Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922138

RESUMO

A certified reference material of ricin (CRM-LS-1) was produced by the EuroBioTox consortium to standardise the analysis of this biotoxin. This study established the N-glycan structures and proportions including their loci and occupancy of ricin CRM-LS-1. The glycan profile was compared with ricin from different preparations and other cultivars and isoforms. A total of 15 different oligomannosidic or paucimannosidic structures were identified in CRM-LS-1. Paucimannose was mainly found within the A-chain and oligomannose constituted the major glycan type of the B-chain. Furthermore, the novel primary structure variants E138 and D138 and four different C-termini of the A-chain as well as two B-chain variants V250 and F250 were elucidated. While the glycan proportions and loci were similar among all variants in CRM-LS-1 and ricin isoforms D and E of all cultivars analysed, a different stoichiometry for isoforms D and E and the amino acid variants were found. This detailed physicochemical characterization of ricin regarding the glycan profile and amino acid sequence variations yields unprecedented insight into the molecular features of this protein toxin. The variable attributes discovered within different cultivars present signature motifs and may allow discrimination of the biotoxin's origin that are important in molecular forensic profiling. In conclusion, our data of in-depth CRM-LS-1 characterization combined with the analysis of other cultivars is representative for known ricin variants.


Assuntos
Polissacarídeos , Ricina , Ricina/genética , Ricina/química , Ricina/análise , Polissacarídeos/química , Polissacarídeos/análise , Padrões de Referência , Isoformas de Proteínas/genética , Isoformas de Proteínas/química
2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674051

RESUMO

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.


Assuntos
Oryza , Polissacarídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Oryza/metabolismo , Oryza/genética , Oryza/virologia , Polissacarídeos/metabolismo , Glicosilação , Humanos , SARS-CoV-2/metabolismo , Domínios Proteicos , Ligação Proteica , Plantas Geneticamente Modificadas/metabolismo , COVID-19/virologia , COVID-19/metabolismo
3.
MAbs ; 16(1): 2304268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252526

RESUMO

Glycosylation plays a crucial role in determining the quality and efficacy of therapeutic antibodies. This necessitates a thorough analysis and monitoring process to ensure consistent product quality during manufacturing. In this study, we introduce a custom-designed lectin microarray featuring nine distinct lectins: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHAL. These lectins have been specifically tailored to selectively bind to common N-glycan epitopes found in therapeutic IgG antibodies. By utilizing intact glycoprotein samples, our nine-lectin microarray provides a high-throughput platform for rapid glycan profiling, enabling comparative analysis of glycosylation patterns. Our results demonstrate the practical utility of this microarray in assessing glycosylation across various manufacturing batches or between biosimilar and innovator products. This capacity empowers informed decision-making in the development and production of therapeutic antibodies.


Assuntos
Medicamentos Biossimilares , Lectinas , Anticorpos Monoclonais , Epitopos , Glicosilação
4.
Pharm Res ; 41(1): 29-37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914842

RESUMO

PURPOSE: This study aims to establish a benchmark glycan profile for commercial therapeutic monoclonal antibodies (mAbs) approved by the US Food and Drug Administration (FDA). METHODS: We conducted a rigorous comparison of glycosylation data from the regulatory submissions for FDA-approved therapeutic antibodies up to May 2023. This analysis includes over 150 mAbs produced by various mammalian cell expression systems. RESULTS: The study identified nine prevalent glycan epitopes across all FDA-approved monoclonal antibodies produced by different expression systems. These epitopes include terminal N-acetylglucosamine, core fucose, terminal galactose, high mannose, α-galactose, terminal α2,3-linked N-acetylneuraminic acid, terminal α2,6-linked N-glycolylneuraminic acid, triantennary structure, and bisecting N-acetylglucosamine, thus establishing a benchmark glycan profile. CONCLUSIONS: The findings of this study have significant implications for therapeutic antibody development, quality control, and regulatory compliance. The benchmark glycan profile enables the assessment of glycosylation consistency and comparability across a diverse range of antibody products, ensuring improved product quality within the biopharmaceutical industry.


Assuntos
Anticorpos Monoclonais , Galactose , Animais , Anticorpos Monoclonais/química , Acetilglucosamina , Benchmarking , Polissacarídeos/química , Epitopos , Mamíferos/metabolismo
5.
Heliyon ; 9(5): e16255, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37229168

RESUMO

Research question: Does glycan profile in spent blastocyst culture medium have the potential to be used as a biomarker to predict implantation outcome. Design: A nested case-control study was conducted in Northwest women's and children's Hospital, Xi'an, China. The patients underwent fresh IVF/ICSI cycles with single blastocyst transfer were included. Total 78 cases were included and separated into groups according to success (n = 39) and failure (n = 39) implantation outcomes. The glycosylation patterns in spent blastocyst culture medium were detected by lectin microarray containing 37 lectins using pooled samples and confirmed by reversed lectin microarray using individual sample. Results: Binding signals of 10 lectins were found to be different between samples from successful and failed implantation. And 8 of them were confirmed that glycans binding to lectin NPA, UEA-I, MAL-I, LCA and GNA were significantly increased while DBA and BPL were decreased in the successful implantation compared to failed implantation. The glycan binding to lectin PHA-E + L had no difference between two groups. No significant differences in the glycan profile were found in spent culture medium of embryos with different morphological grades except the glycan binding to UEA-I between blastocysts of Poor and blastocysts of Medium. Conclusion: Detection of glycan profile in spent culture medium may lead to a novel non-invasive assessment assay of embryo viability. In addition, these results may be helpful to further understanding molecular mechanisms in embryo implantation.

6.
Regen Ther ; 22: 68-78, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36712959

RESUMO

Heart failure is caused by various factors, making the underlying pathogenic mechanisms difficult to identify. Since cardiovascular disease tends to worsen over time, early diagnosis is key for treatment. In addition, understanding the qualitative changes in the heart associated with aging, where information on the direct influences of aging on cardiovascular disease is limited, would also be useful for treatment and diagnosis. To fill these research gaps, the focus of our study was to detect the structural and functional molecular changes associated with the heart over time, with a focus on glycans, which reflect the type and state of cells. METHODS: We investigated glycan localization in the cardiac tissue of normal mice and their alterations during aging, using evanescent-field fluorescence-assisted lectin microarray, a technique based on lectin-glycan interaction, and lectin staining. RESULTS: The glycan profiles in the left ventricle showed differences between the luminal side (medial) and wall side (lateral) regions. The medial region was characterized by the presence of sialic acid residues. Moreover, age-related changes in glycan profiles were observed at a younger age in the medial region. The difference in the age-related decrease in the level of α-galactose stained with Griffonia simplicifolia lectin-IB4 in different regions of the left ventricle suggests spatiotemporal changes in the number of microvessels. CONCLUSIONS: The glycan profile, which retains diverse glycan structures, is supported by many cell populations, and maintains cardiac function. With further research, glycan localization and changes have the potential to be developed as a marker of the signs of heart failure.

7.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168261

RESUMO

The 800 million human infections with SARS-CoV-2 and the likely emergence of new variants and additional coronaviruses necessitate a better understanding of the essential spike glycoprotein and the development of immunogens that foster broader and more durable immunity. The S2 fusion subunit is more conserved in sequence, is essential to function, and would be a desirable immunogen to boost broadly reactive antibodies. It is, however, unstable in structure and in its wild-type form, cannot be expressed alone without irreversible collapse into a six-helix bundle. In addition to the irreversible conformational changes of fusion, biophysical measurements indicate that spike also undergoes a reversible breathing action. However, spike in an open, "breathing" conformation has not yet been visualized at high resolution. Here we describe an S2-only antigen, engineered to remain in its relevant, pre-fusion viral surface conformation in the absence of S1. We also describe a panel of natural human antibodies specific for S2 from vaccinated and convalescent individuals. One of these mAbs, from a convalescent individual, afforded a high-resolution cryo-EM structure of the prefusion S2. The structure reveals a complex captured in an "open" conformation with greater stabilizing intermolecular interactions at the base and a repositioned fusion peptide. Together, this work provides an antigen for advancement of next-generation "booster" immunogens and illuminates the likely breathing adjustments of the coronavirus spike.

8.
Biology (Basel) ; 11(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35205066

RESUMO

Glycoprotein folding plays a critical role in sorting glycoprotein secretion and degradation in the endoplasmic reticulum (ER). Furthermore, relationships between glycoprotein folding and several diseases, such as type 2 diabetes and various neurodegenerative disorders, are indicated. Patients' cells with type 2 diabetes, and various neurodegenerative disorders induce ER stress, against which the cells utilize the unfolded protein response for protection. However, in some cases, chronic and/or massive ER stress causes critical damage to cells, leading to the onset of ER stress-related diseases, which are categorized into misfolding diseases. Accumulation of misfolded proteins may be a cause of ER stress, in this respect, perturbation of oligomannose-type glycan processing in the ER may occur. A great number of studies indicate the relationships between ER stress and misfolding diseases, while little evidence has been reported on the connection between oligomannose-type glycan processing and misfolding diseases. In this review, we summarize alteration of oligomannose-type glycan processing in several ER stress-related diseases, especially misfolding diseases and show the possibility of these alteration of oligomannose-type glycan processing as indicators of diseases.

9.
Arch Insect Biochem Physiol ; 109(1): e21852, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34796531

RESUMO

Eukaryotic cells can decorate their proteins with carbohydrate structures or glycans, significantly affecting the properties and activities of these proteins. Despite the importance of protein glycosylation in numerous biological processes, our knowledge of this modification in insects is far from complete. While N-glycosylation is the most studied, the study of O-glycans in insects is still very fragmentary and these studies are limited to a specific developmental stage or a specific tissue. In this article, matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) technology was used to analyze the O-glycan profile for the different developmental stages of egg, larva, pupa, and adult of the red flour beetle Tribolium castaneum, an important insect model and pest worldwide. The results on the O-glycan profile showed that the mucin-type glycans dominate the O-glycome of the red flour beetle. Interestingly, some of the more complex mucin-type O-glycans, such as a tetra- (O-GalNAcGalGlcAGalNAc) and pentasaccharide O-glycan (O-GalNAc(GalGlcA)GalNAcGlcA), were highly abundant during the pupa stage, the intermediate stage between larval and adult stage in holometabolous insects, demonstrating that insect metamorphosis is accompanied with a change in the insect O-glycan profile. Together with the N-glycan profile, the current data are a foundation to better understand the role of protein glycosylation in the development of insects.


Assuntos
Proteínas de Insetos/metabolismo , Polissacarídeos/metabolismo , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Animais , Glicosilação , Estágios do Ciclo de Vida , Metamorfose Biológica/fisiologia , Mucinas/metabolismo , Polissacarídeos/química
10.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769279

RESUMO

The newly established mouse cortical-bone-derived stem cells (mCBSCs) are unique stem cells compared to mouse mesenchymal stem cells (mMSCs). The mCBSC-treated hearts after myocardial infarction have been reported to have greater improvement in myocardial structure and functions. In this study, we examined the stemness features, cell surface glycan profiles, and paracrine functions of mCBSCs compared with mMSCs. The stemness analysis revealed that the self-renewing capacity of mCBSCs was greater than mMSCs; however, the differentiation capacity of mCBSCs was limited to the chondrogenic lineage among three types of cells (adipocyte, osteoblast, chondrocyte). The cell surface glycan profiles by lectin array analysis revealed that α2-6sialic acid is expressed at very low levels on the cell surface of mCBSCs compared with that on mMSCs. In contrast, the lactosamine (Galß1-4GlcNAc) structure, poly lactosamine- or poly N-acetylglucosamine structure, and α2-3sialic acid on both N- and O-glycans were more highly expressed in mCBSCs. Moreover, we found that mCBSCs secrete a greater amount of TGF-ß1 compared to mMSCs, and that the TGF-ß1 contributed to the self-migration of mCBSCs and activation of fibroblasts. Together, these results suggest that unique characteristics in mCBSCs compared to mMSCs may lead to advanced utility of mCBSCs for cardiac and noncardiac repair.


Assuntos
Diferenciação Celular , Osso Cortical/metabolismo , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Masculino , Camundongos , Camundongos Transgênicos
11.
Biogerontology ; 22(6): 623-637, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637040

RESUMO

Cell surface glycoproteins, which are good indicators of cellular types and biological function; are suited for cell evaluation. Tissue remodeling using various cells is a key feature of regenerative therapy. For artificial heart remodeling, a mixture of heart constituent cells has been investigated for organ assembly, however, the cellular characteristics remain unclear. In this study, the glycan profiles of human cardiomyocytes (HCMs), human cardiac fibroblasts (HCFs), and human vascular endothelial cells (ECs) were analyzed using evanescent-field lectin microarray analysis, a tool of glycan profiling, to clarify the required cellular characteristics. We found that ECs had more "α1-2fucose" and "core α1-6fucose" residues than other cells, and that "α2-6sialic acid" residue was more abundant in ECs and HCMs than in HCFs. HCFs showed higher abundance of "ß-galactose" and "ß-N-acetylgalactosamine" residues on N-glycan and O-glycan, respectively, compared to other cells. Interestingly, cardiac glycan profiles were insignificantly changed with cellular senescence. The residues identified in this study may participate in organ maintenance by contributing to the preservation of glycan components. Therefore, future studies should investigate the roles of glycans in optimal tissue remodeling since identifying cellular characteristics is important for the development of regenerative therapies.


Assuntos
Células Endoteliais , Polissacarídeos , Senescência Celular , Fibroblastos , Galactose , Humanos
12.
Front Cell Dev Biol ; 8: 67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195245

RESUMO

Immunoglobulin G (IgG) is the most abundant immunoglobulin isotype in the blood and is involved in the pathogenesis and progression of various diseases. Glycosylation of the IgG fragment crystallizable (Fc) region is shown to vary in different physiological and pathological states. Fc N-glycan composition can alter the effector functions of IgG by modulating its affinity for ligands, such as Fcγ receptors (FcγRs). However, it is not known whether IgG glycosylation is affected by the available repertoire of FcγRs, and if the Fc-linked N-glycome can compensate for modulation of the IgG-FcγR interaction. To explore this, we examined the subclass-specific Fc IgG glycoprofiles of healthy male and female FcγR knock-out mice on C57BL/6 and BALB/c backgrounds. We observed slight changes in IgG Fc N-glycan profiles in different knock-outs; however, it seems that the strain background and sex have a stronger effect on N-glycosylation of IgG Fc regions than the FcγR repertoire.

13.
Aging (Albany NY) ; 10(8): 2190-2208, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157474

RESUMO

Glycans are associated with and serve as biomarkers for various biological functions. We previously reported that cell surface sialylated glycoproteins of dermal fibroblasts decreased with cellular senescence and human aging. There is little information on the changes in glycoprotein expression and subcellular localization during the aging process. Here, we examined intracellular glycan profiles of fibroblasts undergoing cellular senescence and those derived from aging human subjects using lectin microarray analysis. We found a sequential change of the intracellular glycan profiles was little during cellular senescence. The intracellular glycans of cells derived from aged fetus and from elderly subjects showed similar localized patterns while repeating unsteady changes. The ratio of α2-3/2-6sialylated intracellular glycoproteins in total cell extracts increased, except for a part of α2-3sialylated O-glycans. These findings are in contrast to those for membrane glycoprotein, which decreased with aging. Interestingly, the ratio of increasing sialylated glycoproteins in the fetus-derived cells showing cellular senescence was similar to that in cells derived from the elderly. Thus, intracellular glycans may maintain cellular functions such as ubiquitin/proteasome-mediated degradation and/or autophagy during aging by contributing to the accumulation of intracellular glycosylated proteins. Our findings provide novel mechanistic insight into the molecular changes that occur during aging.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Idoso de 80 Anos ou mais , Linhagem Celular , Feto , Humanos
14.
J Affect Disord ; 234: 139-147, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29529546

RESUMO

BACKGROUND: Glycans are short chains of saccharides linked to glycoproteins that are known to be involved in a wide range of inflammatory processes. As depression has been consistently associated with chronic low-grade inflammation, we asked whether patients with Major Depressive Disorder show alterations in the N-glycosylation pattern of serum proteins that might be linked to associated changes in inflammatory processes. METHODS: In a study cohort of 21 female patients with an acute depressive episode and 21 non-depressed female control subjects aged between 50 and 69 years, we analyzed the serum N-glycan profile by DNA Sequencer Adapted-Fluorophore Assisted Carbohydrate Electrophoresis (DSA-FACE) and assessed the serum levels of interleukin (IL)- 6, tumor necrosis factor (TNF)-α and C-reactive protein (CRP) by chemiluminescence immunoassays and nephelometry. RESULTS: Compared to controls, MDD patients showed significant differences in the serum levels of several N-glycan structures. Alterations in the serum N-glycan profile were associated with depressive symptom severity and exploratory analyses revealed that they were most pronounced in MDD patients with a history of childhood sexual abuse. Furthermore, MDD patients showed higher levels of IL-6 and a trend for higher CRP levels, which were also associated with similar alterations in the serum N-glycan profile as those characteristic for MDD patients. LIMITATIONS: The relatively small sample size and the presence of potential confounders (e.g., BMI, smoking, medication). CONCLUSION: The results offer the first evidence that specific differences in the N-glycosylation pattern of serum proteins constitute a so far unrecognized level of biological alterations that might be involved in the immune changes associated with MDD.


Assuntos
Transtorno Depressivo Maior/sangue , Inflamação/sangue , Polissacarídeos/sangue , Idoso , Biomarcadores/sangue , Proteína C-Reativa/análise , Estudos de Casos e Controles , Transtorno Depressivo Maior/complicações , Feminino , Humanos , Inflamação/complicações , Interleucina-6/sangue , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue
15.
Protein Sci ; 22(12): 1739-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115046

RESUMO

Recombinant human lecithin-cholesterol acyltransferase Fc fusion (huLCAT-Fc) is a chimeric protein produced by fusing human Fc to the C-terminus of the human enzyme via a linker sequence. The huLCAT-Fc homodimer contains five N-linked glycosylation sites per monomer. The heterogeneity and site-specific distribution of the various glycans were examined using enzymatic digestion and LC-MS/MS, followed by automatic processing. Almost all of the N-linked glycans in human LCAT are fucosylated and sialylated. The predominant LCAT N-linked glycoforms are biantennary glycans, followed by triantennary sugars, whereas the level of tetraantennary glycans is much lower. Glycans at the Fc N-linked site exclusively contain typical asialobiantennary structures. HuLCAT-Fc was also confirmed to have mucin-type glycans attached at T407 and S409 . When LCAT-Fc fusions were constructed using a G-S-G-G-G-G linker, an unexpected +632 Da xylose-based glycosaminoglycan (GAG) tetrasaccharide core of Xyl-Gal-Gal-GlcA was attached to S418 . Several minor intermediate species including Xyl, Xyl-Gal, Xyl-Gal-Gal, and a phosphorylated GAG core were also present. The mucin-type O-linked glycans can be effectively released by sialidase and O-glycanase; however, the GAG could only be removed and localized using chemical alkaline ß-elimination and targeted LC-MS/MS. E416 (the C-terminus of LCAT) combined with the linker sequence is likely serving as a substrate for peptide O-xylosyltransferase. HuLCAT-Fc shares some homology with the proposed consensus site near the linker sequence, in particular, the residues underlined PPPE416 GS418 GGGGDK. GAG incorporation can be eliminated through engineering by shifting the linker Ser residue downstream in the linker sequence.


Assuntos
Oligossacarídeos/química , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Polissacarídeos/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Glicopeptídeos/química , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Espectrometria de Massas , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA