Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Mol Neurosci ; 73(6): 391-402, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37256495

RESUMO

Parkinson's disease (PD) is a neurodegenerative movement disorder which can be either familial or sporadic. While it is well known that monogenic mutations are not a very common cause of PD, GWAS studies have shown that an additional fraction of the PD heritability could be explained by rare or common variants. To identify the rare variants that could influence the risk of PD in the Moroccan population, a cohort of 94 sporadic PD patients negative for the LRRK2 G2019S mutation was subjected to NGS gene panel sequencing, and gene dosage using the MLPA method. Mean age of onset at enrollment was 51.7 ± 11.51 years, and 60% of patients were men. We identified 70 rare variants under 0.5% of frequency in 16 of the 20 genes analyzed, of which 7 were novel. Biallelic disease-causing variants in genes with recessive inheritance were found in 5 PD cases (5.31%), whereas 13 patients (13.8%) carried likely pathogenic variants in genes with dominant inheritance. Moreover, 8 patients (8.5%) carried a single variant in MAPT or POLG, whereas co-occurrence of rare variants involving more than one gene was observed in 28 patients (30%). PD patients with variants in recessive genes had a younger mean age at onset than patients with dominant ones (33.40 (12.77) vs. 53.15 (6.63), p < 0.001), while their clinical features were similar. However, patients with rare variants in the risk factor genes or in more than one gene tended to have less resting tremor (p < 0.04), but more dystonia (p < 0.006) and dementia (p < 0.002) than those without any rare variants in known PD-associated genes. Our results showed a significant enrichment of rare variants particularly in LRRK2, VPS13C, POLG, and MAPT and underline their impact on the risk of sporadic form of the disease.


Assuntos
Doença de Parkinson , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Feminino , Doença de Parkinson/genética , Doença de Parkinson/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Estudo de Associação Genômica Ampla , Genes Recessivos , Predisposição Genética para Doença
2.
Cancers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35954448

RESUMO

Background: Genetic panel tests require sufficient tissue samples, and therefore, cannot always be performed. Although collecting cytological specimens is easier than tissue collection, there are no validation studies on the diagnostic accuracy of lung cancer gene panel tests using cytology samples. Methods: Using an amplicon-based high-sensitivity next-generation sequencing panel test capable of measuring eight druggable genes, we prospectively enrolled consecutive patients who underwent diagnostic procedures. We evaluated the analysis accuracy rate, nucleic acid yield, and the quality of cytological specimens under brushing, needle aspiration, and pleural effusion. We then compared these specimens with collected tissue samples. Results: In 163 prospectively enrolled cases, nucleic acid extraction and analysis accuracy was 100% in cases diagnosed with adenocarcinoma. Gene mutations were found in 68.7% of cases with 99.5% (95% CI: 98.2-99.9) concordance to companion diagnostics. The median DNA/RNA yield and DNA/RNA integrity number were 475/321 ng and 7.9/5.7, respectively. The correlation coefficient of the gene allele ratio in 64 cases compared with tissue samples was 0.711. Conclusion: The success of gene analysis using cytological specimens was high, and the yield and quality of the extracted nucleic acid were sufficient for panel analysis. Moreover, the allele frequency of gene mutations in cytological specimens showed high correlations with tissue specimens.

3.
Front Immunol ; 13: 906328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874679

RESUMO

Background: Knowledge of the genetic variation underlying Primary Immune Deficiency (PID) is increasing. Reanalysis of genome-wide sequencing data from undiagnosed patients with suspected PID may improve the diagnostic rate. Methods: We included patients monitored at the Department of Infectious Diseases or the Child and Adolescent Department, Rigshospitalet, Denmark, for a suspected PID, who had been analysed previously using a targeted PID gene panel (457 PID-related genes) on whole exome- (WES) or whole genome sequencing (WGS) data. A literature review was performed to extend the PID gene panel used for reanalysis of single nucleotide variation (SNV) and small indels. Structural variant (SV) calling was added on WGS data. Results: Genetic data from 94 patients (86 adults) including 36 WES and 58 WGS was reanalysed a median of 23 months after the initial analysis. The extended gene panel included 208 additional PID-related genes. Genetic reanalysis led to a small increase in the proportion of patients with new suspicious PID related variants of uncertain significance (VUS). The proportion of patients with a causal genetic diagnosis was constant. In total, five patients (5%, including three WES and two WGS) had a new suspicious PID VUS identified due to reanalysis. Among these, two patients had a variant added due to the expansion of the PID gene panel, and three patients had a variant reclassified to a VUS in a gene included in the initial PID gene panel. The total proportion of patients with PID related VUS, likely pathogenic, and pathogenic variants increased from 43 (46%) to 47 (50%), as one patient had a VUS detected in both initial- and reanalysis. In addition, we detected new suspicious SNVs and SVs of uncertain significance in PID candidate genes with unknown inheritance and/or as heterozygous variants in genes with autosomal recessive inheritance in 8 patients. Conclusion: These data indicate a possible diagnostic gain of reassessing WES/WGS data from patients with suspected PID. Reasons for the possible gain included improved knowledge of genotype-phenotype correlation, expanding the gene panel, and adding SV analyses. Future studies of genotype-phenotype correlations may provide additional knowledge on the impact of the new suspicious VUSs.


Assuntos
Exoma , Doenças da Imunodeficiência Primária , Estudos de Associação Genética , Humanos , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
4.
Cancers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202544

RESUMO

Gastrointestinal stromal tumors (GISTs) are the most frequent malignant mesenchymal tumors in the gastrointestinal tract. The clinical incidence of GISTs is estimated 10/million/year; however, the true incidence is complicated by frequent findings of tiny GISTs, of which the natural history is unknown. The initial work-up with endoscopy and endoscopic ultrasonography plays important roles in the differential diagnosis of GISTs. Surgery is the only modality for the permanent cure of localized GISTs. In terms of safety and prognostic outcomes, laparoscopy is similar to laparotomy for GIST treatment, including tumors larger than 5 cm. GIST progression is driven by mutations in KIT or PDGFRA or by other rare gene alterations, all of which are mutually exclusive. Tyrosine kinase inhibitors (TKIs) are the standard therapy for metastatic/recurrent GISTs. Molecular alterations are the most reliable biomarkers for TKIs and for other drugs, such as NTRK inhibitors. The pathological and genetic diagnosis prior to treatment has been challenging; however, a newly developed endoscopic device may be useful for diagnosis. In the era of precision medicine, cancer genome profiling by targeted gene panel analysis may enable potential targeted therapy even for GISTs without KIT or PDGFRA mutations.

5.
Front Genet ; 11: 566266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193653

RESUMO

A genetic diagnosis facilitates personalized cancer treatment and clinical care of relatives at risk, however, although 25% of colorectal cancer cases are familial, around 95% of the families are genetically unresolved. In this study, we performed gene panel analysis on germline DNA of 32 established or candidate colorectal cancer predisposing genes in 149 individuals from either families with an accumulation of colorectal cancers or families with only one sporadic case of very early onset colorectal cancer (≤40 years at diagnosis). We identified pathogenic or likely pathogenic genetic variants in 10.1% of the participants in genes such as APC, POLE, MSH2 or PMS2. The MSH2 variant, c.2168C>T, p.(Ser723Phe) was previously described as a variant of unknown significance, but we have now reclassified it to be likely pathogenic. The POLE variant, c.1089C>A, p.(Asn363Lys) was identified in a patient with three metachronous colorectal cancers from age 28 and turned out to be de novo. One pathogenic PMS2 variant was novel. We also identified a number of highly interesting variants of unknown significance in APC, BUB1, TP53 and RPS20. The RPS20 variant is novel and was found in a large Amsterdam I positive family with a multi tumor phenotype including 12 cases of CRC from as early as age 24. This variant was found to segregate with cancer in the family and multiple in silico tools predict it to be pathogenic. Our data further support the shift from phenotypic-based cancer panels to large panels including all established genes involved in hereditary cancer syndromes or (targeted) whole genome sequencing. Additionally, identification of a likely disease-predisposing variant in RPS20 expands the phenotypic spectrum of RPS20-related cancers and emphasize that this gene is relevant to include in colorectal cancer gene panels.

6.
Internist (Berl) ; 59(8): 756-765, 2018 08.
Artigo em Alemão | MEDLINE | ID: mdl-29946883

RESUMO

BACKGROUND: New methods of molecular genetic diagnostics enable a more comprehensive genetic analysis of patients. OBJECTIVES: Rational use and benefits of molecular genetic testing in patients with various internal diseases. METHOD: Evaluation of topic-related literature, discussion of own experiences, as well as consideration of current guidelines. RESULTS: New genetic tests, such as next generation sequencing (NGS), improve the diagnosis of hereditary diseases; however, the use of this technology also leads to additional findings, which must be carefully considered. CONCLUSION: The rational use of genetic tests is a benefit for patients and can significantly influence the prevention and treatment of a disease. The increasing complexity of genetic findings requires interdisciplinary approaches involving human genetics, internal medicine, and other disciplines.


Assuntos
Testes Genéticos , Genética Médica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Medicina Interna , Humanos , Biologia Molecular
7.
Oncol Lett ; 16(1): 612-618, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928447

RESUMO

Liquid biopsy using circulating tumor cells (CTCs) is a noninvasive and repeatable procedure, and is therefore useful for molecular assays. However, the rarity of CTCs remains a challenge. To overcome this issue, our group developed a novel technology for the isolation of CTCs on the basis of cell size difference. The present study isolated CTCs from patients with breast cancer using this method, and then used these cells for cancer gene panel analysis. Blood samples from eight patients with breast cancer were collected, and CTCs were enriched using size-based filtration. Enriched CTCs were counted using immunofluorescent staining with an epithelial cell adhesion molecule (EpCAM) and CD45 antibodies. CTC genomic DNA was extracted, amplified, and screened for mutations in 400 genes using the Ion AmpliSeq Comprehensive Cancer Panel. White blood cells (WBCs) from the same patient served as a negative control, and mutations in CTCs and WBCs were compared. EpCAM+ cells were detected in seven out of eight patients, and the average number of EpCAM+ cells was 8.6. The average amount of amplified DNA was 32.7 µg, and the percentage of reads mapped to any targeted region relative to all reads mapped to the reference was 98.6%. The detection rate of CTC-specific mutations was 62.5%. The CTC-specific mutations were enhancer of zeste polycomb repressive complex 2 subunit, notch 1, AT-rich interaction domain 1A, serine/threonine kinase 11, fms related tyrosine kinase 3, MYCN proto-oncogene, bHLH transcription factor, APC, WNT signaling pathway regulator, and phosphatase and tensin homolog. The technique used by the present study was demonstrated to be effective at isolating CTCs at a sufficiently high purity for genomic analysis, and supported the use of comprehensive cancer panel analysis as a potential application for precision medicine.

8.
Oncol Lett ; 13(6): 4627-4632, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28599463

RESUMO

Although numerous effective therapies have improved the survival rate of patients with breast cancer, a number of patients present with tumor recurrence and metastasis. A liquid biopsy of circulating tumor cells (CTC) is a non-invasive method to obtain tumor cells and may be used as substitute for a tumor tissue biopsy. The present study focuses on determining whether CTC culture is an optimal method of obtaining sufficient amounts of CTCs for molecular analysis. The current study demonstrates a method of isolating and culturing CTCs from patients with breast cancer and the construction of a molecular profile of cultured cells using the Ion AmpliSeq Cancer Gene Panel V2. Gene mutations that were observed in cultured CTCs were compared with those observed in primary tumor tissues. CTCs were isolated and cultured from the blood of six patients with breast cancer. Mutations from the Catalogue Of Somatic Mutation In Cancer (COSMIC) were detected in Platelet-Derived Growth Factor Receptor Alpha, MET (also known as Hepatocyte Growth Factor Receptor), Phosphatase and Tensin Homolog, Harvey Rat Sarcoma Viral Oncogene Homolog, SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin Subfamily B Member 1, Cyclin Dependent Kinase Inhibitor 2A and MutL Homolog 1 genes in 5/6 samples. A comparison between mutations detected in cultured CTCs and mutations detected in primary tumor tissues demonstrated that a large number of mutations that were identified in CTCs were also detected in primary tumor tissues. The results from the current study describe a novel cell culture approach that may be used to obtain an optimal number of CTCs for molecular analysis. This novel approach is able to be used as a tool for liquid biopsy during breast cancer treatment.

9.
Oncol Lett ; 13(5): 3025-3031, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28521409

RESUMO

Liquid biopsy isolation of circulating tumor cells (CTCs) allows the genomic analysis of CTCs, which is useful in the determination of personalized cancer therapy. In the present study, CTCs from patients with breast cancer were enriched and successfully analyzed using cancer gene panel analysis. Blood samples from 11 patients with breast cancer were collected and CTCs enriched for using size-based filtration. The enriched CTCs were analyzed using immunofluorescence staining with antibodies directed against epithelial cell adhesion molecule (EpCAM) and cluster of differentiation 45. The genomic DNA of CTCs was extracted, amplified and 50 genes screened for mutations using the Ion AmpliSeq™ Cancer Hotspot Panel v2. EpCAM staining detected CTCs in 10/11 patients and the average CTC count was 3.9 in 5 ml blood. The average purity of enriched CTCs was 14.2±29.4% and the average amount of amplified DNA was 28.6±11.9 µg. Catalogue Of Somatic Mutations In Cancer mutations were detected in the CTCs and included IDH2, TP53, NRAS, IDH1, PDGFRA, HRAS, STK11, EGFR, PTEN, MLH1, PIK3CA, CDKN2A, KIT and SMARCB1. In conclusion, a novel size-based filtration approach for the isolation of CTCs was evaluated and successfully applied for the genomic analysis of CTCs from patients with breast cancer.

10.
Mov Disord ; 32(4): 569-575, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28186668

RESUMO

BACKGROUND: Genetic disorders causing dystonia show great heterogeneity. Recent studies have suggested that next-generation sequencing techniques such as gene panel analysis can be effective in diagnosing heterogeneous conditions. The objective of this study was to investigate whether dystonia patients with a suspected genetic cause could benefit from the use of gene panel analysis. METHODS: In this post hoc study, we describe gene panel analysis results of 61 dystonia patients (mean age, 31 years; 72% young onset) in our tertiary referral center. The panel covered 94 dystonia-associated genes. As comparison with a historic cohort was not possible because of the rapidly growing list of dystonia genes, we compared the diagnostic workup with and without gene panel analysis in the same patients. The workup without gene panel analysis (control group) included theoretical diagnostic strategies formulated by independent experts in the field, based on detailed case descriptions. The primary outcome measure was diagnostic yield; secondary measures were cost and duration of diagnostic workup. RESULTS: Workup with gene panel analysis led to a confirmed molecular diagnosis in 14.8%, versus 7.4% in the control group (P = 0.096). In the control group, on average 3 genes/case were requested. The mean costs were lower in the gene panel analysis group (€1822/case) than in the controls (€2660/case). The duration of the workup was considerably shorter with gene panel analysis (28 vs 102 days). CONCLUSIONS: Gene panel analysis facilitates molecular diagnosis in complex cases of dystonia, with a good diagnostic yield (14.8%), a quicker diagnostic workup, and lower costs, representing a major improvement for patients and their families. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Análise Mutacional de DNA/métodos , Distonia/diagnóstico , Distonia/genética , Mutação/genética , Adolescente , Adulto , Idade de Início , Criança , Estudos de Coortes , Custos e Análise de Custo , Análise Mutacional de DNA/economia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Avaliação de Resultados em Cuidados de Saúde , Adulto Jovem
11.
Epilepsy Res ; 129: 17-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875746

RESUMO

OBJECTIVES: To determine the incidence of pathogenic SCN8A variants in a cohort of epilepsy patients referred for clinical genetic testing. We also investigated the contribution of SCN8A to autism spectrum disorder, intellectual disability, and neuromuscular disorders in individuals referred for clinical genetic testing at the same testing laboratory. METHODS: Sequence data from 275 epilepsy panels screened by Emory Genetics Laboratory were reviewed for variants in SCN8A. Two additional cases with variants in SCN8A were ascertained from other testing laboratories. Parental samples were tested for variant segregation and clinical histories were examined. SCN8A variants detected from gene panel analyses for autism spectrum disorder, intellectual disability, and neuromuscular disorders were also examined. RESULTS: Five variants in SCN8A were identified in five individuals with epilepsy. Three variants were de novo, one was inherited from an affected parent, and one was inherited from an unaffected parent. Four of the individuals have epilepsy and developmental delay/intellectual disability. The remaining individual has a milder epilepsy presentation without cognitive impairment. We also identified an amino acid substitution at an evolutionarily conserved SCN8A residue in a patient who was screened on the autism spectrum disorder panel. Additionally, we examined the distribution of pathogenic SCN8A variants across the Nav1.6 channel and identified four distinct clusters of variants. These clusters are primarily located in regions of the channel that are important for the kinetics of channel inactivation. CONCLUSIONS: Variants in SCN8A may be responsible for a spectrum of epilepsies as well as other neurodevelopmental disorders without seizures. The predominant pathogenic mechanism appears to involve disruption of channel inactivation, leading to gain-of-function effects.


Assuntos
Epilepsia/genética , Predisposição Genética para Doença , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Adolescente , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Testes Genéticos , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Doenças Neuromusculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA