Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975892

RESUMO

Understanding the biological functions and processes of genes, particularly those not yet characterized, is crucial for advancing molecular biology and identifying therapeutic targets. The hypothesis guiding this study is that the 3D proximity of genes correlates with their functional interactions and relevance in prokaryotes. We introduced 3D-GeneNet, an innovative software tool that utilizes high-throughput sequencing data from chromosome conformation capture techniques and integrates topological metrics to construct gene association networks. Through a series of comparative analyses focused on spatial versus linear distances, we explored various dimensions such as topological structure, functional enrichment levels, distribution patterns of linear distances among gene pairs, and the area under the receiver operating characteristic curve by utilizing model organism Escherichia coli K-12. Furthermore, 3D-GeneNet was shown to maintain good accuracy compared to multiple algorithms (neighbourhood, co-occurrence, coexpression, and fusion) across multiple bacteria, including E. coli, Brucella abortus, and Vibrio cholerae. In addition, the accuracy of 3D-GeneNet's prediction of long-distance gene interactions was identified by bacterial two-hybrid assays on E. coli K-12 MG1655, where 3D-GeneNet not only increased the accuracy of linear genomic distance tripled but also achieved 60% accuracy by running alone. Finally, it can be concluded that the applicability of 3D-GeneNet will extend to various bacterial forms, including Gram-negative, Gram-positive, single-, and multi-chromosomal bacteria through Hi-C sequencing and analysis. Such findings highlight the broad applicability and significant promise of this method in the realm of gene association network. 3D-GeneNet is freely accessible at https://github.com/gaoyuanccc/3D-GeneNet.


Assuntos
Redes Reguladoras de Genes , Software , Algoritmos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Microb Genom ; 6(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32100706

RESUMO

The accessory genes of prokaryote and eukaryote pangenomes accumulate by horizontal gene transfer, differential gene loss, and the effects of selection and drift. We have developed Coinfinder, a software program that assesses whether sets of homologous genes (gene families) in pangenomes associate or dissociate with each other (i.e. are 'coincident') more often than would be expected by chance. Coinfinder employs a user-supplied phylogenetic tree in order to assess the lineage-dependence (i.e. the phylogenetic distribution) of each accessory gene, allowing Coinfinder to focus on coincident gene pairs whose joint presence is not simply because they happened to appear in the same clade, but rather that they tend to appear together more often than expected across the phylogeny. Coinfinder is implemented in C++, Python3 and R and is freely available under the GNU license from https://github.com/fwhelan/coinfinder.


Assuntos
Genoma , Software , Biologia Computacional , Filogenia , Streptococcus pneumoniae/genética
3.
J Immunol Methods ; 439: 15-22, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27659011

RESUMO

Pathogen specific immune response is a complex interplay between several innate and adaptive immune cell-types. Innate immune cells play a critical role in pathogen recognition and initiating the antigen specific adaptive immune response. Despite specific functional roles of the innate immune cells, they share several anti-viral pathways. The question then becomes, what is the overlap in the transcriptional changes induced upon viral infections across different cell-types? Here we investigate the extent to which gene signatures are conserved across innate immune cell-types by performing a comparative analysis of transcriptomic data. Particularly, we integrate transcriptomic datasets measuring response of two innate immune cells (epithelial and dendritic cells) to influenza virus. The study reveals cell-type specific regulatory genes and a conserved network between the two cell-types. Additionally, novel functionally associated gene clusters are identified which are robustly defined across multiple independent studies. These gene clusters can be used in future investigation, and to facilitate their use we release PathCellNet (version 0), a cloud based tool to explore cell-type specific connectivity of user-defined genes. In the future, expansion of PathCellNet will allow exploration of cell-type specific responses across a variety of pathogens and cell-types.


Assuntos
Computação em Nuvem , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Perfilação da Expressão Gênica/métodos , Infecções por Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Biologia de Sistemas/métodos , Transcriptoma , Imunidade Adaptativa/genética , Animais , Análise por Conglomerados , Bases de Dados Genéticas , Células Dendríticas/virologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
4.
Comput Biol Chem ; 56: 142-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25935118

RESUMO

Gene networks (GNs) have become one of the most important approaches for modeling biological processes. They are very useful to understand the different complex biological processes that may occur in living organisms. Currently, one of the biggest challenge in any study related with GN is to assure the quality of these GNs. In this sense, recent works use artificial data sets or a direct comparison with prior biological knowledge. However, these approaches are not entirely accurate as they only take into account direct gene-gene interactions for validation, leaving aside the weak (indirect) relationships. We propose a new measure, named gene network coherence (GNC), to rate the coherence of an input network according to different biological databases. In this sense, the measure considers not only the direct gene-gene relationships but also the indirect ones to perform a complete and fairer evaluation of the input network. Hence, our approach is able to use the whole information stored in the networks. A GNC JAVA-based implementation is available at: http://fgomezvela.github.io/GNC/. The results achieved in this work show that GNC outperforms the classical approaches for assessing GNs by means of three different experiments using different biological databases and input networks. According to the results, we can conclude that the proposed measure, which considers the inherent information stored in the direct and indirect gene-gene relationships, offers a new robust solution to the problem of GNs biological validation.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Algoritmos , Humanos , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA