RESUMO
Background: Varoglutamstat is a first-in-class, small molecule being investigated as a treatment for early Alzheimer's disease (AD). It is an inhibitor of glutaminyl cyclase (QC), the enzyme that post-translationally modifies amyloid-ß (Aß) peptides into a toxic form of pyroglutamate Aß (pGlu-Aß) and iso-QC which post-translationally modifies cytokine monocyte chemoattractant protein-1 (CCL2) into neuroinflammatory pGlu-CCL2. Early phase clinical trials identified dose margins for safety and tolerability of varoglutamstat and biomarker data supporting its potential for clinical efficacy in early AD. Objective: Present the scientific rationale of varoglutamstat in the treatment of early AD and the methodology of the VIVA-MIND (NCT03919162) trial, which uses a seamless phase 2A-2B design. Our review also includes other pharmacologic approaches to pGlu-Aß. Methods: Phase 2A of the VIVA-MIND trial will determine the highest dose of varoglutamstat that is safe and well tolerated with sufficient plasma exposure and a calculated target occupancy. Continuous safety evaluation using a pre-defined safety stopping boundary will help determine the highest tolerated dose that will carry forward into phase 2B. An interim futility analysis of cognitive function and electroencephalogram changes will be conducted to inform the decision of whether to proceed with phase 2B. Phase 2B will assess the efficacy and longer-term safety of the optimal selected phase 2A dose through 72 weeks of treatment. Conclusions: Varoglutamstat provides a unique dual mechanism of action addressing multiple pathogenic contributors to the disease cascade. VIVA-MIND provides a novel and efficient trial design to establish its optimal dosing, safety, tolerability, and efficacy in early AD.
Assuntos
Doença de Alzheimer , Aminoaciltransferases , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/tratamento farmacológico , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase II como AssuntoRESUMO
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain.
Assuntos
Aminoaciltransferases , Isquemia Encefálica , Inflamação , Animais , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Camundongos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/genética , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Quimiocina CCL2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologiaRESUMO
Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.
Assuntos
Aminoaciltransferases , Zinco , Humanos , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Zinco/metabolismo , Zinco/química , Sítios de Ligação , Cobalto/metabolismo , Cobalto/química , Ligação Proteica , Modelos MolecularesRESUMO
Human glutaminyl cyclase (hQC) inhibitors have great potential to be used as anti- Alzheimer's disease (AD) agents by reducing the toxic pyroform of ß-amyloid in the brains of AD patients. The four-dimensional quantitative structure activity relationship (4D-QSAR) model of N-substituted urea/thioureas was established with satisfying predictive ability and statistical reliability (Q2 = 0.521, R2 = 0.933, R2prep = 0.619). By utilizing the developed 4D-QSAR model, a set of new N-substituted urea/thioureas was designed and evaluated for their Absorption Distribution Metabolism Excretion and Toxicity (ADMET) properties. The results of molecular dynamics (MD) simulations, Principal component analysis (PCA), free energy landscape (FEL), dynamic cross-correlation matrix (DCCM) and molecular mechanics generalized Born Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, revealed that the designed compounds were remained stable in protein binding pocket and compounds b â¼ f (-35.1 to -44.55 kcal/mol) showed higher binding free energy than that of compound 14 (-33.51 kcal/mol). The findings of this work will be a theoretical foundation for further research and experimental validation of urea/thiourea derivatives as hQC inhibitors.
Assuntos
Aminoaciltransferases , Inibidores Enzimáticos , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Tioureia , Ureia , Humanos , Tioureia/química , Tioureia/farmacologia , Tioureia/análogos & derivados , Ureia/química , Ureia/análogos & derivados , Ureia/farmacologia , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Desenho de FármacosRESUMO
Alzheimer's disease (AD) is a major cause of dementia and one of the most common chronic diseases affecting the aging population. Because AD is considered a public health priority, there is a critical need to discover novel and effective agents for the treatment of this condition. In view of the known contribution of up-regulated glutaminyl cyclase (QC) and glycogen synthase kinase-3ß (GSK-3ß) to the initiation of AD, we previously evaluated a series of dual inhibitors containing maleimide and imidazole motifs as potential anti-AD agents. Here, we assessed another series of hybrids containing maleimide and imidazole motifs to gain an in-depth understanding of the structure-activity relationship (SAR). Based on the primary screening, the introduction of 5-methyl imidazole at one side of the molecule did not enhance the QC-specific inhibitory activity of these hybrids (2, IC50 = 1.22 µM), although the potency was increased by 2' substitution on the maleimide motif at the other side of the molecule. Interestingly, compounds containing 5-methyl imidazole exhibited stronger GSK-3ß-specific inhibitory activity (2, IC50 = 0.0021 µM), and the electron-withdrawing group and 2' and 3' substitution were favorable. Further investigation of substitutions on the maleimide motif in compounds 14-35 revealed that QC-specific inhibition in the presence of piperidine was improved by introduction of a methoxy group (R2). Increasing the linker length and introduction of a methoxy group (R2) also increased the GSK-3ß-specific inhibitory potency. These findings were further confirmed by molecular docking analysis of 33 and 24 with QC and GSK-3ß. Overall, these hybrids exhibited enhanced inhibitory potency against both QC and GSK-3ß, highlighting an important strategy for improving the potency of hybrids as dual-targeting anti-AD agents.
Assuntos
Aminoaciltransferases , Glicogênio Sintase Quinase 3 beta , Imidazóis , Maleimidas , Relação Estrutura-Atividade , Maleimidas/química , Maleimidas/farmacologia , Maleimidas/síntese química , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Humanos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Doença de Alzheimer/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Relação Dose-Resposta a DrogaRESUMO
Several new lines of research have demonstrated that a significant number of amyloid-ß peptides found in Alzheimer's disease (AD) are truncated and undergo post-translational modification by glutaminyl cyclase (QC) at the N-terminal. Notably, QC's products of Abeta-pE3 and Abeta-pE11 have been active targets for investigational drug development. This work describes the design, synthesis, characterization, and in vivo validation of a novel PET radioligand, [18F]PB0822, for targeted imaging of QC. We report herein a simplified and robust chemistry for the synthesis of the standard compound, [19F]PB0822, and the corresponding [18F]PB0822 radioligand. The PET probe was developed with 99.9% radiochemical purity, a molar activity of 965 Ci.mmol-1, and an IC50 of 56.3 nM, comparable to those of the parent PQ912 inhibitor (62.5 nM). Noninvasive PET imaging showed that the probe is distributed in the brain 5 min after intravenous injection. Further, in vivo PET imaging with [18F]PB0822 revealed that AD 5XFAD mice harbor significantly higher QC activity than WT counterparts. The data also suggested that QC activity is found across different brain regions of the tested animals.
Assuntos
Doença de Alzheimer , Aminoaciltransferases , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Aminoaciltransferases/metabolismo , Aminoaciltransferases/antagonistas & inibidores , Animais , Camundongos , Radioisótopos de Flúor/química , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/enzimologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Biomarcadores/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/análise , LigantesRESUMO
Fibril formation by amyloidogenic proteins and peptides is considered the cause of a number of incurable diseases. One of the most known amyloid diseases is Alzheimer's disease (AD). Traditionally, amyloidogenic beta peptides Aß40 and Aß42 (Aßs) are considered as main causes of AD and the foremost targets in AD fight. The main efforts in pharmacology are aimed at reducing Aßs concentration to prevent their accumulation, aggregation, formation of senile plaques, neuronal death, and neurodegeneration. However, a number of publications have demonstrated certain beneficial physiological effects of Aßs. Simultaneously, it is indicated that the effects of Aßs turn into pathological due to the development of certain diseases in the body. The accumulation of C- and N-terminal truncated Aßs under diverse conditions is supposed to play a role in AD development. The significance of transformation of glutamate residue at positions 3 or 11 of Aßs catalyzed by glutaminyl cyclase making them more degradation resistant, hydrophobic, and prone to aggregation, as well as the participation of dipeptidyl peptidase IV in these transformations are discussed. The experimental data presented confirm the maintenance of physiological, nonaggregated state of Aßs by plant preparations. In conclusion, this review suggests that in the fight against AD, instead of removing Aßs, preference should be given to the treatment of common diseases. Glutaminyl cyclase and dipeptidyl peptidase IV can be considered as targets in AD treatment. Flavonoids and plant preparations that possess antiamyloidogenic propensity are proposed as beneficial neuroprotective, anticancer, and antidiabetic food additives.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/metabolismo , Humanos , Animais , Doença de Alzheimer/metabolismo , Fragmentos de Peptídeos/metabolismoRESUMO
Glutaminyl cyclase (QC) plays a crucial role in the early stages of Alzheimer's disease (AD), thus inhibition of QC may be a promising strategy for the treatment of early AD. Therefore, QC inhibitors with novel chemical scaffolds may contribute to the development of additional anti-AD agents. We conducted a virtual screening of 3 million compounds from the Chemdiv and Enamine databases, to discover potential scaffolds for QC inhibitors. Three scaffolds, 120974, 147706, and 141449, were selected from this structure-based virtual screening through a combination of pharmacophore modeling, a receptor-ligand pharmacophore model, and the GALAHAD model, and furtherly filtered by chelation with zinc ion and docking properties. Consequently, three compounds, 1, 2, and 3, were designed and synthesized based on these three scaffolds, respectively. The IC50 of compounds 1 and 3 against QC were 14.19 ± 4.21 and 4.34 ± 0.35 µM, respectively. Our results indicate that the new scaffolds selected using a virtual screening process exhibit potential as novel QC inhibitors.
Assuntos
Doença de Alzheimer , Aminoaciltransferases , Humanos , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Simulação de Acoplamento MolecularRESUMO
Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging as a potential druggable target for Alzheimer's disease (AD) due to its close involvement in the pathology of AD via the post-translational pyroglutamate modification of amyloid-ß. A recent phase 2a study has shown promising early evidence of efficacy for AD with a competitive benzimidazole-based QC inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding has sparked new hope for the treatment of AD. In this review, we briefly summarize the discovery and evolution of hQC inhibitors, with a particular interest in classic Zinc binding group (ZBG)-containing chemicals reported in recent years. Additionally, we highlight several high-potency inhibitors and discuss new trends and challenges in the development of QC inhibitors as an alternative and promising disease-modifying therapy for AD.
RESUMO
Clinical studies show that the pyroglutamate alteration of amyloid-ß (Aß) catalysed by metalloenzyme glutaminyl cyclase results in the formation of the more neurotoxic pGlu-Aß, and inhibition of glutaminyl cyclase can bring down the load of pGlu-Aß in the brain and reduces Alzheimer's disease pathology with improvement in cognition. The present study involves the identification of activity-modulating structural features of 188 inhibitors of glutaminyl cyclase under the influence of index of ideality of correlation (IIC) and correlation intensity index (CII) as prediction parameters. The QSAR models developed employing IIC and CII were found to be statistically better and had better predictability than the models developed without them. The best model (split 4) showed r2 values of 0.8155 and 0.8218 for calibration and validation sets, respectively. The structural features classified from QSAR models were used to design some new glutaminyl cyclase inhibitors. Among the designed ligands, ligand 5 possesses the highest pIC50 value (6.30) as well as binding affinity (-6.2 kcal/mol) and creates hydrogen bonds with TRP 329, π-alkyl interactions with ILE 303 and TYR 299, π-π stacking interaction with PHE 325 and interactions with ZN 391. All novel designed ligands have better pIC50 values and binding affinities.
Assuntos
Doença de Alzheimer , Relação Quantitativa Estrutura-Atividade , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Imidazóis/farmacologiaRESUMO
Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.
Assuntos
Doença de Alzheimer , Aminoaciltransferases , Neoplasias , Humanos , Imunoterapia , Doença de Alzheimer/tratamento farmacológicoRESUMO
ß-Amyloid (Aß) is a specific pathological hallmark of Alzheimer's disease (AD). Because of its neurotoxicity, AD patients exhibit multiple brain dysfunctions. Disease-modifying therapy (DMT) is the central concept in the development of AD therapeutics today, and most DMT drugs that are currently in clinical trials are anti-Aß drugs, such as aducanumab and lecanemab. Therefore, understanding Aß's neurotoxic mechanism is crucial for Aß-targeted drug development. Despite its total length of only a few dozen amino acids, Aß is incredibly diverse. In addition to the well-known Aß1-42 , N-terminally truncated, glutaminyl cyclase (QC) catalyzed, and pyroglutamate-modified Aß (pEAß) is also highly amyloidogenic and far more cytotoxic. The extracellular monomeric Aßx-42 (x = 1-11) initiates the aggregation to form fibrils and plaques and causes many abnormal cellular responses through cell membrane receptors and receptor-coupled signal pathways. These signal cascades further influence many cellular metabolism-related processes, such as gene expression, cell cycle, and cell fate, and ultimately cause severe neural cell damage. However, endogenous cellular anti-Aß defense processes always accompany the Aß-induced microenvironment alterations. Aß-cleaving endopeptidases, Aß-degrading ubiquitin-proteasome system (UPS), and Aß-engulfing glial cell immune responses are all essential self-defense mechanisms that we can leverage to develop new drugs. This review discusses some of the most recent advances in understanding Aß-centric AD mechanisms and suggests prospects for promising anti-Aß strategies.
Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Humanos , Peptídeos beta-Amiloides , Membrana Celular , CitoplasmaRESUMO
Alzheimer's disease (AD), multifactorial disease, is recognized as one of the most common forms of dementia, and the efficacy of anti-AD drugs is limited clinically. Up-regulated glutaminyl cyclase (QC) and glycogen synthase kinase-3ß (GSK-3ß) have been identified as two critical elements involved in AD recently. Here, a series of novel chemicals containing maleimide and imidazole motif were designed and synthesized as dual inhibitors targeting QC and GSK-3ß. Based on primary screening, compound 2 (2.26 µM), 5 (2.37 µM), 8 (1.34 µM), 21 (2.44 µM), 25 (0.36 µM), 27 (1.76 µM), 28 (1.04 µM), 33 (2.08 µM) and 34 (2.33 µM) exhibited notable human QC (hQC) inhibitory potency, while compound 1 (0.014 µM), 7 (0.04 µM), 8 (0.057 µM), 19 (0.034 µM), 24 (0.014 µM), 32 (0.032 µM), 38 (0.051 µM), 39 (0.044 µM), 44 (0.048 µM), 47 (0.011 µM), 49 (0.021 µM) and so on showed remarkable GSK-3ß inhibitory activities. And as expected, these chemicals possessed significant inhibitory potency on both hQC and GSK-3ß, such as compound 1 (2.80 and 0.014 µM), 8 (1.34 and 0.057 µM), 25 (0.36 and 0.15 µM), 27 (1.76 and 0.069 µM), 28 (1.04 and 0.090 µM), 33 (2.08 and 0.19 µM), 34 (2.33 and 0.11 µM), 35 (2.55 and 0.14 µM), 36 (2.34 and 0.11 µM), etc. Subsequent in vivo studies demonstrated that compound 8 attenuated cognitive deficits and decreased the anxiety-like behavior in 3 × Tg-AD mice. The treatment decreased both pE-Aß and Aß accumulation by inhibiting the activity of QC, and decreased the hyperphosphorylation of Tau by reducing the levels of GSK-3ß in the brains of AD mice. Results obtained in this research suggested that these novel compounds could be supposed as potential anti-AD agents targeting QC and GSK-3ß.
Assuntos
Doença de Alzheimer , Aminoaciltransferases , Camundongos , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Proteínas tau/metabolismo , FosforilaçãoRESUMO
Glutaminyl cyclases (QC) catalyze the cyclization of proteins and turn N-terminal glutamine or glutamic acid into N-terminal pyroglutamate, resulting in protection of proteins from aminopeptidases and an increase of their stabilities. The aberrant N-terminal pyroglutamate has been found in various diseases, including Alzheimer's disease (AD), Huntington's disease (HD) and cancer. Two kinds of human QC, the secretory sQC and the Golgi resident gQC, are identified to date. Several substrates of sQC involving beta amyloid (Aß), Huntington (HTT) protein and certain inflammatory mediators such as CCL2 and CX3CL1 have been observed to associate with neurodegenerative diseases and cancers. The Golgi resident gQC can modify N-terminus of CD47 that directly influences the interaction of CD47 and SIRPα resulting in the modulations of the immunological surveillance related mechanisms in cancer. Additionally, inflammatory chemokines CCL2 and CX3CL1 can also be modified by gQC. Several QC inhibitors with differential scaffold structures have been developed and investigated. Among these QC inhibitors, PQ912, a benzimidazole-based inhibitor, has been studied in a phase II clinical trial to treat AD. In this review, we will summarize the current knowledge about QCs' tissue expression patterns, their potential cellular substrates in the context of cancers, AD and HD. After introducing QCs' molecular structures and catalysis mechanisms, the structures and efficacies of the currently reported QCs' inhibitors will also be summarized.
Assuntos
Doença de Alzheimer , Aminoaciltransferases , Neoplasias , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Aminoaciltransferases/uso terapêutico , Peptídeos beta-Amiloides , Antígeno CD47/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Ácido Pirrolidonocarboxílico/metabolismo , Ácido Pirrolidonocarboxílico/uso terapêuticoRESUMO
Glutaminyl cyclase (QC) modifies N-terminal glutamine or glutamic acid residues of target proteins into cyclic pyroglutamic acid (pGlu). Here, we report the biochemical and functional analysis of Plasmodium QC. We show that sporozoites of QC-null mutants of rodent and human malaria parasites are recognized by the mosquito immune system and melanized when they reach the hemocoel. Detailed analyses of rodent malaria QC-null mutants showed that sporozoite numbers in salivary glands are reduced in mosquitoes infected with QC-null or QC catalytically dead mutants. This phenotype can be rescued by genetic complementation or by disrupting mosquito melanization or phagocytosis by hemocytes. Mutation of a single QC-target glutamine of the major sporozoite surface protein (circumsporozoite protein; CSP) of the rodent parasite Plasmodium berghei also results in melanization of sporozoites. These findings indicate that QC-mediated posttranslational modification of surface proteins underlies evasion of killing of sporozoites by the mosquito immune system.
Assuntos
Aminoaciltransferases , Culicidae , Malária , Processamento de Proteína Pós-Traducional , Esporozoítos , Aminoaciltransferases/imunologia , Animais , Culicidae/imunologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Malária/genética , Malária/imunologia , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologiaRESUMO
α-Synuclein (aSyn) is a protein implicated in physiological functions such as neurotransmitter release at the synapse and the regulation of gene expression in the nucleus. In addition, pathological aSyn assemblies are characteristic for a class of protein aggregation disorders referred to as synucleinopathies, where aSyn aggregates appear as Lewy bodies and Lewy neurites or as glial cytoplasmic inclusions. We recently discovered a novel post-translational pyroglutamate (pGlu) modification at Gln79 of N-truncated aSyn that promotes oligomer formation and neurotoxicity in human synucleinopathies. A priori, the appearance of pGlu79-aSyn in vivo involves a two-step process of free N-terminal Gln79 residue generation and subsequent cyclization of Gln79 into pGlu79. Prime candidate enzymes for these processes are matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC). Here, we analyzed the expression of aSyn, MMP-3, QC and pGlu79-aSyn in brains of two transgenic mouse models for synucleinopathies (BAC-SNCA and ASO) by triple immunofluorescent labellings and confocal laser scanning microscopy. We report a co-localization of these proteins in brain structures typically affected by aSyn pathology, namely hippocampus in BAC-SNCA mice and substantia nigra in ASO mice. In addition, Western blot analyses revealed a high abundance of QC, MMP-3 and transgenic human aSyn in brain stem and thalamus but lower levels in cortex/hippocampus, whereas endogenous mouse aSyn was found to be most abundant in cortex/hippocampus, followed by thalamus and brain stem. During aging of ASO mice, we observed no differences between controls and transgenic mice in MMP-3 levels but higher QC content in thalamus of 6-month-old transgenic mice. Transgenic human aSyn abundance transiently increased and then showed decrease in oldest ASO mice analyzed. Immunohistochemistry revealed a successive increase in intraneuronal and extracellular formation of pGlu79-aSyn in substantia nigra during aging of ASO mice. Together, our data are supportive for a role of MMP-3 and QC in the generation of pGlu79-aSyn in brains affected by aSyn pathology.
Assuntos
Sinucleinopatias , alfa-Sinucleína , Animais , Encéfalo , Humanos , Lactente , Metaloproteinase 3 da Matriz , Camundongos , Camundongos TransgênicosRESUMO
The deposition of ß-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer's disease (AD) and Parkinson's disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)-along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation-in AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue. Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we demonstrate an association of pGlu79-aSyn, MMP-3 and QC with ß-amyloid plaques. In addition, pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can be generated extracellularly or within reactive astrocytes, accumulates in proximity to ß-amyloid plaques and induces an astrocytic protein unfolding mechanism involving HSP27.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
Periodontitis is a severe yet underestimated oral disease. Since it is linked to several systemic diseases, such as diabetes, artheriosclerosis, and even Alzheimer's disease, growing interest in treating periodontitis has emerged recently. The major cause of periodontitis is a shift in the oral microbiome. A keystone pathogen that is associated with this shift is Porphyromonas gingivalis. Hence, targeting P. gingivalis came into focus of drug discovery for the development of novel antiinfective compounds. Among others, glutaminyl cyclases (QCs) of oral pathogens might be promising drug targets. Here, we report the discovery and structure-activity relationship of a novel class of P. gingivalis QC inhibitors according to a tetrahydroimidazo[4,5-c]pyridine scaffold. Some compounds exhibited activity in the lower nanomolar range and thus were further characterized with regard to their selectivity and toxicity.
RESUMO
Compelling evidence suggests that pyroglutamate-modified Aß (pGlu3-Aß; AßN3pG) peptides play a pivotal role in the development and progression of Alzheimer's disease (AD). Approaches targeting pGlu3-Aß by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aß-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16-41%) but statistically insignificant reduction of Aß42 and pGlu-Aß42 in mice brain, the combination of both treatments resulted in significant reductions of Aß by 45-65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aß in different compartments, the antibody is able to clear existing pGlu3-Aß deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aß-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect.
Assuntos
Doença de Alzheimer , Aminoaciltransferases/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Benzimidazóis/farmacologia , Imidazolinas/farmacologia , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genéticaRESUMO
The inhibition of glutaminyl cyclase (QC) may provide a promising strategy for the treatment of early Alzheimer's disease (AD) by reducing the amount of the toxic pyroform of ß-amyloid (AßΝ3pE) in the brains of AD patients. In this work, we identified potent QC inhibitors with subnanomolar IC50 values that were up to 290-fold higher than that of PQ912, which is currently being tested in Phase II clinical trials. Among the tested compounds, the cyclopentylmethyl derivative (214) exhibited the most potent in vitro activity (IC50 = 0.1 nM), while benzimidazole (227) showed the most promising in vivo efficacy, selectivity and druggable profile. 227 significantly reduced the concentration of pyroform Aß and total Aß in the brain of an AD animal model and improved the alternation behavior of mice during Y-maze tests. The crystal structure of human QC (hQC) in complex with 214 indicated tight binding at the active site, supporting that the specific inhibition of QC results in potent in vitro and in vivo activity. Considering the recent clinical success of donanemab, which targets AßΝ3pE, small molecule-based QC inhibitors may also provide potential therapeutic options for early-stage AD treatment.