Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 194, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369255

RESUMO

BACKGROUND: Bacteria of the candidate phyla radiation (CPR), constituting about 25% of the bacterial biodiversity, are characterized by small cell size and patchy genomes without complete key metabolic pathways, suggesting a symbiotic lifestyle. Gracilibacteria (BD1-5), which are part of the CPR branch, possess alternate coded genomes and have not yet been cultivated. The lifestyle of Gracilibacteria, their temporal dynamics, and activity in natural ecosystems, particularly in groundwater, has remained largely unexplored. Here, we aimed to investigate Gracilibacteria activity in situ and to discern their lifestyle based on expressed genes, using the metaproteogenome of Gracilibacteria as a function of time in the cold-water geyser Wallender Born in the Volcanic Eifel region in Germany. RESULTS: We coupled genome-resolved metagenomics and metaproteomics to investigate a cold-water geyser microbial community enriched in Gracilibacteria across a 12-day time-series. Groundwater was collected and sequentially filtered to fraction CPR and other bacteria. Based on 725 Gbps of metagenomic data, 1129 different ribosomal protein S3 marker genes, and 751 high-quality genomes (123 population genomes after dereplication), we identified dominant bacteria belonging to Gallionellales and Gracilibacteria along with keystone microbes, which were low in genomic abundance but substantially contributing to proteomic abundance. Seven high-quality Gracilibacteria genomes showed typical limitations, such as limited amino acid or nucleotide synthesis, in their central metabolism but no co-occurrence with potential hosts. The genomes of these Gracilibacteria were encoded for a high number of proteins involved in cell to cell interaction, supporting the previously surmised host-dependent lifestyle, e.g., type IV and type II secretion system subunits, transporters, and features related to cell motility, which were also detected on protein level. CONCLUSIONS: We here identified microbial keystone taxa in a high-CO2 aquifer, and revealed microbial dynamics of Gracilibacteria. Although Gracilibacteria in this ecosystem did not appear to target specific organisms in this ecosystem due to lack of co-occurrence despite enrichment on 0.2-µm filter fraction, we provide proteomic evidence for the complex machinery behind the host-dependent lifestyle of groundwater Gracilibacteria. Video Abstract.


Assuntos
Água Subterrânea , Água Subterrânea/microbiologia , Dióxido de Carbono/metabolismo , Metagenômica , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Alemanha , Genoma Bacteriano , Filogenia , Microbiota/genética , Proteogenômica , Adaptação Fisiológica , Proteômica
2.
Microbiome ; 12(1): 176, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39300577

RESUMO

BACKGROUND: The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth. Here we examine the microbial diversity and function in ancient sediments (10.3-11 kyr BP (before present)) from a terrace profile of Laguna Lejía, a sulfur- and metal/metalloid-rich saline lake in the Chilean Altiplano. We also evaluate the physical and chemical changes of the lake over time by studying the mineralogy and geochemistry of the terrace profile. RESULTS: The mineralogy and geochemistry of the terrace profile revealed large water level fluctuations in the lake, scarcity of organic carbon, and high concentration of SO42--S, Na, Cl and Mg. Lipid biomarker analysis indicated the presence of aquatic/terrestrial plant remnants preserved in the ancient sediments, and genome-resolved metagenomics unveiled a diverse prokaryotic community with still active microorganisms based on in silico growth predictions. We reconstructed 591 bacterial and archaeal metagenome-assembled genomes (MAGs), of which 98.8% belonged to previously unreported species. The most abundant and widespread metabolisms among MAGs were the reduction and oxidation of S, N, As, and halogenated compounds, as well as aerobic CO oxidation, possibly as a key metabolic trait in the organic carbon-depleted sediments. The broad redox and CO2 fixation pathways among phylogenetically distant bacteria and archaea extended the knowledge of metabolic capacities to previously unknown taxa. For instance, we identified genomic potential for dissimilatory sulfate reduction in Bacteroidota and α- and γ-Proteobacteria, predicted an enzyme for ammonia oxidation in a novel Actinobacteriota, and predicted enzymes of the Calvin-Benson-Bassham cycle in Planctomycetota, Gemmatimonadota, and Nanoarchaeota. CONCLUSIONS: The high number of novel bacterial and archaeal MAGs in the Laguna Lejía indicates the wide prokaryotic diversity discovered. In addition, the detection of genes in unexpected taxonomic groups has significant implications for the expansion of microorganisms involved in the biogeochemical cycles of carbon, nitrogen, and sulfur. Video Abstract.


Assuntos
Archaea , Bactérias , Variação Genética , Sedimentos Geológicos , Lagos , Lagos/microbiologia , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Chile , Filogenia , Microbiota , Extremófilos/metabolismo , Extremófilos/genética , Extremófilos/classificação , RNA Ribossômico 16S/genética
3.
Ecol Evol ; 14(9): e70302, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39290662

RESUMO

Despite a surge in microbiota-focused studies in teleosts, few have reported functional data on whole metagenomes as it has proven difficult to extract high biomass microbial DNA from fish intestinal samples. The zebrafish is a promising model organism in functional microbiota research, yet studies on the functional landscape of the zebrafish gut microbiota through shotgun based metagenomics remain scarce. Thus, a consensus on an appropriate sampling method accurately representing the zebrafish gut microbiota, or any fish species is lacking. Addressing this, we systematically tested four methods of sampling the zebrafish gut microbiota: collection of faeces from the tank, the whole gut, intestinal content, and the application of ventral pressure to facilitate extrusion of gut material. Additionally, we included water samples as an environmental control to address the potential influence of the environmental microbiota on each sample type. To compare these sampling methods, we employed a combination of genome-resolved metagenomics and 16S metabarcoding techniques. We observed differences among sample types on all levels including sampling, bioinformatic processing, metagenome co-assemblies, generation of metagenome-assembled genomes (MAGs), functional potential, MAG coverage, and population level microdiversity. Comparison to the environmental control highlighted the potential impact of the environmental contamination on data interpretation. While all sample types tested are informative about the zebrafish gut microbiota, the results show that optimal sample type for studying fish microbiomes depends on the specific objectives of the study, and here we provide a guide on what factors to consider for designing functional metagenome-based studies on teleost microbiomes.

4.
Environ Microbiome ; 19(1): 56, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095861

RESUMO

Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.

5.
Res Sq ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39149494

RESUMO

Background: The gut microbiome has emerged as a clear player in health and disease, in part by mediating host response to environment and lifestyle. The urobiome (microbiota of the urinary tract) likely functions similarly. However, efforts to characterize the urobiome and assess its functional potential have been limited due to technical challenges including low microbial biomass and high host cell shedding in urine. Here, to begin addressing these challenges, we evaluate urine sample volume (100 ml - 5 mL), and host DNA depletion methods and their effects on urobiome profiles in healthy dogs, which are a robust large animal model for the human urobiome. We collected urine from seven dogs and fractionated samples into aliquots. One set of samples was spiked with host (canine) cells to model a biologically relevant host cell burden in urine. Samples then underwent DNA extraction followed by 16S rRNA gene and shotgun metagenomic sequencing. We then assembled metagenome assembled genomes (MAGs) and compared microbial composition and diversity across groups. We tested six methods of DNA extraction: QIAamp BiOstic Bacteremia (no host depletion), QIAamp DNA Microbiome, Molzym MolYsis, NEBNext Microbiome DNA Enrichment, Zymo HostZERO, and Propidium Monoazide. Results: In relation to urine sample volume, 3 3.0 mL resulted in the most consistent urobiome profiling. In relation to host depletion, individual (dog) but not extraction method drove overall differences in microbial composition. DNA Microbiome yielded the greatest microbial diversity in 16S rRNA sequencing data and shotgun metagenomic sequencing data, and maximized MAG recovery while effectively depleting host DNA in host-spiked urine samples. As proof-of-principle, we then mined MAGs for core metabolic functions and environmental chemical metabolism. We identified long chain alkane utilization in two of the urine MAGs. Long chain alkanes are common pollutants that result from industrial combustion processes and end up in urine. Conclusions: This is the first study, to our knowledge, to demonstrate environmental chemical degradation potential in urine microbes through genome-resolved metagenomics. These findings provide guidelines for studying the urobiome in relation to sample volume and host depletion, and lay the foundation for future evaluation of urobiome function in relation to health and disease.

6.
Appl Environ Microbiol ; 90(4): e0235123, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517167

RESUMO

In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.


Assuntos
Euryarchaeota , Oryza , Solo/química , Oryza/microbiologia , Fermentação , Tartaratos/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Filogenia , Composição de Bases , Análise de Sequência de DNA , Bactérias , Bactérias Anaeróbias/metabolismo , Euryarchaeota/metabolismo , Firmicutes/metabolismo , Bactérias Gram-Negativas/genética , Metano/metabolismo
7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38470313

RESUMO

Microbial communities in full-scale engineered systems undergo dynamic compositional changes. However, mechanisms governing assembly of such microbes and succession of their functioning and genomic traits under various environmental conditions are unclear. In this study, we used the activated sludge and anaerobic treatment systems of four full-scale industrial wastewater treatment plants as models to investigate the niches of microbes in communities and the temporal succession patterns of community compositions. High-quality representative metagenome-assembled genomes revealed that taxonomic, functional, and trait-based compositions were strongly shaped by environmental selection, with replacement processes primarily driving variations in taxonomic and functional compositions. Plant-specific indicators were associated with system environmental conditions and exhibited strong determinism and trajectory directionality over time. The partitioning of microbes in a co-abundance network according to groups of plant-specific indicators, together with significant between-group differences in genomic traits, indicated the occurrence of niche differentiation. The indicators of the treatment plant with rich nutrient input and high substrate removal efficiency exhibited a faster predicted growth rate, lower guanine-cytosine content, smaller genome size, and higher codon usage bias than the indicators of the other plants. In individual plants, taxonomic composition displayed a more rapid temporal succession than functional and trait-based compositions. The succession of taxonomic, functional, and trait-based compositions was correlated with the kinetics of treatment processes in the activated sludge systems. This study provides insights into ecological niches of microbes in engineered systems and succession patterns of their functions and traits, which will aid microbial community management to improve treatment performance.


Assuntos
Microbiota , Esgotos , Bactérias/genética , Microbiota/genética , Metagenoma , Genômica
8.
Appl Microbiol Biotechnol ; 108(1): 128, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229335

RESUMO

The Gemmatimonadota phylum has been widely detected in diverse natural environments, yet their specific ecological roles in many habitats remain poorly investigated. Similarly, the Candidatus ARS69 phylum has been identified only in a few habitats, and literature on their metabolic functions is relatively scarce. In the present study, we investigated the ecological significance of phyla Ca. ARS69 and Gemmatimonadota in the Arctic glacier foreland (GF) ecosystems through genome-resolved metagenomics. We have reconstructed the first high-quality metagenome-assembled genome (MAG) belonging to Ca. ARS69 and 12 other MAGs belonging to phylum Gemmatimonadota from the three different Arctic GF samples. We further elucidated these two groups phylogenetic lineage and their metabolic function through phylogenomic and pangenomic analysis. The analysis showed that all the reconstructed MAGs potentially belonged to novel species. The MAGs belonged to Ca. ARS69 consist about 8296 gene clusters, of which only about 8% of single-copy core genes (n = 980) were shared among them. The study also revealed the potential ecological role of Ca. ARS69 is associated with carbon fixation, denitrification, sulfite oxidation, and reduction biochemical processes in the GF ecosystems. Similarly, the study demonstrates the widespread distribution of different classes of Gemmatimonadota across wide ranges of ecosystems and their metabolic functions, including in the polar region. KEY POINTS: • Glacier foreland ecosystems act as a natural laboratory to study microbial community structure. • We have reconstructed 13 metagenome-assembled genomes from the soil samples. • All the reconstructed MAGs belonged to novel species with different metabolic processes. • Ca. ARS69 and Gemmatimonadota MAGs were found to participate in carbon fixation and denitrification processes.


Assuntos
Camada de Gelo , Microbiota , Filogenia , Bactérias/genética , Metagenoma
9.
Environ Res ; 241: 117726, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984782

RESUMO

Land-terminating glaciers are retreating globally, resulting in the expansion of the ice-free glacier forelands (GFs). These GFs act as a natural laboratory to study microbial community succession, soil formation, and ecosystem development. Here, we have employed gene-centric and genome-resolved metagenomic approaches to disseminate microbial diversity, community structure, and their associated biogeochemical processes involved in the carbon, nitrogen, and sulfur cycling across three GF ecosystems. Here, we present a compendium of draft Metagenome Assembled Genomes (MAGs) belonging to bacterial (n = 899) and archaeal (n = 4) domains. These MAGs were reconstructed using a total of 27 shotgun metagenomic datasets obtained from three different GFs, including Midtre Lovénbreen glacier (Svalbard), Russell glacier (Greenland), and Storglaciaren (Sweden). The taxonomic classification revealed that 98% of MAGs remained unclassified at species levels, suggesting the presence of novel microbial lineages. The abundance of metabolic genes associated with carbon, nitrogen, and sulfur cycling pathways varied between and within the samples collected across the three GF ecosystems. Our findings indicate that MAGs from different GFs share close phylogenetic relationships but exhibit significant differences in abundance, distribution patterns, and metabolic functions. This compendium of novel MAGs, encompassing autotrophic, phototrophic, and chemolithoautotrophic microbial groups reconstructed from GF ecosystems, represents a valuable resource for further studies.


Assuntos
Metagenoma , Microbiota , Camada de Gelo/microbiologia , Filogenia , Microbiota/genética , Carbono/metabolismo , Enxofre , Nitrogênio
10.
mSystems ; 8(6): e0054323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37921472

RESUMO

IMPORTANCE: Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.


Assuntos
Fontes Hidrotermais , Ferro , Água do Mar/microbiologia , Hidrogênio , Fontes Hidrotermais/microbiologia , Proteobactérias/genética , Oxirredução , Compostos Férricos
11.
Appl Environ Microbiol ; 89(5): e0002523, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098974

RESUMO

The Candidate Phyla Radiation (CPR), also referred to as superphylum Patescibacteria, is a very large group of bacteria with no pure culture representatives discovered by 16S rRNA sequencing or genome-resolved metagenomic analyses of environmental samples. Within the CPR, candidate phylum Parcubacteria, previously referred to as OD1, is prevalent in anoxic sediments and groundwater. Previously, we had identified a specific member of the Parcubacteria (referred to as DGGOD1a) as an important member of a methanogenic benzene-degrading consortium. Phylogenetic analyses herein place DGGOD1a within the clade "Candidatus Nealsonbacteria." Because of its persistence over many years, we hypothesized that "Ca. Nealsonbacteria" DGGOD1a must play an important role in sustaining anaerobic benzene metabolism in the consortium. To try to identify its growth substrate, we amended the culture with a variety of defined compounds (pyruvate, acetate, hydrogen, DNA, and phospholipid), as well as crude culture lysate and three subfractions thereof. We observed the greatest (10-fold) increase in the absolute abundance of "Ca. Nealsonbacteria" DGGOD1a only when the consortium was amended with crude cell lysate. These results implicate "Ca. Nealsonbacteria" in biomass recycling. Fluorescence in situ hybridization and cryogenic transmission electron microscope images revealed that "Ca. Nealsonbacteria" DGGOD1a cells were attached to larger archaeal Methanothrix cells. This apparent epibiont lifestyle was supported by metabolic predictions from a manually curated complete genome. This is one of the first examples of bacterial-archaeal episymbiosis and may be a feature of other "Ca. Nealsonbacteria" found in anoxic environments. IMPORTANCE An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny "Candidatus Nealsonbacteria" cells attached to a large Methanothrix cell, revealing a novel episymbiosis.


Assuntos
Archaea , Euryarchaeota , Archaea/metabolismo , Benzeno/metabolismo , Filogenia , Biomassa , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Hibridização in Situ Fluorescente , Bactérias/genética , Euryarchaeota/metabolismo
12.
Data Brief ; 47: 108990, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36879606

RESUMO

This article presents metagenome-assembled genomes (MAGs) for both eukaryotic and prokaryotic organisms originating from the Arctic and Atlantic oceans, along with gene prediction and functional annotation for MAGs from both domains. Eleven samples from the chlorophyll-a maximum layer of the surface ocean were collected during two cruises in 2012; six from the Arctic in June-July on ARK-XXVII/1 (PS80), and five from the Atlantic in November on ANT-XXIX/1 (PS81). Sequencing and assembly was carried out by the Joint Genome Institute (JGI), who provide annotation of the assembled sequences, and 122 MAGs for prokaryotic organisms. A subsequent binning process identified 21 MAGs for eukaryotic organisms, mostly identified as Mamiellophyceae or Bacillariophyceae. The data for each MAG includes sequences in FASTA format, and tables of functional annotation of genes. For eukaryotic MAGs, transcript and protein sequences for predicted genes are available. A spreadsheet is provided summarising quality measures and taxonomic classifications for each MAG. These data provide draft genomes for uncultured marine microbes, including some of the first MAGs for polar eukaryotes, and can provide reference genetic data for these environments, or used in genomics-based comparison between environments.

13.
Microbiome ; 11(1): 36, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864482

RESUMO

BACKGROUND: Metagenomics analyses can be negatively impacted by DNA contamination. While external sources of contamination such as DNA extraction kits have been widely reported and investigated, contamination originating within the study itself remains underreported. RESULTS: Here, we applied high-resolution strain-resolved analyses to identify contamination in two large-scale clinical metagenomics datasets. By mapping strain sharing to DNA extraction plates, we identified well-to-well contamination in both negative controls and biological samples in one dataset. Such contamination is more likely to occur among samples that are on the same or adjacent columns or rows of the extraction plate than samples that are far apart. Our strain-resolved workflow also reveals the presence of externally derived contamination, primarily in the other dataset. Overall, in both datasets, contamination is more significant in samples with lower biomass. CONCLUSION: Our work demonstrates that genome-resolved strain tracking, with its essentially genome-wide nucleotide-level resolution, can be used to detect contamination in sequencing-based microbiome studies. Our results underscore the value of strain-specific methods to detect contamination and the critical importance of looking for contamination beyond negative and positive controls. Video Abstract.


Assuntos
Metagenômica , Microbiota , Biomassa , Contaminação por DNA , Microbiota/genética , DNA
14.
J Crohns Colitis ; 17(7): 1103-1113, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934439

RESUMO

BACKGROUND AND AIMS: Exclusive enteral nutrition [EEN] is a dietary intervention to induce clinical remission in children with active luminal Crohn's disease [CD]. While changes in the gut microbial communities have been implicated in achieving this remission, a precise understanding of the role of microbial ecology in the restoration of gut homeostasis is lacking. METHODS: Here we reconstructed genomes from the gut metagenomes of 12 paediatric subjects who were sampled before, during and after EEN. We then classified each microbial population into distinct 'phenotypes' or patterns of response based on changes in their relative abundances throughout the therapy on a per-individual basis. RESULTS: Our data show that children achieving clinical remission during therapy were enriched with microbial populations that were either suppressed or that demonstrated a transient bloom as a function of EEN. In contrast, this ecosystem-level response was not observed in cases of EEN failure. Further analysis revealed that populations that were suppressed during EEN were significantly more prevalent in healthy children and adults across the globe compared with those that bloomed ephemerally during the therapy. CONCLUSIONS: These observations taken together suggest that successful outcomes of EEN are marked by a temporary emergence of microbial populations that are rare in healthy individuals, and a concomitant reduction in microbes that are commonly associated with gut homeostasis. Our work is a first attempt to highlight individual-specific, complex environmental factors that influence microbial response in EEN. This model offers a novel, alternative viewpoint to traditional taxonomic strategies used to characterize associations with health and disease states.


Assuntos
Doença de Crohn , Microbiota , Humanos , Nutrição Enteral , Indução de Remissão , Bactérias
15.
Mol Ecol Resour ; 23(5): 1066-1076, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36847735

RESUMO

As most eukaryotic genomes are yet to be sequenced, the mechanisms underlying their contribution to different ecosystem processes remain untapped. Although approaches to recovering Prokaryotic genomes have become common in genome biology, few studies have tackled the recovery of eukaryotic genomes from metagenomes. This study assessed the reconstruction of microbial eukaryotic genomes using 6000 metagenomes from terrestrial and some transition environments using the EukRep pipeline. Only 215 metagenomic libraries yielded eukaryotic bins. From a total of 447 eukaryotic bins recovered 197 were classified at the phylum level. Streptophytes and fungi were the most represented clades with 83 and 73 bins, respectively. More than 78% of the obtained eukaryotic bins were recovered from samples whose biomes were classified as host-associated, aquatic, and anthropogenic terrestrial. However, only 93 bins were taxonomically assigned at the genus level and 17 bins at the species level. Completeness and contamination estimates were obtained for a total of 193 bins and consisted of 44.64% (σ = 27.41%) and 3.97% (σ = 6.53%), respectively. Micromonas commoda was the most frequent taxon found while Saccharomyces cerevisiae presented the highest completeness, probably because more reference genomes are available. Current measures of completeness are based on the presence of single-copy genes. However, mapping of the contigs from the recovered eukaryotic bins to the chromosomes of the reference genomes showed many gaps, suggesting that completeness measures should also include chromosome coverage. Recovering eukaryotic genomes will benefit significantly from long-read sequencing, development of tools for dealing with repeat-rich genomes, and improved reference genomes databases.


Assuntos
Eucariotos , Metagenoma , Eucariotos/genética , Ecossistema , Genoma Microbiano , Fungos/genética , Metagenômica
16.
J Hazard Mater ; 447: 130774, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641850

RESUMO

Acid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties. Specifically, key genes involved in sulfur and iron oxidation were significantly enriched in the surface tailings, whereas those associated with reductive nitrogen, sulfur, and iron processes were enriched in the deeper layers. Genome-resolved metagenomics retrieved 406 intermediate or high-quality genomes spanning 26 phyla, including major new groups (e.g., Patescibacteria and DPANN). Metabolic models involving nitrogen, sulfur, iron, and carbon cycles were proposed based on the functional potentials of the abundant microbial genomes, emphasizing syntrophy and the importance of lesser-known taxa in the degradation of complex carbon compounds. These results have implications for in situ AMD bioremediation.


Assuntos
Metagenômica , Microbiota , Ácidos , Ferro , Metagenoma , Nitrogênio/metabolismo , Enxofre
17.
Methods Mol Biol ; 2522: 487-527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125772

RESUMO

As the majority of biological diversity remains unexplored and uncultured, investigating it requires culture-independent approaches. Archaea in particular suffer from a multitude of issues that make their culturing problematic, from them being frequently members of the rare biosphere, to low growth rates, to them thriving under very specific and often extreme environmental and community conditions that are difficult to replicate. OMICs techniques are state of the art approaches that allow direct high-throughput investigations of environmental samples at all levels from nucleic acids to proteins, lipids, and secondary metabolites. Metagenomics, as the foundation for other OMICs techniques, facilitates the identification and functional characterization of the microbial community members and can be combined with other methods to provide insights into the microbial activities, both on the RNA and protein levels. In this chapter, we provide a step-by-step workflow for the recovery of archaeal genomes from metagenomes, starting from raw short-read sequences. This workflow can be applied to recover bacterial genomes as well.


Assuntos
Metagenoma , Ácidos Nucleicos , Genoma Arqueal , Lipídeos , RNA
18.
Front Cell Infect Microbiol ; 12: 910766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782152

RESUMO

Zebrafish have been used as a model organism for more than 50 years and are considered an excellent model for studying host-microbiome interactions. However, this largely depends on our understanding of the zebrafish gut microbiome itself. Despite advances in sequencing and data analysis methods, the zebrafish gut microbiome remains highly understudied. This study performed the de novo metagenome assembly and recovery of the metagenome-assembled genomes (MAGs) through genome binning (and refinement) of the contigs assembled from the zebrafish stool. The results indicate that majority of the MAGs had excellent quality i.e. high completeness (≥90%) and low contamination levels (≤5%). MAGs mainly belong to the taxa that are known to be members of the core zebrafish stool microbiome, including the phylum Proteobacteria, Fusobacteriota, and Actinobacteriota. However, most of the MAGs remained unclassified at the species level and reflected previously unexplored microbial taxa and their potential novelty. These MAGs also contained genes with predicted functions associated with diverse metabolic pathways that included carbohydrate, amino acid, and lipid metabolism pathways. Lastly, we performed a comparative analysis of Paucibacter MAGs and reference genomes that highlighted the presence of novel Paucibacter species and enriched metabolic potential in the recovered MAGs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Fezes , Microbioma Gastrointestinal/genética , Metagenoma , Peixe-Zebra
19.
mSystems ; 7(4): e0033522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862818

RESUMO

The compositional and physiological responses of autotrophic microbiotas to salinity in lakes remain unclear. In this study, the community composition and carbon fixation pathways of autotrophic microorganisms in lacustrine sediments with a salinity gradient (82.6 g/L to 0.54 g/L) were investigated by using metagenomic analysis. A total of 117 metagenome-assembled genomes (MAGs) with carbon fixation potentially belonging to 20 phyla were obtained. The abundance of these potential autotrophs increased significantly with decreasing salinity, and the variation of sediment autotrophic microbial communities was mainly affected by salinity, pH, and total organic carbon. Notably, along the decreasing salinity gradient, the dominant lineage shifted from Desulfobacterota to Proteobacteria. Meanwhile, the dominant carbon fixation pathway shifted from the Wood-Lungdahl pathway to the less-energy-efficient Calvin-Benson-Bassham cycle, with glycolysis shifting from the Embden-Meyerhof-Parnas pathway to the less-exergonic Entner-Doudoroff pathway. These results suggest that the physiological efficiency of autotrophic microorganisms decreased when the environmental salinity became lower. Metabolic inference of these MAGs revealed that carbon fixation may be coupled to the oxidation of reduced sulfur compounds and ferrous iron, dissimilatory nitrate reduction at low salinity, and dissimilatory sulfate reduction in hypersaline sediments. These results extend our understanding of metabolic versatility and niche diversity of autotrophic microorganisms in saline environments and shed light on the response of autotrophic microbiomes to salinity. These findings are of great significance for understanding the impact of desalination caused by climate warming on the carbon cycle of saline lake ecosystems. IMPORTANCE The Qinghai-Tibetan lakes are experiencing water increase and salinity decrease due to climate warming. However, little is known about how the salinity decrease will affect the composition of autotrophic microbial populations and their carbon fixation pathways. In this study, we used genome-resolved metagenomics to interpret the dynamic changes in the autotrophic microbial community and metabolic pathways along a salinity gradient. The results showed that desalination drove the shift of the dominant microbial lineage from Desulfobacterota to Proteobacteria, enriched autotrophs with lower physiological efficiency pathways, and enhanced coupling between the carbon cycle and other element cycles. These results can predict the future response of microbial communities to lake desalination and improve our understanding of the effect of climate warming on the carbon cycle in saline aquatic ecosystems.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Salinidade , Microbiota/genética , Processos Autotróficos , Proteobactérias , Ciclo do Carbono
20.
Front Microbiol ; 13: 869135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756038

RESUMO

The analysis of metagenome data based on the recovery of draft genomes (so called metagenome-assembled genomes, or MAG) has assumed an increasingly central role in microbiome research in recent years. Microbial communities underpinning the operation of wastewater treatment plants are particularly challenging targets for MAG analysis due to their high ecological complexity, and remain important, albeit understudied, microbial communities that play ssa key role in mediating interactions between human and natural ecosystems. Here we consider strategies for recovery of MAG sequence from time series metagenome surveys of full-scale activated sludge microbial communities. We generate MAG catalogs from this set of data using several different strategies, including the use of multiple individual sample assemblies, two variations on multi-sample co-assembly and a recently published MAG recovery workflow using deep learning. We obtain a total of just under 9,100 draft genomes, which collapse to around 3,100 non-redundant genomic clusters. We examine the strengths and weaknesses of these approaches in relation to MAG yield and quality, showing that co-assembly may offer advantages over single-sample assembly in the case of metagenome data obtained from closely sampled longitudinal study designs. Around 1,000 MAGs were candidates for being considered high quality, based on single-copy marker gene occurrence statistics, however only 58 MAG formally meet the MIMAG criteria for being high quality draft genomes. These findings carry broader broader implications for performing genome-resolved metagenomics on highly complex communities, the design and implementation of genome recoverability strategies, MAG decontamination and the search for better binning methodology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA