostics (Basel) ; 14(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39335734

RESUMO

Background: The outstanding capabilities of modern Positron Emission Tomography (PET) to highlight small tumor lesions and provide pathological function assessment are at peril from image quality degradation caused by respiratory and cardiac motion. However, the advent of the long axial field-of-view (LAFOV) scanners with increased sensitivity, alongside the precise time-of-flight (TOF) of modern PET systems, enables the acquisition of ultrafast time resolution images, which can be used for estimating and correcting the cyclic motion. Methods: 0.25 s so-called [18F]FDG PET histo image series were generated in the scope of for detecting respiratory and cardiac frequency estimates applicable for performing device-less data-driven gated image reconstructions. The frequencies of the cardiac and respiratory motion were estimated for 18 patients using Short Time Fourier Transform (STFT) with 20 s and 30 s window segments, respectively. Results: The Fourier analysis provided time points usable as input to the gated reconstruction based on eight equally spaced time gates. The cardiac investigations showed estimates in accordance with the measured pulse oximeter references (p = 0.97) and a mean absolute difference of 0.4 ± 0.3 beats per minute (bpm). The respiratory frequencies were within the expected range of 10-20 respirations per minute (rpm) in 16 out of 18 patients. Using this setup, the analysis of three patients with visible lung tumors showed an increase in tumor SUVmax and a decrease in tumor volume compared to the non-gated reconstructed image. Conclusions: The method can provide signals that were applicable for gated reconstruction of both cardiac and respiratory motion, providing a potential increased diagnostic accuracy.

18.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39337278

RESUMO

The chemical gating of gap junction channels is mediated by cytosolic calcium (Ca2+i) at concentrations ([Ca2+]i) ranging from high nanomolar (nM) to low micromolar (µM) range. Since the proteins of gap junctions, connexins/innexins, lack high-affinity Ca2+-binding sites, most likely gating is mediated by a Ca2+-binding protein, calmodulin (CaM) being the best candidate. Indeed, the role of Ca2+-CaM in gating is well supported by studies that have tested CaM blockers, CaM expression inhibition, testing of CaM mutants, co-localization of CaM and connexins, existence of CaM-binding sites in connexins/innexins, and expression of connexins (Cx) mutants, among others. Based on these data, since 2000, we have published a Ca2+-CaM-cork gating model. Despite convincing evidence for the Ca2+-CaM role in gating, a recent study has proposed an alternative gating model that would involve a direct electrostatic Ca2+-connexin interaction. However, this study, which tested the effect of unphysiologically high [Ca2+]i on the structure of isolated junctions, reported that neither changes in the channel's pore diameter nor connexin conformational changes are present, in spite of exposure of isolated gap junctions to [Ca2+]i as high at the 20 mM. In conclusion, data generated in the past four decades by multiple experimental approaches have clearly demonstrated the direct role of Ca2+-CaM in gap junction channel gating.


Assuntos
Cálcio , Calmodulina , Conexinas , Junções Comunicantes , Ativação do Canal Iônico , Eletricidade Estática , Calmodulina/metabolismo , Calmodulina/química , Junções Comunicantes/metabolismo , Cálcio/metabolismo , Humanos , Conexinas/metabolismo , Conexinas/química , Conexinas/genética , Animais , Sítios de Ligação , Ligação Proteica
19.
BMC Psychiatry ; 24(1): 558, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138461

RESUMO

BACKGROUND: Tactile sensitivity and sensory overload in ADHD are well-documented in clinical-, self-, and parent- reports, but empirical evidence is scarce and ambiguous and focuses primarily on children. Here, we compare both empirical and self-report tactile sensitivity and ADHD symptomatology in adults with ADHD and neurotypical controls. We evaluate whether tactile sensitivity and integration is more prevalent in ADHD and whether it is related to ADHD symptom severity. METHODS: Somatosensory evoked potential (SEP) amplitudes were measured in 27 adults with ADHD and 24 controls during four conditions (rest, stroking of the own arm, stroking of the arm by a researcher, and stroking of an object). Participants also filled out questionnaires on tactile sensitivity and ADHD symptoms and performed a Qb-test as an objective measure of ADHD symptom severity. RESULTS: Participants with ADHD self-reported greater tactile sensitivity and ADHD symptom severity than controls and received higher scores on the Qb-test. These values correlated with one another. ADHD participants showed lower tolerable threshold for electrical radial nerve stimulus, and greater reduction in cortical SEP amplitudes during additional tactile stimuli which was correlated with ADHD symptoms. CONCLUSIONS: We find that ADHD symptomatology and touch sensitivity are directly linked, using both self-reports and experimental measures. We also find evidence of tactile sensory overload in ADHD, and an indication that this is linked to inattention specifically. Tactile sensitivity and sensory overload impact the functioning and life quality of many people with ADHD, and clinicians should consider this when treating their patients.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Potenciais Somatossensoriais Evocados , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Masculino , Feminino , Potenciais Somatossensoriais Evocados/fisiologia , Adulto , Percepção do Tato/fisiologia , Tato/fisiologia , Autorrelato , Índice de Gravidade de Doença , Adulto Jovem
20.
Front Cardiovasc Med ; 11: 1411752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145279

RESUMO

Introduction: 4D flow cardiovascular magnetic resonance (CMR) is a versatile technique to non-invasively assess cardiovascular hemodynamics. With developing technology, choice in sequences and acquisition parameters is expanding and it is important to assess if data acquired with these different variants can be directly compared, especially when combining datasets within research studies. For example, sequences may allow a choice in gating techniques or be limited to one method, yet there is not a direct comparison investigating how gating selection impacts quantifications of the great vessels, semilunar and atrioventricular valves and ventricles. Thus, this study investigated if quantifications across the heart from contemporary 4D flow sequences are comparable between two commonly used 4D flow sequences reliant on different ECG gating techniques. Methods: Forty participants (33 healthy controls, seven patients with coronary artery disease and abnormal diastolic function) were prospectively recruited into a single-centre observational study to undergo a 3T-CMR exam. Two acquisitions, a k-t GRAPPA 4D flow with prospective gating (4Dprosp) and a modern compressed sensing 4D flow with retrospective gating (4Dretro), were acquired in each participant. Images were analyzed for volumes, flow rates and velocities in the vessels and four valves, and for biventricular kinetic energy and flow components. Data was compared for group differences with paired t-tests and for agreement with Bland-Altman and intraclass correlation (ICC). Results: Measurements primarily occurring during systole of the great vessels, semilunar valves and both left and right ventricles did not differ between acquisition types (p > 0.05 from t-test) and yielded good to excellent agreement (ICC: 0.75-0.99). Similar findings were observed for the majority of parameters dependent on early diastole. However, measurements occurring in late diastole or those reliant on the entire-cardiac cycle such as flow component volumes along with diastolic kinetic energy values were not similar between 4Dprosp and 4Dretro acquisitions resulting in poor agreement (ICC < 0.50). Discussion: Direct comparison of measurements between two different 4D flow acquisitions reliant on different gating methods demonstrated systolic and early diastolic markers across the heart should be compatible when comparing these two 4D flow sequences. On the other hand, late diastolic and intraventricular parameters should be compared with caution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA