Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Genet ; 15: 1411931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144724

RESUMO

Introduction: Vitamin C is an essential nutrient. Sex differences in serum vitamin C concentrations have been observed but are not fully known. Investigation of levels of metabolites may help shed light on how dietary and other environmental exposures interact with molecular processes. O-methylascorbate and ascorbic acid 2-sulfate are two metabolites in the vitamin C metabolic pathway. Past research has found genetic factors that influence the levels of these two metabolites. Therefore, we investigated possible effect modification by sex of genetic variant-metabolite associations and characterized the biological function of these interactions. Methods: We included individuals of European descent from the Canadian Longitudinal Study on Aging with available genetic and metabolic data (n = 9004). We used linear mixed models to tests for genome-wide associations with O-methylascorbate and ascorbic acid 2-sulfate, with and without a sex interaction. We also investigated the biological function of the important genetic variant-sex interactions found for each metabolite. Results: Two genome-wide statistically significant (p value < 5 × 10-8) interaction effects and several suggestive (p value < 10-5) interaction effects were found. These suggestive interaction effects were mapped to several genes including HSD11B2, associated with sex hormones, and AGRP, associated with hunger drive. The genes mapped to O-methylascorbate were differently expressed in the testis tissues, and the genes mapped to ascorbic acid 2-sulfate were differently expressed in stomach tissues. Discussion: By understanding the genetic factors that impact metabolites associated with vitamin C, we can better understand its function in disease risk and the mechanisms behind sex differences in vitamin C concentrations.

2.
Clin Epigenetics ; 16(1): 111, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164771

RESUMO

BACKGROUND: Current research on the epigenetic repercussions of exposure to a combination of pollutants is limited. This study aims to discern DNA methylation probes associated with exposure to multiple pollutants, serving as early effect markers, and single-nucleotide polymorphisms (SNPs) as surrogate indicators for population susceptibility. The investigation involved the analysis of urine exposure biomarkers for 11 heavy metals (vanadium, arsenic, mercury, cadmium, chromium, nickel, lead, manganese, copper, strontium, thallium), polycyclic aromatic hydrocarbon (PAHs) (1-hydroxypyrene), genome-wide DNA methylation sequencing, and SNPs array on all study participants. The data were integrated with metabolomics information and analyzed both at a community level based on proximity to home addresses relative to the complex and at an individual level based on exposure biomarker concentrations. RESULTS: On a community level, 67 exposure-related CpG probes were identified, while 70 CpG probes were associated with urine arsenic concentration, 2 with mercury, and 46 with vanadium on an individual level. These probes were annotated to genes implicated in cancers and chronic kidney disease. Weighted quantile sum regression analysis revealed that vanadium, mercury, and 1-hydroxypyrene contributed the most to cg08238319 hypomethylation. cg08238319 is annotated to the aryl hydrocarbon receptor repressor (AHRR) gene, and AHRR hypomethylation was correlated with an elevated risk of lung cancer. AHRR was further linked to deregulations in phenylalanine metabolism, alanine, aspartate, and glutamate metabolism, along with heightened oxidative stress. Additionally, three SNPs (rs11085020, rs199442, and rs10947050) corresponding to exposure-related CpG probes exhibited significant interaction effects with multiple heavy metals and PAHs exposure, and have been implicated in cancer progression and respiratory diseases. CONCLUSION: Our findings underscore the pivotal role of AHRR methylation in gene-environment interactions and highlight SNPs that could potentially serve as indicators of population susceptibility in regions exposed to multiple heavy metals and PAHs.


Assuntos
Metilação de DNA , Exposição Ambiental , Metais Pesados , Polimorfismo de Nucleotídeo Único , Humanos , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Masculino , Feminino , Exposição Ambiental/efeitos adversos , Metais Pesados/urina , Metais Pesados/efeitos adversos , Pessoa de Meia-Idade , Adulto , Ilhas de CpG/genética , Hidrocarbonetos Policíclicos Aromáticos/urina , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Biomarcadores/urina , Pirenos/urina , Poluentes Ambientais/urina , Poluentes Ambientais/efeitos adversos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Repressoras
3.
Environ Res ; 261: 119714, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094898

RESUMO

BACKGROUND: Spina bifida is a type of neural tube defect (NTD); NTDs are developmental malformations of the spinal cord that result from failure of neural tube closure during embryogenesis and are likely caused by interactions between genetic and environmental factors. Arsenic induces NTDs in animal models, and studies demonstrate that mice with genetic defects related to folate metabolism are more susceptible to arsenic's effects. We sought to determine whether 25 single-nucleotide polymorphisms (SNPs) in genes involved in folate and arsenic metabolism modified the associations between maternal arsenic exposure and risk of spina bifida (a common NTD) among a hospital-based case-control study population in Bangladesh. METHODS: We used data from 262 mothers and 220 infants who participated in a case‒control study at the National Institutes of Neurosciences & Hospital and Dhaka Shishu Hospital in Dhaka, Bangladesh. Neurosurgeons assessed infants using physical examinations, review of imaging, and we collected histories using questionnaires. We assessed arsenic from mothers' toenails using inductively coupled plasma mass spectrometry (ICP-MS), and we genotyped participants using the Illumina Global Screening Array v1.0. We chose candidate genes and SNPs through a review of the literature. We assessed SNP-environment interactions using interaction terms and stratified models, and we assessed gene-environment interactions using interaction sequence/SNP-set kernel association tests (iSKAT). RESULTS: The median toenail arsenic concentration was 0.42 µg/g (interquartile range [IQR]: 0.27-0.86) among mothers of cases and 0.47 µg/g (IQR: 0.30-0.97) among mothers of controls. We found an two SNPs in the infants' AS3MT gene (rs11191454 and rs7085104) and one SNP in mothers' DNMT1 gene (rs2228611) were associated with increased odds of spina bifida in the setting of high arsenic exposure (rs11191454, OR 3.01, 95% CI: 1.28-7.09; rs7085104, OR 2.33, 95% CI: 1.20-4.and rs2228611, OR 2.11, 95% CI: 1.11-4.01), along with significant SNP-arsenic interactions. iSKAT analyses revealed significant interactions between mothers' toenail concentrations and infants' AS3MT and MTR genes (p = 0.02), and mothers' CBS gene (p = 0.05). CONCLUSIONS: Our results support the hypothesis that arsenic increases spina bifida risk via interactions with folate and arsenic metabolic pathways and suggests that individuals in the population who have certain genetic polymorphisms in genes involved with arsenic and folate metabolism may be more susceptible than others to the arsenic teratogenicity.

4.
Cell Metab ; 36(7): 1494-1503.e3, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959863

RESUMO

The extent to which modifiable lifestyle factors offset the determined genetic risk of obesity and obesity-related morbidities remains unknown. We explored how the interaction between genetic and lifestyle factors influences the risk of obesity and obesity-related morbidities. The polygenic score for body mass index was calculated to quantify inherited susceptibility to obesity in 338,645 UK Biobank European participants, and a composite lifestyle score was derived from five obesogenic factors (physical activity, diet, sedentary behavior, alcohol consumption, and sleep duration). We observed significant interaction between high genetic risk and poor lifestyles (pinteraction < 0.001). Absolute differences in obesity risk between those who adhere to healthy lifestyles and those who do not had gradually expanded with an increase in polygenic score. Despite a high genetic risk for obesity, individuals can prevent obesity-related morbidities by adhering to a healthy lifestyle and maintaining a normal body weight. Healthy lifestyles should be promoted irrespective of genetic background.


Assuntos
Índice de Massa Corporal , Predisposição Genética para Doença , Estilo de Vida , Obesidade , Humanos , Obesidade/genética , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Risco , Adulto , Idoso , Exercício Físico , Comportamento Sedentário , Reino Unido/epidemiologia
5.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980374

RESUMO

Gene-environment (GE) interactions are essential in understanding human complex traits. Identifying these interactions is necessary for deciphering the biological basis of such traits. In this study, we review state-of-art methods for estimating the proportion of phenotypic variance explained by genome-wide GE interactions and introduce a novel statistical method Linkage-Disequilibrium Eigenvalue Regression for Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the phenotypic variance component explained by genome-wide GE interactions using large-scale biobank association summary statistics. LDER-GE leverages the complete Linkage Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC (Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency by ~23%. This improvement is equivalent to a sample size increase of around 51%. Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We conducted an analysis using UK Biobank data, comprising 307 259 unrelated European-Ancestry subjects and 966 766 variants, across 217 environmental covariate-phenotype (E-Y) pairs. LDER-GE identified 34 significant E-Y pairs while LDSC-based method only identified 23 significant E-Y pairs with 22 overlapped with LDER-GE. Furthermore, we employed LDER-GE to estimate the aggregated variance component attributed to multiple GE interactions, leading to an increase in the explained phenotypic variance with GE interactions compared to considering main genetic effects only. Our results suggest the importance of impacts of GE interactions on human complex traits.


Assuntos
Interação Gene-Ambiente , Desequilíbrio de Ligação , Fenótipo , Humanos , Herança Multifatorial , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Modelos Genéticos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39010843

RESUMO

Parental genes can influence the phenotype of their offspring through genomic-epigenomic interactions even without the direct inheritance of specific parental genotypes. Maternal genetic variations can affect the ovarian and intrauterine environments and potentially alter lactation behaviors, impacting offspring nutrition and health outcomes independently of the fetal genome. Similarly, paternal genetic changes can affect the endocrine system and vascular functions in the testes, influencing sperm quality and seminal fluid composition. These changes can initiate early epigenetic modifications in sperm, including alterations in microRNAs, tRNA-derived small RNAs, and DNA methylation patterns. These epigenetic modifications might induce further changes in target organs of the offspring, leading to modified gene expression and phenotypic outcomes without transmitting the original parental genetic alterations. This review presents clinical evidence supporting this hypothesis and discusses the potential underlying molecular mechanisms. Parental gene-offspring epigenome-offspring phenotype interactions have been observed in neurocognitive disorders as well as cardio-renal diseases.

7.
J Dig Dis ; 25(6): 368-379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39075019

RESUMO

OBJECTIVES: Few studies have been conducted on gene-environment interactions in the Chinese population with Crohn's disease (CD). We aimed to investigate the association between single nucleotide polymorphisms (SNPs) on the T helper 17 (Th17) cell and CD susceptibility/performance in Chinese individuals. METHODS: We conducted a case-control and case-only study at the Peking Union Medical College Hospital. Four SNPs related to the Th17 cell pathway genes were prioritized, including rs2284553 (interferon gamma receptor 2), rs7517847 (interleukin 23 receptor), rs7773324 (interferon regulatory factor 4), and rs4263839 (tumor necrosis factor superfamily 15). SNP frequency was calculated, and gene-environment interaction was assessed by multifactor dimensionality reduction analysis. RESULTS: Altogether 159 CD patients and 316 healthy controls were included. All analyzed SNPs were found in Hardy-Weinberg equilibrium (P > 0.05). The frequency of rs2284553-A allele and rs4263839-A allele were lower in CD patients compared with controls (P < 0.05). While the rs4263839-A allele was more prevalent in ileocolonic CD patients than in those with isolated small intestinal or colonic disease (P = 0.035). Gene-environment interactions revealed associations between rs2284553 and breastfeeding, sunshine exposure, and fridge-stored food, affecting age at diagnosis, intestinal involvement, and intestinal stricture. Interaction of rs4263839 and breastfeeding influenced small intestinal lesions and intestinal stricture in CD. CONCLUSIONS: This study provided information on the genetic background in Chinese CD patients. Incorporating these SNPs into predictive models may improve risk assessment and outcome prediction. Gene-environment interaction contributes to the understanding of CD pathogenesis.


Assuntos
Povo Asiático , Doença de Crohn , Interação Gene-Ambiente , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Células Th17 , Humanos , Doença de Crohn/genética , Masculino , Feminino , Adulto , Estudos de Casos e Controles , Povo Asiático/genética , China , Pessoa de Meia-Idade , Adulto Jovem , Receptores de Interleucina/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Adolescente , Fatores de Risco , População do Leste Asiático
8.
Stat Med ; 43(21): 4013-4026, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38963094

RESUMO

In addition to considering the main effects, understanding gene-environment (G × E) interactions is imperative for determining the etiology of diseases and the factors that affect their prognosis. In the existing statistical framework for censored survival outcomes, there are several challenges in detecting G × E interactions, such as handling high-dimensional omics data, diverse environmental factors, and algorithmic complications in survival analysis. The effect heredity principle has widely been used in studies involving interaction identification because it incorporates the dependence of the main and interaction effects. However, Bayesian survival models that incorporate the assumption of this principle have not been developed. Therefore, we propose Bayesian heredity-constrained accelerated failure time (BHAFT) models for identifying main and interaction (M-I) effects with novel spike-and-slab or regularized horseshoe priors to incorporate the assumption of effect heredity principle. The R package rstan was used to fit the proposed models. Extensive simulations demonstrated that BHAFT models had outperformed other existing models in terms of signal identification, coefficient estimation, and prognosis prediction. Biologically plausible G × E interactions associated with the prognosis of lung adenocarcinoma were identified using our proposed model. Notably, BHAFT models incorporating the effect heredity principle could identify both main and interaction effects, which are highly useful in exploring G × E interactions in high-dimensional survival analysis. The code and data used in our paper are available at https://github.com/SunNa-bayesian/BHAFT.


Assuntos
Teorema de Bayes , Simulação por Computador , Interação Gene-Ambiente , Neoplasias Pulmonares , Humanos , Análise de Sobrevida , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Modelos Estatísticos , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Algoritmos
9.
Chemosphere ; 363: 142837, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009092

RESUMO

BACKGROUND: Current knowledge suggests that the gene region containing MUC5B and TOLLIP plays a role in airway defence and airway inflammation, and hence respiratory disease. It is also known that exposure to air pollution increases susceptibility to respiratory disease. We aimed to study whether the effect of air pollutants on the immune response and respiratory symptoms in infants may be modified by polymorphisms in MUC5B and TOLLIP genes. METHODS: 359 healthy term infants from the prospective Basel-Bern Infant Lung Development (BILD) birth cohort were included in the study. The main outcome was the score of weekly assessed respiratory symptoms in the first year of life. Using the candidate gene approach, we selected 10 single nucleotide polymorphisms (SNPs) from the MUC5B and TOLLIP regions. Nitrogen dioxide (NO2) and particulate matter ≤10 µm in aerodynamic diameter (PM10) exposure was estimated on a weekly basis. We used generalised additive mixed models adjusted for known covariates. To validate our results in vitro, cells from a lung epithelial cell line were downregulated in TOLLIP expression and exposed to diesel particulate matter (DPM) and polyinosinic-polycytidylic acid. RESULTS: Significant interaction was observed between modelled air pollution (weekly NO2 exposure) and 5 SNPs within MUC5B and TOLLIP genes regarding respiratory symptoms as outcome: E.g., infants carrying minor alleles of rs5744034, rs3793965 and rs3750920 (all TOLLIP) had an increased risk of respiratory symptoms with increasing NO2 exposure. In vitro experiments showed that cells downregulated for TOLLIP react differently to environmental pollutant exposure with DPM and viral stimulation. CONCLUSION: Our findings suggest that the effect of air pollution on respiratory symptoms in infancy may be influenced by the genotype of specific SNPs from the MUC5B and TOLLIP regions. For validation of the findings, we provided in vitro evidence for the interaction of TOLLIP with air pollution.


Assuntos
Poluentes Atmosféricos , Mucina-5B , Dióxido de Nitrogênio , Polimorfismo de Nucleotídeo Único , Humanos , Mucina-5B/genética , Poluentes Atmosféricos/toxicidade , Lactente , Masculino , Dióxido de Nitrogênio/toxicidade , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Poluição do Ar/efeitos adversos , Material Particulado/toxicidade , Estudos Prospectivos , Recém-Nascido , Exposição Ambiental/efeitos adversos , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/genética
10.
Cells ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38920684

RESUMO

Exposure to inorganic arsenic (As) is recognized as a risk factor for non-melanoma skin cancer (NMSC). We followed up with 7000 adults for 6 years who were exposed to As. During follow-up, 2.2% of the males and 1.3% of the females developed basal cell carcinoma (BCC), while 0.4% of the male and 0.2% of the female participants developed squamous cell carcinoma (SCC). Using a panel of more than 400 cancer-related genes, we detected somatic mutations (SMs) in the first 32 NMSC samples (BCC = 26 and SCC = 6) by comparing paired (tissue-blood) samples from the same individual and then comparing them to the SM in healthy skin tissue from 16 participants. We identified (a) a list of NMSC-associated SMs, (b) SMs present in both NMSC and healthy skin, and (c) SMs found only in healthy skin. We also demonstrate that the presence of non-synonymous SMs in the top mutated genes (like PTCH1, NOTCH1, SYNE1, PKHD1 in BCC and TP53 in SCC) significantly affects the magnitude of differential expressions of major genes and gene pathways (basal cell carcinoma pathways, NOTCH signaling, IL-17 signaling, p53 signaling, Wnt signaling pathway). These findings may help select groups of patients for targeted therapy, like hedgehog signaling inhibitors, IL17 inhibitors, etc., in the future.


Assuntos
Arsênio , Mutação , Neoplasias Cutâneas , Transcriptoma , Humanos , Neoplasias Cutâneas/genética , Arsênio/toxicidade , Feminino , Mutação/genética , Masculino , Transcriptoma/genética , Transcriptoma/efeitos dos fármacos , Pessoa de Meia-Idade , Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Adulto , Perfilação da Expressão Gênica , Idoso , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
11.
Behav Sci (Basel) ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920839

RESUMO

While genetic and environmental factors have been shown as predictors of children's reading ability, the interaction effects of identified genetic risk susceptibility and the specified environment for reading ability have rarely been investigated. The current study assessed potential gene-environment (G×E) interactions on reading ability in 1477 school-aged children. The gene-environment interactions on character recognition were investigated by an exploratory analysis between the risk single-nucleotide polymorphisms (SNPs), which were discovered by previous genome-wide association studies of developmental dyslexia (DD), and parental education (PE). The re-parameterized regression analysis suggested that this G×E interaction conformed to the strong differential susceptibility model. The results showed that rs281238 exhibits a significant interaction with PE on character recognition. Children with the "T" genotype profited from high PE, whereas they performed worse in low PE environments, but "CC" genotype children were not malleable in different PE environments. This study provided initial evidence for how the significant SNPs in developmental dyslexia GWA studies affect children's reading performance by interacting with the environmental factor of parental education.

12.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892031

RESUMO

Copy number variations (CNVs) critically influence individual genetic diversity and phenotypic traits. In this study, we employed whole-genome resequencing technology to conduct an in-depth analysis of 50 pigs from five local swine populations [Rongchang pig (RC), Wuzhishan pig (WZS), Tibetan pig (T), Yorkshire (YL) and Landrace (LR)], aiming to assess their genetic potential and explore their prospects in the field of animal model applications. We identified a total of 96,466 CNVs, which were subsequently integrated into 7112 non-redundant CNVRs, encompassing 1.3% of the swine genome. Functional enrichment analysis of the genes within these CNVRs revealed significant associations with sensory perception, energy metabolism, and neural-related pathways. Further selective scan analyses of the local pig breeds RC, T, WZS, along with YL and LR, uncovered that for the RC variety, the genes PLA2G10 and ABCA8 were found to be closely related to fat metabolism and cardiovascular health. In the T breed, the genes NCF2 and CSGALNACT1 were associated with immune response and connective tissue characteristics. As for the WZS breed, the genes PLIN4 and CPB2 were primarily linked to fat storage and anti-inflammatory responses. In summary, this research underscores the pivotal role of CNVs in fostering the diversity and adaptive evolution of pig breeds while also offering valuable insights for further exploration of the advantageous genetic traits inherent to China's local pig breeds. This facilitates the creation of experimental animal models tailored to the specific characteristics of these breeds, contributing to the advancement of livestock and biomedical research.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento Completo do Genoma , Animais , Variações do Número de Cópias de DNA/genética , Suínos/genética , Sequenciamento Completo do Genoma/métodos , China , Cruzamento , Variação Genética , Genoma , Evolução Molecular
13.
Schizophr Res ; 270: 85-93, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885569

RESUMO

BACKGROUND: Environment and genes both contribute to schizophrenia. However, the impact of different natural environments surrounding residential addresses on schizophrenia in urban settings remains unknown. This study aimed to investigate the association of urbanisation, measured by residential environments, with late-onset schizophrenia and explore whether genetic risk for schizophrenia modified the associations. METHODS: We examined the associations between residential environments and late-onset schizophrenia and its interaction with genetic risk factors in UK Biobank, followed from 2006 to 2010 (baseline) to Dec 2021. Residential environments, including greenspace, domestic garden, blue space, and total natural environment, were evaluated using land use coverage percentage. The polygenic risk score (PRS) of schizophrenia was derived using a Bayesian approach and adjusted it against ancestry. Cox proportional hazard regression model was used to assess the associations between per interquartile (IQR) increase of each type of residential environments and late-onset schizophrenia. Interactive effects of PRS and residential environments on late-onset schizophrenia were assessed on both additive and multiplicative scales. RESULTS: A total of 393,680 participants were included in the analysis, with 844 cases of late-onset schizophrenia being observed after 12.8 years of follow-up. Within 300 m buffer surrounding the residential addresses, per interquartile increase in greenspace (31.5 %) and total natural environment (34.4 %) were both associated with an 11 % (HR = 0.89, 95 % CI 0.80, 0.99) lower risk of late-onset schizophrenia. Domestic garden and blue space did not show significant protective effects on late-onset schizophrenia. A strong dose-response relationship between schizophrenia PRS and schizophrenia was found, while no additive or multiplicative interaction effects were present between residential environments and PRS on late-onset schizophrenia. CONCLUSION: Residential greenspace and total natural environment may protect against late-onset schizophrenia in older people regardless of genetic risk. These findings shed light on the prevention of schizophrenia and urban planning to optimise ecosystem benefits linked to schizophrenia.


Assuntos
Interação Gene-Ambiente , Predisposição Genética para Doença , Esquizofrenia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Idade de Início , Herança Multifatorial , Características de Residência/estatística & dados numéricos , Fatores de Risco , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Biobanco do Reino Unido/estatística & dados numéricos , Reino Unido/epidemiologia , Urbanização
14.
Am J Hum Genet ; 111(7): 1462-1480, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38866020

RESUMO

Understanding the contribution of gene-environment interactions (GxE) to complex trait variation can provide insights into disease mechanisms, explain sources of heritability, and improve genetic risk prediction. While large biobanks with genetic and deep phenotypic data hold promise for obtaining novel insights into GxE, our understanding of GxE architecture in complex traits remains limited. We introduce a method to estimate the proportion of trait variance explained by GxE (GxE heritability) and additive genetic effects (additive heritability) across the genome and within specific genomic annotations. We show that our method is accurate in simulations and computationally efficient for biobank-scale datasets. We applied our method to common array SNPs (MAF ≥1%), fifty quantitative traits, and four environmental variables (smoking, sex, age, and statin usage) in unrelated white British individuals in the UK Biobank. We found 68 trait-E pairs with significant genome-wide GxE heritability (p<0.05/200) with a ratio of GxE to additive heritability of ≈6.8% on average. Analyzing ≈8 million imputed SNPs (MAF ≥0.1%), we documented an approximate 28% increase in genome-wide GxE heritability compared to array SNPs. We partitioned GxE heritability across minor allele frequency (MAF) and local linkage disequilibrium (LD) values, revealing that, like additive allelic effects, GxE allelic effects tend to increase with decreasing MAF and LD. Analyzing GxE heritability near genes highly expressed in specific tissues, we find significant brain-specific enrichment for body mass index (BMI) and basal metabolic rate in the context of smoking and adipose-specific enrichment for waist-hip ratio (WHR) in the context of sex.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Humanos , Herança Multifatorial/genética , Masculino , Feminino , Característica Quantitativa Herdável , Fenótipo , Modelos Genéticos , Locos de Características Quantitativas
15.
Front Psychiatry ; 15: 1388264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693999

RESUMO

Background: Difficulty with self-control, or the ability to alter impulses and behavior in a goal-directed way, predicts interpersonal conflict, lower socioeconomic attainments, and more adverse health outcomes. Etiological understanding, and intervention for low self-control is, therefore, a public health goal. A prominent developmental theory proposes that individuals with high genetic propensity for low self-control that are also exposed to stressful environments may be most at-risk of low levels of self-control. Here we examine if polygenic measures associated with behaviors marked by low self-control interact with stressful life events in predicting self-control. Methods: Leveraging molecular data from a large population-based Dutch sample (N = 7,090, Mage = 41.2) to test for effects of genetics (i.e., polygenic scores for ADHD and aggression), stressful life events (e.g., traffic accident, violent assault, financial problems), and a gene-by-stress interaction on self-control (measured with the ASEBA Self-Control Scale). Results: Both genetics (ß =.03 -.04, p <.001) and stressful life events (ß = .11 -.14, p <.001) were associated with individual differences in self-control. We find no evidence of a gene-by-stressful life events interaction on individual differences in adults' self-control. Conclusion: Our findings are consistent with the notion that genetic influences and stressful life events exert largely independent effects on adult self-control. However, the small effect sizes of polygenic scores increases the likelihood of null results. Genetically-informed longitudinal research in large samples can further inform the etiology of individual differences in self-control from early childhood into later adulthood and its downstream implications for public health.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38699459

RESUMO

Most human complex phenotypes result from multiple genetic and environmental factors and their interactions. Understanding the mechanisms by which genetic and environmental factors interact offers valuable insights into the genetic architecture of complex traits and holds great potential for advancing precision medicine. The emergence of large population biobanks has led to the development of numerous statistical methods aiming at identifying gene-environment interactions (G × E). In this review, we present state-of-the-art statistical methodologies for G × E analysis. We will survey a spectrum of approaches for single-variant G × E mapping, followed by various techniques for polygenic G × E analysis. We conclude this review with a discussion on the future directions and challenges in G × E research.

17.
Birth Defects Res ; 116(5): e2333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716581

RESUMO

OBJECTIVE: This study aims to determine if 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and methionine synthase reductase (MTRR A66G) gene polymorphisms were associated with fatty acid (FA) levels in mothers of fetuses with neural tube defects (NTDs) and whether these associations were modified by environmental factors. METHODS: Plasma FA composition was assessed using capillary gas chromatography. Concentrations of studied FA were compared between 42 mothers of NTDs fetuses and 30 controls as a function of each polymorphism by the Kruskal-Wallis nonparametric test. RESULTS: In MTHFR gene C677T polymorphism, cases with (CT + TT) genotype had lower monounsaturated FAs (MUFA) and omega-3 polyunsaturated FA (n-3 PUFA) levels, but higher omega-6 polyunsaturated FAs (n-6 PUFA) and omega-6 polyunsaturated FAs: omega-3 polyunsaturated FAs (n-6:n-3) ratio levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype had lower MUFA levels, but higher PUFA and n-6 PUFA levels. Controls with (AG + GG) genotype had lower n-6 PUFA levels. In MTHFR gene C677T polymorphism, cases with smoking spouses and (CT + TT) genotype had lower MUFA and n-3 PUFA levels, but higher PUFA, n-6 PUFA, and n-6:n-3 ratio levels. Cases with (CT + TT) genotype and who used sauna during pregnancy had lower n-3 PUFA levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype and who used sauna during pregnancy had higher PUFA and n-6 PUFA levels. CONCLUSIONS: Further research is required to clarify the association of FA metabolism and (MTHFR, MTRR) polymorphisms with NTDs.


Assuntos
Ácidos Graxos , Ferredoxina-NADP Redutase , Predisposição Genética para Doença , Metilenotetra-Hidrofolato Redutase (NADPH2) , Defeitos do Tubo Neural , Polimorfismo de Nucleotídeo Único , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Feminino , Defeitos do Tubo Neural/genética , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Adulto , Ácidos Graxos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Genótipo , Estudos de Casos e Controles , Fatores de Risco , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/sangue , Estudos de Associação Genética/métodos
18.
EBioMedicine ; 104: 105146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749303

RESUMO

BACKGROUND: Consumption of fibre, fruits and vegetables have been linked with lower colorectal cancer (CRC) risk. A genome-wide gene-environment (G × E) analysis was performed to test whether genetic variants modify these associations. METHODS: A pooled sample of 45 studies including up to 69,734 participants (cases: 29,896; controls: 39,838) of European ancestry were included. To identify G × E interactions, we used the traditional 1--degree-of-freedom (DF) G × E test and to improve power a 2-step procedure and a 3DF joint test that investigates the association between a genetic variant and dietary exposure, CRC risk and G × E interaction simultaneously. FINDINGS: The 3-DF joint test revealed two significant loci with p-value <5 × 10-8. Rs4730274 close to the SLC26A3 gene showed an association with fibre (p-value: 2.4 × 10-3) and G × fibre interaction with CRC (OR per quartile of fibre increase = 0.87, 0.80, and 0.75 for CC, TC, and TT genotype, respectively; G × E p-value: 1.8 × 10-7). Rs1620977 in the NEGR1 gene showed an association with fruit intake (p-value: 1.0 × 10-8) and G × fruit interaction with CRC (OR per quartile of fruit increase = 0.75, 0.65, and 0.56 for AA, AG, and GG genotype, respectively; G × E -p-value: 0.029). INTERPRETATION: We identified 2 loci associated with fibre and fruit intake that also modify the association of these dietary factors with CRC risk. Potential mechanisms include chronic inflammatory intestinal disorders, and gut function. However, further studies are needed for mechanistic validation and replication of findings. FUNDING: National Institutes of Health, National Cancer Institute. Full funding details for the individual consortia are provided in acknowledgments.


Assuntos
Neoplasias Colorretais , Fibras na Dieta , Frutas , Interação Gene-Ambiente , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Verduras , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/etiologia , Fibras na Dieta/administração & dosagem , Genótipo , Dieta , Masculino , Feminino , Fatores de Risco
19.
J Thromb Haemost ; 22(8): 2261-2269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782299

RESUMO

BACKGROUND: Increased risk of venous thromboembolism (VTE) is a life-threatening side effect for users of oral contraceptives (OCs) or hormone therapy (HT). OBJECTIVES: To investigate the potential for genetic predisposition to VTE in OC or HT users, we conducted a gene-by-environment case-only meta-analysis of genome-wide association studies (GWAS). METHODS: Use or nonuse of OCs (7 studies) or HT (8 studies) at the time of the VTE event was determined by pharmacy records or self-report. A synergy index (SI) was modeled for each variant in each study and submultiplicative/supramultiplicative gene-by-environment interactions were estimated. The SI parameters were first meta-analyzed across OC and HT studies and subsequently meta-analyzed to obtain an overall estimate. The primary analysis was agnostic GWAS and interrogated all imputed genotypes using a P value threshold of <5.0 × 10-8; secondary analyses were candidate-based. RESULTS: The VTE case-only OC meta-analysis included 2895 OC users and 6607 nonusers; the case-only HT meta-analysis included 2434 HT users and 12 793 nonusers. In primary GWAS meta-analyses, no variant reached genome-wide significance, but the smallest P value approached statistical significance: rs9386463 (P = 5.03 × 10-8). We tested associations for 138 candidate variants and identified 2 that exceeded statistical significance (0.05/138 = 3.62 × 10-4): F5 rs6025 (P = 1.87 × 10-5; SI, 1.29; previously observed) and F11 rs2036914 (P = 2.0 × 10-4; SI, 0.91; new observation). CONCLUSION: The candidate variant approach to identify submultiplictive/supramultiplicative associations between genetic variation and OC and HT use identified a new association with common genetic variation in F11, while the agnostic interrogations did not yield new discoveries.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/induzido quimicamente , Feminino , Fatores de Risco , Adulto , Interação Gene-Ambiente , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Medição de Risco , Anticoncepcionais Orais Hormonais/efeitos adversos , Anticoncepcionais Orais Hormonais/administração & dosagem , Variação Genética , Terapia de Reposição de Estrogênios/efeitos adversos
20.
Sleep Health ; 10(4): 402-409, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38772848

RESUMO

BACKGROUND: Sleep is a natural and essential physiological need for individuals. Our study aimed to research the associations between accumulated social risks and sleep disorders. METHODS: In this study, we came up with a polysocial risk score (PsRS), which is a cumulative social risk index composed of 13 social determinants of health. This research includes 239,165 individuals with sleep disorders and social determinants of health data from the UK Biobank cohort. First, logistic regression models were performed to examine the associations of social determinants of health and sleep disorders, including chronotype, narcolepsy, insomnia, snoring, short and long sleep duration. Then, PsRS was calculated based on statistically significant social determinants of health for each sleep disorder. Third, a genome-wide gene-environment interaction study was conducted to explore the interactions between single-nucleotide polymorphisms and PsRS in relation to sleep disorders. RESULTS: Higher PsRS scores were associated with worse sleep status, with the adjusted odds ratio (OR) ranging from 1.10 (95% Confidence interval [CI]: 1.09-1.11) to 1.29 (95% CI: 1.27-1.30) for sleep disorders. Emotional stress (OR = 1.36, 95% CI: 1.28-1.43) and not in paid employment (OR = 2.62, 95% CI: 2.51-2.74) were found to have significant contributions for sleep disorders. Moreover, multiple single-nucleotide polymorphisms were discovered to have interactions with PsRS, such as FRAS1 (P = 2.57 × 10-14) and CACNA1A (P = 8.62 × 10-14) for narcolepsy, and ACKR3 (P = 1.24 × 10-8) for long sleep. CONCLUSIONS: Our findings suggested that cumulative social risks was associated with sleep disorders, while the interactions between genetic susceptibility and disadvantaged social status are risk factors for the development of sleep disorders.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Transtornos do Sono-Vigília , Classe Social , Humanos , Masculino , Feminino , Transtornos do Sono-Vigília/epidemiologia , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Determinantes Sociais da Saúde , Fatores de Risco , Populações Vulneráveis , Estudos de Coortes , Idoso , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA