Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275610

RESUMO

Atmospheric phase error is the main factor affecting the accuracy of ground-based synthetic aperture radar (GB-SAR). The atmospheric phase screen (APS) may be very complicated, so the atmospheric phase correction (APC) model is very important; in particular, the parameters to be estimated in the model are the key to improving the accuracy of APC. However, the conventional APC method first performs phase unwrapping and then removes the APS based on the least-squares method (LSM), and the general phase unwrapping method is prone to introducing unwrapping error. In particular, the LSM is difficult to apply directly due to the phase wrapping of permanent scatterers (PSs). Therefore, a novel methodology for estimating parameters of the APC model based on the maximum likelihood estimation (MLE) and the Gauss-Newton algorithm is proposed in this paper, which first introduces the MLE method to provide a suitable objective function for the parameter estimation of nonlinear far-end and near-end correction models. Then, based on the Gauss-Newton algorithm, the parameters of the objective function are iteratively estimated with suitable initial values, and the Matthews and Davies algorithm is used to optimize the Gauss-Newton algorithm to improve the accuracy of parameter estimation. Finally, the parameter estimation performance is evaluated based on Monte Carlo simulation experiments. The method proposed in this paper experimentally verifies the feasibility and superiority, which avoids phase unwrapping processing unlike the conventional method.

2.
Sensors (Basel) ; 22(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502064

RESUMO

This study addressed the problem of localization in an ultrawide-band (UWB) network, where the positions of both the access points and the tags needed to be estimated. We considered a fully wireless UWB localization system, comprising both software and hardware, featuring easy plug-and-play usability for the consumer, primarily targeting sport and leisure applications. Anchor self-localization was addressed by two-way ranging, also embedding a Gauss-Newton algorithm for the estimation and compensation of antenna delays, and a modified isolation forest algorithm working with low-dimensional set of measurements for outlier identification and removal. This approach avoids time-consuming calibration procedures, and it enables accurate tag localization by the multilateration of time difference of arrival measurements. For the assessment of performance and the comparison of different algorithms, we considered an experimental campaign with data gathered by a proprietary UWB localization system.


Assuntos
Esportes , Tecnologia sem Fio , Algoritmos , Computadores , Tecnologia
3.
Materials (Basel) ; 15(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35329526

RESUMO

Thermal conductivity is one of the most important thermophysical properties of a melt-cast explosive. However, the temperature-dependent thermal conductivity of such explosives cannot be easily measured across the whole solidification process (including the liquid, semi-solid, and solid states). This study used an inverse analysis method to estimate the temperature-dependent thermal conductivity of a 2,4-dinitroanisole/cyclotetramethylenetetranitramine (DNAN/HMX) melt-cast explosive in a continuous way. The method that was used is described here in detail, and it is verified by comparing the estimated thermal conductivity with a prespecified value using simulated measurement temperatures, thereby demonstrating its effectiveness. Combining this method with experimentally measured temperatures, the temperature-dependent thermal conductivity of the DNAN/HMX melt-cast explosive was obtained. Some measured thermal conductivity values for this explosive in the solid state were used for further validation.

4.
Sensors (Basel) ; 18(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659492

RESUMO

Digital image correlation (DIC)-based stereo 3D shape measurement is a kind of single-shot method, which can achieve high precision and is robust to vibration as well as environment noise. The efficiency of DIC has been greatly improved with the proposal of inverse compositional Gauss-Newton (IC-GN) operators for both first-order and second-order warp functions. Without the algorithm itself, both the registration accuracy and efficiency of DIC-based stereo matching for shapes with different complexities are closely related to the selection of warp function, subset size, and convergence criteria. Understanding the similarity and difference of the impacts of prescribed subset size and convergence criteria on first-order and second-order warp functions, and how to choose a proper warp function and set optimal subset size as well as convergence criteria for different shapes are fundamental problems in realizing efficient and accurate 3D shape measurement. In this work, we present a comparative analysis of first-order and second-order warp functions for DIC-based 3D shape measurement using IC-GN algorithm. The effects of subset size and convergence criteria of first-order and second-order warp functions on the accuracy and efficiency of DIC are comparatively examined with both simulation tests and real experiments. Reference standards for the selection of warp function for different kinds of 3D shape measurement and the setting of proper convergence criteria are recommended. The effects of subset size on the measuring precision using different warp functions are also concluded.

5.
Med Phys ; 44(9): e174-e187, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28901616

RESUMO

PURPOSE: Exploiting the x-ray measurements obtained in different energy bins, spectral computed tomography (CT) has the ability to recover the 3-D description of a patient in a material basis. This may be achieved solving two subproblems, namely the material decomposition and the tomographic reconstruction problems. In this work, we address the material decomposition of spectral x-ray projection images, which is a nonlinear ill-posed problem. METHODS: Our main contribution is to introduce a material-dependent spatial regularization in the projection domain. The decomposition problem is solved iteratively using a Gauss-Newton algorithm that can benefit from fast linear solvers. A Matlab implementation is available online. The proposed regularized weighted least squares Gauss-Newton algorithm (RWLS-GN) is validated on numerical simulations of a thorax phantom made of up to five materials (soft tissue, bone, lung, adipose tissue, and gadolinium), which is scanned with a 120 kV source and imaged by a 4-bin photon counting detector. To evaluate the method performance of our algorithm, different scenarios are created by varying the number of incident photons, the concentration of the marker and the configuration of the phantom. The RWLS-GN method is compared to the reference maximum likelihood Nelder-Mead algorithm (ML-NM). The convergence of the proposed method and its dependence on the regularization parameter are also studied. RESULTS: We show that material decomposition is feasible with the proposed method and that it converges in few iterations. Material decomposition with ML-NM was very sensitive to noise, leading to decomposed images highly affected by noise, and artifacts even for the best case scenario. The proposed method was less sensitive to noise and improved contrast-to-noise ratio of the gadolinium image. Results were superior to those provided by ML-NM in terms of image quality and decomposition was 70 times faster. For the assessed experiments, material decomposition was possible with the proposed method when the number of incident photons was equal or larger than 105 and when the marker concentration was equal or larger than 0.03 g·cm-3 . CONCLUSIONS: The proposed method efficiently solves the nonlinear decomposition problem for spectral CT, which opens up new possibilities such as material-specific regularization in the projection domain and a parallelization framework, in which projections are solved in parallel.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Artefatos , Humanos , Imagens de Fantasmas , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA