RESUMO
Aim: This study focused on evaluating the influence of geometric dimensions on the drug release kinetics of 3D-printed tablets.Materials & methods: An ink based on Gelucire 50/13 was prepared to print ivermectin-loaded tablets. The ink was characterized physicochemically and tablet dissolution tests were carried out.Results: The results confirmed the suitability of the ink for 3D printing at a temperature >46°C. Changes in the crystallinity of ivermectin were observed without chemical interactions with the polymer. 3D printed tablets with varied proportional sizes showed dual behavior in their release profiles, while tablets with only thickness reduction exhibited zero-order kinetics.Conclusion: These findings highlight the versatility of 3D printing to create systems with specific and customized release profiles.
[Box: see text].
Assuntos
Liberação Controlada de Fármacos , Ivermectina , Impressão Tridimensional , Comprimidos , Ivermectina/química , Ivermectina/farmacocinética , Ivermectina/administração & dosagem , Cinética , Solubilidade , Química Farmacêutica/métodosRESUMO
OBJECTIVES: The utilization of pharmaceutical products in pediatric medicine, while established for use in adults, often presents uncertainties due to differences in application for children. The FDA discourages the use of local anesthetic gels, notably lidocaine, for teething pain in pediatrics due to concerns regarding potential adverse effects if inadvertently swallowed excessively. Therefore, significant attention is being directed towards modifying available marketed products to make them suitable for pediatric use. Here, we introduce mucoadhesive patches that not only have an adjusted dose of lidocaine but also feature a controlled release profile to manage teething pain with prolonged effect. This design helps to prevent issues related to gel liquefaction and swallowing, thereby reducing the potential hazardous side effects of lidocaine in the pediatric population. METHODS: The study involved the development of controlled-release lidocaine HCl-loaded pellets forming a matrix for inclusion in mucoadhesive patches. Characterization was performed to ensure prolonged drug release, particularly during overnight use, aiming to improve pediatric patient compliance and enable precise dosing. KEY FINDINGS: The mucoadhesive patches exhibited sustained lidocaine release lasting 24 h, potentially offering overnight relief suitable for pediatric application. The analysis of lidocaine content revealed that the developed patches maintained stable levels compared to doses obtained from commercially available oral gels. This finding implies effective pain control without the need for frequent reapplications, alongside controlled doses that decrease the likelihood of side effects. CONCLUSION: The formulated medicated patches demonstrated consistent lidocaine content, effectively controlled drug release, and consequently, reduced the likelihood of undesired side effects when compared to oral gel administration.
Assuntos
Anestésicos Locais , Preparações de Ação Retardada , Géis , Lidocaína , Mucosa Bucal , Lidocaína/administração & dosagem , Anestésicos Locais/administração & dosagem , Humanos , Criança , Administração Bucal , Mucosa Bucal/metabolismo , Mucosa Bucal/efeitos dos fármacos , Liberação Controlada de Fármacos , Adesividade , Odontalgia/tratamento farmacológicoRESUMO
(20 S)-Ginsenoside Rh2 is a natural saponin derived from Panax ginseng Meyer (P. ginseng), which showed significantly potent anticancer properties. However, its low water solubility and bioavailability strongly restrict its pharmaceutical applications. The aim of current research is to develop a modified (20 S)-Ginsenoside Rh2 formulation with high solubility, dissolution rate and bioavailability by combined computational and experimental methodology. The "PharmSD" model was employed to predict the optimal polymer for (20 S)-Ginsenoside Rh2 solid dispersion formulations. The solubility of (20 S)-Ginsenoside Rh2 in various polymers was assessed, and the optimal ternary solid dispersion was evaluated across different dissolution mediums. Characterization techniques included the Powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). Molecular dynamics simulations were employed to elucidate the formation mechanism of the solid dispersion and the interactions among active pharmaceutical ingredient (API) and excipient molecules. Cell and animal experiments were conducted to evaluate the in vivo performance of the modified formulation. The "PharmSD" solid dispersion model identified Gelucire 44/14 as the most effective polymer for enhancing the dissolution rate of Rh2. Subsequent experiment also confirmed that Gelucire 44/14 outperformed the other selected polymers. Moreover, the addition of the third component, sodium dodecyl sulfate (SDS), in the ternary solid dispersion formulation significantly amplified dissolution rates than the binary systems. Characterization experiments revealed that the API existed in an amorphous state and interacted via hydrogen bonding with SDS and Gelucire. Moreover, molecular modeling results provided additional evidence of hydrogen bonding interactions between the API and excipient molecules within the optimal ternary solid dispersion. Cell experiments demonstrated efflux ratio (EfR) of Rh2 ternary solid dispersion was lower than that of pure Rh2. In vivo experiments revealed that the modified formulation substantially improved the absorption of Rh2 in rats. Our research successfully developed an optimal ternary solid dispersion for Rh2 with high solubility, dissolution rate and bioavailability by integrated computational and experimental tools. The combination of Artificial Intelligence (AI) technology and molecular dynamics simulation is a wise way to support the future formulation development.
RESUMO
Three-dimensional (3D) printing is quickly being adopted in pharmaceutics due to the many advantages it offers, including treatment, adaptability, the reduction in waste and the accelerated development of new formulations. In this study, micro-extrusion printing was implemented for the production of modified-release hydrocortisone (HCT) mini-tablets for paediatric patients. For the developed formulations, Gelucire® 44/14 and Precirol® ATO 5 were used as the main inks at three different ratios: 70%/30%, 60%/40% and 50%/50%, respectively. The printing parameters (temperature and pressure) were altered accordingly for each ratio to achieve printability. The printed mini-tablets exhibited excellent printing quality, featuring consistent layer thicknesses and smooth surfaces. Dissolution tests were performed, and the results indicated a successful modified release of HCT from the mini-tablets. In summary, micro-extrusion exhibited favourable processing abilities for powder blends, facilitating quick printing and the fabrication of potential personalized dosages.
RESUMO
Itraconazole (ITZ) is a renowned antifungal medication, however its therapeutic efficacy is limited by low solubility and oral bioavailability. The current research work attempted to augment the oral bioavailability of ITZ by incorporating into self-emulsifying micelles (SEMCs). To fabricate the SEMCs, various preparation techniques including physical mixture, melt-emulsification, solvent evaporation and kneading, were opted by using different weight ratio of drug and solubilizers i.e. Gelucire-50/13 or Gelucire-44/14 and characterized both in vitro and in vivo. The prepared SEMCs were found to be in the size range from 63.4 ± 5.2 to 284.2 ± 19.5 nm with surface charges ranging from -16 ± 1.2 to -27 ± 2.0 mV. The drug solubility was improved to a reasonable extent with all investigated formulations, however, SEMCs in group 6 prepared by kneading method (KMG6) using Gelucire-44/14: drug (10:1 presented 87.6 folds' increase (964.93 ± 2 µg/mL) compared to solubility of crystalline ITZ (11 ± 2 µg/mL) through kneading method. In addition, KMG6 SEMCs shows the fast drug release compared to other SEMCs. Further, KMG6 SEMCs also exhibited 5.12-fold higher relative intestinal serosal fluid absorption compared to crystalline ITZ. The pharmacokinetic parameters such Cmax, AUC and Tmax of KMG6 SEMCs significantly improved compared to crystalline ITZ. In conclusion, the manipulation of ITZ solubility, dissolution rate and absorption using SEMCs is a promising strategy for bioavailability enhancement.
RESUMO
Vitamin B12 (VB12) is a vital micronutrient to maintain the normal state of the hematopoietic system. It must be obtained from the diet since the human body cannot synthesize it. Moreover, the absorption of VB12 needs to be mediated by intrinsic factor on the gastrointestinal (GI) track. The abnormalities in the stomach or lack of such intrinsic factors may result in poor oral absorption of VB12. However, the very advanced formulation strategies were generally very costly and still in the development stage. Thus, the objectives of the present study were to increase the VB12 intestinal absorption by conventional excipients of Gelucire 44/14 (G44/14) or Labrasol, which could be potentially formulated as a cost effect balanced product. The in vitro Caco-2 cell model was applied for the absorption study. A novel VB12 solid dispersion was subsequently prepared and further characterized by Differential scanning calorimetry, Fourier transform infrared spectroscopy, and Scanning electron microscopy, respectively. The membrane permeability of the VB12 solid dispersion was finally evaluated using ex vivo rat everted gut sac method. The results suggested that G44/14 could significantly enhance the intestinal absorption of VB12 via P-glycoprotein inhibition in vitro (P < 0.01). The membrane permeability of VB12could be significantly (P < 0.01) improved by G44/14-VB12 solid dispersion at a proportion of carrier: drug ratio of 20:1.The liquidfied solid dispersion was finally directly filled in the hard gelatin capsules. In conclusion, the cheap and simplified process of VB12 complex prepared by G44/14 could potentially increase VB12 intestinal absorption, which may be liable to commercial manufacturing.
RESUMO
To enhance the oral bioavailability of atorvastatin calcium (ATV), a novel solidified micelle (S-micelle) was developed. Two surfactants, Gelucire 48/16 (G48) and Tween 20 (T20), were employed for micelle formation, and two solid carriers (SC), Florite PS-10 (FLO) and Vivapur 105 (VP105), were selected as solid carriers. The S-micelle was optimized using a Box-Behnken design with three independent variables, including G48:T20 (X1, 1.8:1), SC:G48 + T20 (X2, 0.65:1), and FLO:VP105 (X3, 1.4:0.6), resulting in a droplet size (Y1) of 198.4 nm, dissolution efficiency at 15 min in the pH 1.2 medium (Y2) of 47.6%, Carr's index (Y3) of 16.9, and total quantity (Y4) of 562.5 mg. The optimized S-micelle resulted in good correlation showing percentage prediction values less than 10%. The optimized S-micelle formed a nanosized dispersion in the aqueous phase, with a higher dissolution rate than raw ATV and crushed Lipitor®. The optimized S-micelle improved the relative bioavailability of oral ATV (25 mg equivalent/kg) in rats by approximately 509 and 271% compared to raw ATV and crushed Lipitor®, respectively. In conclusion, the optimized S-micelle possesses great potential for the development of solidified formulations for improved oral absorption of poorly water-soluble drugs.
Assuntos
Sistemas de Liberação de Medicamentos , Micelas , Ratos , Animais , Atorvastatina , Sistemas de Liberação de Medicamentos/métodos , Disponibilidade Biológica , Projetos de Pesquisa , Química Farmacêutica/métodos , Solubilidade , Emulsões , Polissorbatos , Tamanho da Partícula , Administração OralRESUMO
The goal was to scrutinize niosomes as potential carriers for enhanced efficacy of norfloxacin against Toxoplasma gondii RH strain. This was assessed in vitro and in vivo. Standard niosomes of Span 60 and cholesterol were prepared. Gelucire 48/16 or Tween 80 was incorporated as hydrophilic fluidizer. The prepared vesicles were characterized for shape, size, viscosity and norfloxacin release. The in vitro anti-Toxoplasma was assessed by monitoring tachyzoites viability after incubation with niosomes. In vivo efficacy of niosomes encapsulated norfloxacin was evaluated on infected mice. Transmission electron micrographs showed nano-sized spherical vesicles. Norfloxacin release varied with niosomal composition to show faster liberation in presence of fluidizing agent. The half maximum effective concentration of norfloxacin against tachyzoites (EC50) was significantly reduced after niosomal encapsulation compared with simple drug solution with no significant difference between vesicular formulations. Tachyzoite count in the peritoneal fluid of infected mice was reduced by 45.2, 90.8, 88.3 and 84% after treatment with simple drug dispersion, standard niosomes, Gelucire containing and Tween containing vesicles, respectively compared to infected untreated mice. These results correlate with the in vitro data and reflects the efficacy of niosomes. The study introduced surfactant vesicles as a tool for enhanced efficacy of norfloxacin against toxoplasma.
Assuntos
Lipossomos , Tensoativos , Camundongos , Animais , Norfloxacino/farmacologia , Polissorbatos , Composição de Medicamentos , Tamanho da PartículaRESUMO
The current study was designed to formulate ternary solid dispersions (TSDs) of dexibuprofen (Dex) by solvent evaporation to augment the solubility and dissolution profile, in turn providing gastric protection and effective anti-inflammatory activity. Initially, nine formulations (S1 to S9) of binary solid dispersions (BSDs) were developed. Formulation S1 comprising a 1:1 weight ratio of Dex and Syloid 244FP® was chosen as the optimum BSD formulation due to its better solubility profile. Afterward, 20 TSD formulations were developed using the optimum BSD. The formulation containing Syloid 244FP® with 40% Gelucire 48/16® (S18) and Poloxamer 188® (S23) successfully enhanced the solubility by 28.23 and 38.02 times, respectively, in pH 6.8, while dissolution was increased by 1.99- and 2.01-fold during the first 5 min as compared to pure drug. The in vivo gastroprotective study in rats suggested that the average gastric lesion index was in the order of pure Dex (8.33 ± 2.02) > S1 (7 ± 1.32) > S18 (2.17 ± 1.61) > S23 (1.83 ± 1.04) > control (0). The in vivo anti-inflammatory study in rats revealed that the percentage inhibition of swelling was in the order of S23 (71.47 ± 2.16) > S18 (64.8 ± 3.79) > S1 (54.14 ± 6.78) > pure drug (18.43 ± 2.21) > control (1.18 ± 0.64) after 6 h. ELISA results further confirmed the anti-inflammatory potential of the developed formulation, where low levels of IL-6 and TNF alpha were reported for animals treated with S23. Therefore, S23 could be considered an effective formulation that not only enhanced the solubility and bioavailability but also reduced the gastric irritation of Dex.
RESUMO
Objectives: The aim of the investigation was to prepare sustained release (SR) pellets of diltiazem hydrochloride employing almond gum and gelucire. The study was performed to explore the suitability of almond gum in the preparation of pellets of diltiazem hydrochloride without the use of microcrystalline cellulose and role and effectiveness of hydrophobic gelucire (43/01) in controlling the drug release. Materials and Methods: Pellets were prepared by extrusion-spheronization of the blend previously obtained by incorporation of the drug in a mixture of melted gelucire 43/01 and almond gum. A 32 factorial design was employed to study the effect of two independent variables, almond gum and gelucire, on the size, friability and drug release from pellets. Scanning electron microscopy, differential scanning calorimetry and infrared spectroscopy were performed to characterize pellets. Results: Free flowing spherical pellets could be prepared. The 32 factorial study revealed that as the proportion of almond gum increased, the size of pellets increased, while increasing gelucire had opposite effect. The yield of pellets prepared in different formulations is in the range of 86 to 92%. The size of the pellets varied from 1128 to 1458 µ. Higher amounts of gelucire resulted in pellets with greater friability, whereas increasing the amount of almond gum yielded pellets with low friability. The pellets exhibited SR of diltiazem and the presence of gelucire in the matrix of the pellets had an enhanced sustaining effect on release. Conclusion: Dispersion of the drug in gelucire before it was converted to pellets resulted in extended release of drug. The drug release rate changed with changes in the proportion of pellet composition. The results of the study suggest that employing gelucire (43/01) in the preparation of pellets is a useful approach in the design of SR products of highly water-soluble drug such as diltiazem hydrochloride.
RESUMO
The aim of this study was to improve the solubility and prevent the ulcerogenic effect of flurbiprofen. Initially, binary and ternary solid dispersions (BSDs and TSDs) of flurbiprofen were prepared by using non-ordered mesoporous silica and gelucire. After preformulation testing (solubility, flow properties, % yield, and entrapment efficiency), four formulations were selected for further detailed studies. Solid-state characterization of optimized formulations (S1, S6, S7, and S12) showed successful drug incorporation in the solid dispersion at the molecular state without any noticeable interactions. The in vitro solubility and release study showed an increase in solubility and 98-100% of drug release in 30-45 min. The in vivo gastro-protective effect of the optimized formulations containing flurbiprofen and silica (1:1) with 25% w/w gelucire (S6 and S12) showed a reduction in the gastric lesion index (GLI) after four days of treatment. Moreover, histological images of the stomach lining (S6 and S12) illustrated normal epithelial cells and a partially protected mucosal membrane. Thus, TSD exhibited a significant increase in solubility and the dissolution rate and reduced the gastric ulceration. Therefore, TSDs are dubbed as efficacious carriers to enhance the bioavailability of flurbiprofen while simultaneously reducing its side effects.
RESUMO
PURPOSE: 3D printing (3DP) makes it possible to obtain systems that are not achievable with current conventional methods, one of them, sustained release floating systems. Floating systems using ricobendazole (RBZ) as a model drug and a combination of polymers were designed and obtained by melt solidification printing technique (MESO-PP). METHODS: Four different MESO-PP inks were formulated based on combinations of the polymers Gelucire 43/01 and Gelucire 50/13 in different ratios. For each of the formulated inks, physicochemical characterization was performed by thermal analysis (thermogravimetric analysis [TGA] and differential scanning calorimetry [DSC]), fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD). Pharmaceutical characterization was performed by in vitro assays to determine pharmaceutically relevant parameters. These parameters were calculated by applying mathematical models developed to evaluate in vitro drug release profiles. On the other hand, a physiologically based pharmacokinetic (PBPK) model was developed to predict the in vivo performance of RBZ loaded in the different inks by determining the Cmax, and the AUC0-∞. RESULTS: By increasing the proportion of Gelucire 50/13 co-surfactant in the mixtures (the proportion in Ink 1 was 33%, while the proportion in Ink 4 was 80%), the dissolution capacity of RBZ increases substantially, decreasing flotation times. CONCLUSION: MESO-PP produced ink 1 (50% Gelucire 43/01, 25% Gelucire 50/13 and 25% RBZ), which has a zero-order release (RR = 0.180%/min) and the longest flotation time (545 ± 23 min), and in turn would produce a significant increase in oral absorption of the drug, with an AUC0-∞ 2.16-fold higher than that obtained in animals treated with RBZ loaded in conventional tablets.
Assuntos
Excipientes , Tinta , Albendazol/análogos & derivados , Animais , Preparações de Ação Retardada/química , Excipientes/química , Polímeros , Impressão Tridimensional , Tensoativos , ComprimidosRESUMO
This work aimed to develop water-based formulations for onychomycosis topical treatment using micelles of small pegylated surfactants associated with α-cyclodextrin (αCD) to deliver terbinafine to the nail. Kolliphor® RH40 (RH40) and Gelucire® 48/16 (GEL) single and mixed micelles (RH40:GEL 1:1) were prepared. αCD was added to the surfactants dispersions to form poly(pseudo)rotaxanes (PPR). Formulations were characterized in terms of drug solubilization (3 to 34-fold increase), particle size (9-11 nm) and Z-potential (+0.3 - +1.96 mV), blood compatibility (non-hemolytic), rheological behavior (solid-like viscoelastic properties after 5-10% αCD addition), drug release and interaction with the nail plate. GEL micelles and surfactant-10% αCD PPRs notably hydrated the nail plate. The high viscosity of PPR led to a slower drug release, except for RH40:GEL +10% αCD that surprisingly released terbinafine faster. The RH40:GEL +10% αCD formulation delivered twice more amount of terbinafine to deeper regions of nail plate compared to other formulations. The results evidenced the potential of PPR formed by small pegylated surfactants as a water-based formulation for nail drug delivery.
RESUMO
INTRODUCTION: Clarithromycin (antibiotic), due to its narrow absorption window in the gastrointestinal tract, was taken as a model drug. MATERIALS AND METHODS: Focusing on the efficient drug delivery system, floating tablets that remain buoyant over gastric fluid for 24 hrs were produced by adopting the melt mold method using beeswax, gelucire, and oleic acid. To modulate the release pattern, a different concentration of 48/16 of beeswax and gelucire was used. RESULTS: To evaluate and characterize the final product, several tests, including the percentage recovery, in-vitro release studies, clarithromycin loading, scanning electron microscopy, differential scanning calorimeter, X-ray powder diffractometry, fourier transform infrared spectroscopy, weight variation, hardness, and friability, were carried out. Regarding the results, the encapsulation efficiency of the floating tablets was 39.5% to 59%, having weight variation with and without gelucire as 48/16 0.09525±0.0032g, and 0.09527±0.00286g to 0.0957±0.00321g, respectively. Clarithromycin release was controlled by using hydrophobic beeswax and hydrophilic gelucire 48/16. X-ray powder diffractometry, differential scanning calorimeter, and fourier transform infrared spectroscopy confirmed the absence of drug-polymer interaction, and exhibited amorphous and crystalline form of the drug after encapsulation. Drug release kinetics was determined by applying different models, such as zero-order, first-order model, Higuchi, and Korsemeyer-Pappas model. All formulations followed the Korsmeyer- Peppas model at 1.2 pH. CONCLUSION: Gastroretentive drug delivery systems were produced by using melt molding technique. In vitro dissolution represents the sustained release of the drug from the formulation.
Assuntos
Claritromicina , Ácido Oleico , Pós , Antibacterianos , Liberação Controlada de Fármacos , Comprimidos/química , Preparações de Ação Retardada/química , SolubilidadeRESUMO
Gentian (Gentiana lutea L., Gentianaceae) root extract (GRE) is used for the treatment of gastrointestinal disorders. However, its bioactive potential is limited in conventional forms due to the low bioavailability and short elimination half-life of the dominant bioactive compound, gentiopicroside. The aim of study was to encapsulate GRE in the lipid-based gastroretentive delivery system that could provide high yield and encapsulation efficiency, as well as the biphasic release of gentiopicroside from the tablets obtained by direct compression. Solid lipid microparticles (SLM) loaded with GRE were prepared by freeze-drying double (W/O/W) emulsions, which were obtained by a multiple emulsion-melt dispersion technique, with GRE as the inner water phase, Gelucire® 39/01 or 43/01, as lipid components, with or without the addition of porous silica (Sylysia® 350) in the outer water phase. Formulated SLM powders were examined by SEM and mercury intrusion porosimetry, as well as by determination of yield, encapsulation efficiency, and flow properties. Furthermore, in vitro dissolution of gentiopicroside, the size of the dispersed systems, mechanical properties, and mucoadhesion of tablets obtained by direct compression were investigated. The results have revealed that SLM with the macroporous structure were formulated, and, consequently, the powders floated immediately in the acidic medium. Formulation with porous silica (Sylysia® 350) and Gelucire® 43/01 as a solid lipid was characterized with the high yield end encapsulation efficiency. Furthermore, the mucoadhesive properties of tablets obtained by direct compression of that formulation, as well as the biphasic release of gentiopicroside, presence of nanoassociates in dissolution medium, and optimal mechanical properties indicated that a promising lipid-based gastroretentive system for GRE was developed.
RESUMO
The oral bioavailability of curcumin is limited, attributed to its low solubility or dissolution and poor absorption. Herein, the study describes formulation of curcumin-loaded mixed micelles of Gelucire® 48/16 and TPGS for its dissolution rate enhancement. Curcumin was dispersed in these molten lipidic surfactants which was then adsorbed on carrier and formulated as pellets by extrusion spheronization. Critical micelle concentration (CMC) of binary mixture of Gelucire® 48/16 and TPGS was lower than their individual CMC demonstrating the synergistic behavior of mixture. Thermodynamic parameters like partition coefficient and Gibbs free energy of solubilization indicated that mixed micelles were more efficient than micelles of its individual components in curcumin solubilization. Dynamic light scattering (DLS) suggested slight increase in micellar size of mixed micelles than its components suggesting curcumin loading in mixed micelles. Fourier transform infrared spectroscopy (FTIR) revealed that phenolic hydroxyl group interacts with lipids which contribute to its enhanced solubility. Furthermore, the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) study indicated the conversion of crystalline curcumin into amorphous form. In the pellet formulation, Gelucire® 48/16 acted as a binder and eliminated the requirement of additional binder. Microcrystalline cellulose (MCC) forms wet mass and retards the release of curcumin from pellets. Increase in concentration of water-soluble diluent increased drug release. The optimized formulation released more than 90% drug and maintains supersaturation level of curcumin for 2 h. Thus, mixed micellar system was effective delivery system for curcumin while pellet formulation is an interesting formulation strategy consisting semi-solid lipids.
Assuntos
Curcumina/síntese química , Micelas , Polietilenoglicóis/síntese química , Ácidos Polimetacrílicos/síntese química , Vitamina E/síntese química , Disponibilidade Biológica , Curcumina/farmacocinética , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Excipientes/síntese química , Excipientes/farmacocinética , Polietilenoglicóis/farmacocinética , Ácidos Polimetacrílicos/farmacocinética , Solubilidade , Vitamina E/farmacocinética , Difração de Raios X/métodosRESUMO
Atorvastatin (ATV) is a poorly water-soluble drug that exhibits poor oral bioavailability. Therefore, present research was designed to develop ATV solid dispersions (SDs) to enhance the solubility, drug release, and oral bioavailability. Various SDs of ATV were formulated by conventional and microwave-induced melting methods using Gelucire®48/16 as a carrier. The formulated SDs were characterized for different physicochemical characterizations, drug release, and oral bioavailability studies. The results obtained from the different physicochemical characterization indicate the molecular dispersion of ATV within various SDs. The drug polymer interaction results showed no interaction between ATV and used carrier. There was marked enhancement in the solubility (1.95-9.32 folds) was observed for ATV in prepared SDs as compare to pure ATV. The drug content was found to be in the range of 96.19% ± 2.14% to 98.34% ± 1.32%. The drug release results revealed significant enhancement in ATV release from prepared SDs compared to the pure drug and the marketed tablets. The formulation F8 showed high dissolution performance (% DE30 value of 80.65 ± 3.05) among the other formulations. Optimized Gelucire®48/16-based SDs formulation suggested improved oral absorption of atorvastatin as evidenced with improved pharmacokinetic parameters (Cmax 2864.33 ± 573.86 ng/ml; AUC0-t 5594.95 ± 623.3 ng/h ml) as compared to ATV suspension (Cmax 317.82 ± 63.56 ng/ml; AUC0-t 573.94 ± 398.9 ng/h ml) and marketed tablets (Cmax 852.72 ± 42.63 ng/ml; 4837.4 ± 174.7 ng/h ml). Conclusively, solid dispersion-based oral formulation of atorvastatin could be a promising approach for enhanced drug solubilization, dissolution, and subsequently improved absorption.
Assuntos
Atorvastatina/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Administração Oral , Animais , Atorvastatina/sangue , Atorvastatina/química , Disponibilidade Biológica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Técnicas In Vitro , Ratos , Solubilidade , ComprimidosRESUMO
Purpose: Microemulsion (ME) achieved progressing consequences on both the research and industry levels due to their distinctive properties. ME based-limonene system is considered as a surrogate to the traditional microemulsion composed of conventional oils. Thus, a novel microemulsion based on D-limonene and Gelucire® 44/12 had been designed and evaluated with assessing the factors affecting its physicochemical characteristics and in vivo skin irritation. Methods: The impact of microemulsion components and ratios on the isotropic region of the pseudo-ternary phase diagram was investigated. The optimal formula was evaluated in terms of percentage transmittance, average globule size, size distribution, zeta potential, microscopical morphology, stability under different storage conditions and its effect on the mice ear skin. Results: The results demonstrated that Labrasol® and Labrafil® M 1944 CS had been selected as surfactant and co-surfactant, respectively, due to their emulsifying abilities. The largest isotropic area in the pseudo-ternary phase diagram was at a weight ratio of 4:1 for Labrasol® and Labrafil® M 1944 CS. The optimized microemulsion with 25% w/w of the lipid phase and 58.3% w/w of the aqueous phase displayed an optical transparency of 96.5±0.88 %, average globule size of 125±0.123 nm, polydispersity index of 0.272±0.009, zeta potential of -18.9± 2.79 mV with rounded globules morphology and high stability. The in vivo skin irritation and the histopathological evaluation of microemulsion elucidated its safety profile when applied on the skin. Conclusion: The formulated microemulsion is a prospective aid for an essential oil to minimize its volatility, enhance its stability, and mask its dermal irritant.
RESUMO
The aim of this study was the optimization of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in terms of physicochemical and biopharmaceutical properties, to develop effective and stable aqueous liquid formulations of hydrochlorothiazide, suitable for paediatric therapy, overcoming its low-solubility and poor-stability problems. Based on solubility studies, Precirol® ATO5 and Transcutol® HP were used as solid and liquid lipids, respectively. The effect of different surfactants, also in different combinations and at different amounts, on particle size, homogeneity and surface-charge of nanoparticles was carefully investigated. The best formulations were selected for drug loading, and evaluated also for entrapment efficiency and release behaviour. For both SLN and NLC series, the use of Gelucire® 44/14 as surfactant rather than PluronicF68 or Tween® 80 yielded a marked particle size reduction (95-75 nm compared to around 600-400 nm), and an improvement in entrapment efficiency and drug release rate. NLC showed a better performance than SLN, reaching about 90% entrapped drug (vs. 80%) and more than 90% drug released after 300 min (vs. about 65%). All selected formulations showed good physical stability during 6-month storage at 4 °C, but a higher loss of encapsulated drug was found for SLNs (15%) than for NLCs (<5%). Moreover, all selected formulations revealed the absence of any cytotoxic effect, as assessed by a cell-viability test on Caco-2 cells and are able to pass the intestinal epithelium as suggested by Caco-2 uptake experiments.
RESUMO
Lipid nanocarriers have a great potential for improving the physicochemical characteristics and behavior of poorly water-soluble drugs, such as aqueous dispersibility and oral bioavailability. This investigation presents a novel nanostructured lipid carrier (NLC) based on a mixture of solid lipid glycerides, fatty acid esters of PEG 1500 (Gelucire® 44/14), and an oil mix composed of capric and caprylic triglycerides (Miglyol® 812). These NLCs were developed by a simple low-energy method based on melt emulsification to yield highly encapsulating and narrowly distributed nanoparticles (~100 nm, PdI = 0.1, and zeta potential = ~-10 mV). Rhodamine 123 was selected as a poorly water-soluble drug model and owing to its spectroscopic properties. The novel NLCs were characterized by dynamic light scattering (DLS), zeta potential, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and colloidal stability. The drug release was determined through a dialysis bag and vertical Franzs' cells to provide insights about the methods' suitability, revealing similar performance regardless of their different fluid dynamics. Rhodamine 123 followed a characteristic biphasic release profile owing to the swelling of the hydrophilic polymer coating and diffusion process from the lipid core as revealed by the Korsmeyers-Peppas kinetic modeling. Moreover, to elucidate the formation and incorporation of Rhodamine 123 into the NLC core, several molecular dynamics simulations were conducted. The temperature was shown to be an important condition to improve the formation of the nanoparticles. In addition, the liquid lipid incorporation to the formulation forms nanoparticles with imperfect centers, in contrast to nanoparticles without it. Moreover, Miglyol® 812 improves hydrophobic molecule solubility. These results suggest the potential of novel NLC as a drug delivery system for poorly water-soluble drugs.