Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Sci ; 13(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37190585

RESUMO

We recently investigated the role of the cerebellum during development, reporting that children with genetic slow-progressive ataxia (SlowP) show worse postural control during quiet stance and gait initiation compared to healthy children (H). Instead, children with genetic non-progressive ataxia (NonP) recalled the behavior of H. This may derive from compensatory networks, which are hindered by disease progression in SlowP while free to develop in NonP. In the aim of extending our findings to intra-limb postural control, we recorded, in 10 NonP, 10 SlowP and 10 H young patients, Anticipatory Postural Adjustments (APAs) in the proximal muscles of the upper-limb and preceding brisk index finger flexions. No significant differences in APA timing occurred between NonP and H, while APAs in SlowP were delayed. Indeed, the excitatory APA in Triceps Brachii was always present but significantly delayed with respect to both H and NonP. Moreover, the inhibitory APAs in the Biceps Brachii and Anterior Deltoid, which are normally followed by a late excitation, could not be detected in most SlowP children, as if inhibition was delayed to the extent where there was overlap with a late excitation. In conclusion, disease progression seems to be detrimental for intra-limb posture, supporting the idea that inter- and intra-limb postures seemingly share the same control mechanism.

2.
J Mov Disord ; 15(3): 206-226, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36065614

RESUMO

Treatable ataxias are a group of ataxic disorders with specific treatments. These disorders include genetic and metabolic disorders, immune-mediated ataxic disorders, and ataxic disorders associated with infectious and parainfectious etiology, vascular causes, toxins and chemicals, and endocrinopathies. This review provides a comprehensive overview of different treatable ataxias. The major metabolic and genetic treatable ataxic disorders include ataxia with vitamin E deficiency, abetalipoproteinemia, cerebrotendinous xanthomatosis, Niemann-Pick disease type C, autosomal recessive cerebellar ataxia due to coenzyme Q10 deficiency, glucose transporter type 1 deficiency, and episodic ataxia type 2. The treatment of these disorders includes the replacement of deficient cofactors and vitamins, dietary modifications, and other specific treatments. Treatable ataxias with immune-mediated etiologies include gluten ataxia, anti-glutamic acid decarboxylase antibody-associated ataxia, steroid-responsive encephalopathy associated with autoimmune thyroiditis, Miller-Fisher syndrome, multiple sclerosis, and paraneoplastic cerebellar degeneration. Although dietary modification with a gluten-free diet is adequate in gluten ataxia, other autoimmune ataxias are managed by short-course steroids, plasma exchange, or immunomodulation. For autoimmune ataxias secondary to malignancy, treatment of tumor can reduce ataxic symptoms. Chronic alcohol consumption, antiepileptics, anticancer drugs, exposure to insecticides, heavy metals, and recreational drugs are potentially avoidable and treatable causes of ataxia. Infective and parainfectious causes of cerebellar ataxias include acute cerebellitis, postinfectious ataxia, Whipple's disease, meningoencephalitis, and progressive multifocal leukoencephalopathy. These disorders are treated with steroids and antibiotics. Recognizing treatable disorders is of paramount importance when dealing with ataxias given that early treatment can prevent permanent neurological sequelae.

3.
Mov Disord ; 37(1): 171-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519102

RESUMO

BACKGROUND: No comprehensive meta-analysis has ever been performed to assess the value of neurofilament light chain (NfL) as a biomarker in genetic ataxia. OBJECTIVE: We conducted a meta-analysis to summarize NfL concentration and evaluate its utility as a biomarker in genetic ataxia. METHODS: Studies were included if they reported NfL concentration of genetic ataxia. We used log (mean ± SD) NfL to describe mean raw value of NfL. The effect size of NfL between genetic ataxia and healthy controls (HC) was expressed by mean difference. Correlation between NfL and disease severity was calculated. RESULTS: We identified 11 studies of 624 HC and 1006 patients, here referred to as spinocerebellar ataxia (SCA1, 2, 3, 6, and 7), Friedreich ataxia (FRDA), and ataxia telangiectasia (A-T). The concentration of blood NfL (bNfL) elevated with proximity to expected onset, and progressively increased from asymptomatic to preclinical to clinical stage in SCA3. Compared with HC, bNfL levels were significantly higher in SCA1, 2, 3, and 7, FRDA, as well as A-T, and the difference increased with the advancing disease in SCA3. bNfL levels correlated with disease severity in SCA3. There was a significant correlation between bNfL and longitudinal progression in SCA3. Additionally, bNfL increased with age in HC, yet this is probably masked by higher disease-related effects on bNfL in genetic ataxia. CONCLUSIONS: bNfL can be used as a potential biomarker to predict disease onset, severity, and progression of genetic ataxia. Reference-value setting of bNfL should be divided according to age. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Ataxias Espinocerebelares , Biomarcadores , Humanos , Filamentos Intermediários
4.
Clin Park Relat Disord ; 3: 100053, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34316636

RESUMO

Cerebellar ataxic syndrome is a heterogenous class of disorders which can result from a miscellany of causes- genetic or acquired. There are a few metabolic, immune mediated, inflammatory and hereditary causes of ataxia which can be diagnosed from the gamut of possibilities, offering great relief to the ailing patient, their family and the treating physician. A pragmatic algorithm for diagnosing treatable causes of ataxia includes a thorough clinical history, meticulous examination for associated signs and an investigative mind to clinch the diagnosis. With novel diagnostic techniques and targeted therapies, early diagnosis and treatment can lead to favourable outcomes. In this review, diseases presenting predominantly as cerebellar ataxia and are treatable by targeted therapies are discussed.

6.
Eur J Radiol ; 110: 187-192, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599859

RESUMO

PURPOSE: Evaluate the specificity and sensitivity of disappearance of susceptibility weighted imaging (SWI) dentate nuclei (DN) hypointensity in oculomotor apraxia patients (AOA). METHOD: In this prospective study, 27 patients with autosomal genetic ataxia (AOA (n = 11), Friedreich ataxia and ataxia with vitamin E deficit (n = 4), and dominant genetic ataxia (n = 12)) were included along with fifteen healthy controls. MRIs were qualitatively classified for the presence or absence of DN hypointensity on FLAIR and SWI sequences. The MRIs were then quantitatively studied, with measurement of a ratio of DN over brainstem white matter signal intensity through manual delineation. The institutional review board approved this study, and written informed consent was obtained. In the cross-sectional analysis, the Mann-Whitney test was applied. RESULTS: Qualitatively, the eleven AOA patients presented absence of both DN SWI and FLAIR hyposignals; three dominant genetic ataxia patients had moderate SWI DN hyposignal and absent FLAIR hyposignal; the thirteen remaining subjects presented normal SWI and FLAIR DN hyposignal. Absence of DN SWI hypointensity was 100% sensitive and specific to AOA. Quantitative signal intensity ratio (mean ± standard deviation) of the AOA group (98·96 ± 5·37%) was significantly higher than in control subjects group (76.40 ± 8.34%; p < 0.001), dominant genetic ataxia group (81·15 ± 9·94%; p < 0·001), and Friedreich ataxia and ataxia with vitamin E deficit group (87·56 ± 2·78%; p < 0·02). CONCLUSION: This small study shows that loss of the normal hypointensity in the dentate nucleus on both SWI and FLAIR imaging at 3 T is a highly sensitive and specific biomarker for AOA.


Assuntos
Apraxias/congênito , Síndrome de Cogan/complicações , Síndrome de Cogan/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ataxias Espinocerebelares/congênito , Adulto , Apraxias/complicações , Apraxias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA