Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
J Ethnopharmacol ; 336: 118723, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181285

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mountain-cultivated Panax ginseng C.A.Mey. (MCG) with high market price and various properties was valuable special local product in Northeast of Asia. MCG has been historically used to mitigate heart failure (HF) for thousand years, HF is a clinical manifestation of deficiency of "heart-qi" in traditional Chinese medicine. However, there was little report focus on the activities of extracted residue of MCG. AIM OF THE STUDY: A novel glycopeptide (APMCG-1) was isolated from step ethanol precipitations of alkaline protease-assisted extract from MCG residue. MATERIALS AND METHODS: The molecular weight and subunit structure of APMCG-1 were determined by FT-IR, HPLC and GPC technologies, as well as the H9c2 cells, Tg (kdrl:EGFP) zebrafish were performed to evaluated the protective effect of APMCG-1. RESULTS: APMCG-1 was identified as a glycopeptide containing seven monosaccharides and seven amino acids via O-lined bonds. Further, in vitro, APMCG-1 significantly decreased reactive oxygen species production and lactate dehydrogenase contents in palmitic acid (PA)-induced H9c2 cells. APMCG-1 also attenuated endoplasmic reticulum stress and mitochondria-mediated apoptosis in H9c2 cells via the PI3K/AKT signaling pathway. More importantly, APMCG-1 reduced the blood glucose, lipid contents, the levels of heart injury, oxidative stress and inflammation of 5 days post fertilization Tg (kdrl:EGFP) zebrafish with type 2 diabetic symptoms in vivo. CONCLUSIONS: APMCG-1 protects PA-induced H9c2 cells while reducing cardiac dysfunction in zebrafish with type 2 diabetic symptoms. The present study provides a new insight into the development of natural glycopeptides as heart-related drug therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Glicopeptídeos , Insuficiência Cardíaca , Panax , Peixe-Zebra , Animais , Panax/química , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ratos , Linhagem Celular , Glicopeptídeos/farmacologia , Glicopeptídeos/química , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cardiotônicos/farmacologia , Cardiotônicos/química , Cardiotônicos/isolamento & purificação , Cardiotônicos/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
2.
J Chromatogr A ; 1736: 465413, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39368193

RESUMO

Protein glycosylation acts as a crucial role in regulating protein function and maintaining cellular homeostasis. Efficient peptide enrichment can be utilized to effectively solve the inherent challenges of protein glycosylation analysis to search unknown cancer biomarkers. In this research, a low dimensional porous hydrophilic nanosheets with a multi-level porous structure (Co-MOF-SiO2@HA) was synthetized via an easy one-pot method for the efficient enrichment of the N-glycopeptides in the digests of complex biosamples. The synthetized nanosheets Co-MOF-SiO2@HA demonstrated excellent enriching performances including a high enrichment capacity (300 mg g-1 calculated), a spectacular selectivity (IgG digests and BSA digests at the molar ratio of 1/1200), and an excellent spatial confinement ability (IgG digests, IgG and BSA at the molar ratio of 1/1000/1000). As an explore result, after the enrichment of human colorectal cancer tissue and human healthy tissue by the nanosheets, several proteins related to cancers and one protein directly related to well-known human colorectal cancer were identified by detecting the corresponding glycopeptides. It presented the potential value of the feasibility of this analysis mode by nanosheets Co-MOF-SiO2@HA in proteomic analysis.

3.
Talanta ; 282: 126955, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357403

RESUMO

Glycosylation and phosphorylation of proteins represent crucial forms of post-translational modifications (PTMs), playing pivotal roles in various biological processes. Research indicates a strong correlation between the development of type 2 diabetes (T2D) and abnormal protein translation in the body. Therefore, studying glycosylation and phosphorylation at the molecular level can be used for monitoring disease progression and refining research methodologies. In this study, the material is modified and functionally engineered by utilizing graphene oxide (GO) as the substrate, and incorporating titanium ions (Ti4+) into chondroitin sulfate. The composite was successfully applied to the selective enrichment of glycopeptides and phosphopeptides by utilizing the bifunctionality of hydrophilic interaction chromatography and metal ion chelation chromatography. This approach allowed for the capture of 57 glycopeptides and 2 phosphopeptides from normal human serum, and 141 glycopeptides and 10 phosphopeptides from T2D serum, respectively. This approach effectively tackles the challenges of detecting low-abundance glycopeptides and phosphopeptides in complex environments, enabling the successful capture from serum samples. The design and application of this material provide new insights into the development of PTMs and their connection to the study of T2D diabetes.

4.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4637-4649, 2024 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-39307802

RESUMO

Glycopeptides of traditional Chinese medicine(GTCM), as a type of natural products with important biological activities, have received increasing attention in recent years. These substances have a variety of pharmacological effects, including anti-tumor, immunomodulatory, neuroprotective, and anti-inflammatory effects. The extraction and separation processes directly affect the yield and purity of GTCM, and structural characterization is essential for probing into the properties and pharmacological mechanisms of glycopeptides. This article reviews the research progress and prospects the research directions in the extraction, separation, structural identification, and pharmacological effects of GTCM. Despite the progress in the research on GTCM, challenges such as low extraction efficiency, long separation cycles, difficult structural characterization, and complex mechanisms still exist. To address these issues, efforts should be made to optimize the extraction methods, explore new separation technologies, and develop efficient structural characte-rization methods. Additionally, the future work should decipher the pharmacological mechanisms of GTCM, which will provide a scientific basis for the drug development and clinical applications of GTCM.


Assuntos
Medicamentos de Ervas Chinesas , Glicopeptídeos , Medicina Tradicional Chinesa , Humanos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Glicopeptídeos/química , Glicopeptídeos/farmacologia , Glicopeptídeos/isolamento & purificação , Animais
5.
J Chromatogr A ; 1734: 465316, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39216281

RESUMO

The structure of zwitterion has great impact on the separation properties of zwitterionic hydrophilic stationary phases. To better understand the role of anionic groups of zwitterions, a novel carboxybetaine-based zwitterionic monolithic column was first prepared through thermo-initiated copolymerization of functional monomer (3-acrylamidopropyl)-dimethyl-(2-carboxymethyl) ammonium (CBAA) and crosslinker ethylene dimethacrylate (EDMA) within 100 µm ID capillary. The optimal poly(CBAA-co-EDMA) monolithic column exhibited satisfactory mechanical and chemical stability, good repeatability, high column efficiency (96,000 plates/m), and excellent separation performance for different classes of polar compounds (i.e., phenols, monophosphate nucleotides, urea and allantoin). A comparative study was then performed among three zwitterionic hydrophilic stationary phases containing different anionic groups, i.e. poly(CBAA-co-EDMA) (carboxybetaine), poly(2-{2-(methacryloyloxy) ethyldimethylammonium}ethyl n-butyl phosphate-co-EDMA) (phosphocholine), and poly(N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl) ammonium betaine-co-EDMA) (sulfobetaine) using benzoic acid derivatives, amine compounds, nucleobases and nucleosides as model analytes. The carboxybetaine-based monolithic column exhibited much higher positive zeta-potential and hydrophilicity, which endows it with a stronger retention capacity for acidic and neutral compounds, but sulfobetaine-based monolithic column exhibited much higher selectivity and retention capacity for the amines. Moreover, their enrichment efficiencies for N-glycopeptides were also evaluated based on their different hydrophilicity, and it was observed that the poly(CBAA-co-EDMA) monolithic material captured 4-8 times more N-glycopeptides compared to the other two materials.


Assuntos
Ânions , Interações Hidrofóbicas e Hidrofílicas , Ânions/química , Betaína/química , Betaína/análogos & derivados , Metacrilatos/química , Cromatografia Líquida de Alta Pressão/métodos , Fenóis/química , Fenóis/isolamento & purificação , Reprodutibilidade dos Testes , Polímeros/química
6.
J Biol Chem ; 300(9): 107628, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098533

RESUMO

The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3-/- mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.


Assuntos
Fator de Crescimento de Fibroblastos 23 , N-Acetilgalactosaminiltransferases , Polipeptídeo N-Acetilgalactosaminiltransferase , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/genética , Animais , Camundongos , Fator de Crescimento de Fibroblastos 23/metabolismo , Camundongos Knockout , Glicosilação , Proteoma/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Humanos
7.
J Sep Sci ; 47(16): e2400310, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39164910

RESUMO

In this work, a composite hydrogel material consisting of chitosan-based composite hydrogel was prepared by a simple and rapid synthetic method and will be named three-dimensional (3D)-IL-COF-1@CS hydrogel. Possessing a stable 3D network structure and outstanding hydrophilicity, the novel hydrogel is capable of capturing glycopeptides. The 3D-IL-COF-1@CS hydrogel showed good sensitivity (0.1 fmol/µL) and selectivity (1:2000). In addition, 19 glycopeptides were captured in standard samples. In the analysis of human serum, 148 glycopeptides assigned to 72 glycoproteins were assayed in the serum of normal individuals, and 245 glycopeptides corresponding to 100 glycoproteins were found in the serum of colorectal cancer (CRC) patients. More importantly, several functional programs based on Gene Ontology analysis supported molecular biological processes that may be relevant to the pathogenesis of CRC, including aging, fibrinogen complex, and arylesterase activity. The low cost, simplicity, rapid synthesis, and good enrichment performance have a great future in glycoproteomics analysis and related diseases.


Assuntos
Neoplasias Colorretais , Glicopeptídeos , Interações Hidrofóbicas e Hidrofílicas , Humanos , Neoplasias Colorretais/sangue , Glicopeptídeos/sangue , Glicopeptídeos/química , Hidrogéis/química , Polímeros/química , Quitosana/química
8.
Biochem Biophys Res Commun ; 737: 150509, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39137587

RESUMO

Salt stress is one of the significant environmental stresses that severely affect plant growth and development. Here, we report quantitative N-glycoproteomics characterization of differential N-glycosylation in Sorghum bicolor under low, median and high salinity stress. 21,621 intact N-glycopeptides coming from the combination of 127 N-glycan structures on 6574 N-glycosites from 5321 proteins were identified; differential N-glycosylation was observed for 682 N-glycoproteins which are mainly involved in the pathways of biosynthesis of secondary metabolites, biosynthesis of amino acids and several metabolic pathways. 41 N-glycan structures modifying on 338 N-glycopeptides from 122 glycoproteins were co-quantified and deregulated under at least one salt stress, including enzymes of energy production and carbohydrate metabolisms, cell wall organization related proteins, glycosyltransferases and so on. Intriguingly, with increasing salt concentration, there was an increase in the percentage of complex N-glycans on the altered N-glycopeptides. Furthermore, the observation of glycoproteins with distinct salt sensitivity is noteworthy, particularly the upregulated hyposensitive glycoproteins that predominantly undergo complex N-glycan modification. This is the first N-glycoproteome description of salt stress response at the intact N-glycopeptide level in sorghum and a further validation of data reported here would likely provide deeper insights into the stress physiology of this important crop plant.

9.
Glycobiology ; 34(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39073901

RESUMO

N-linked glycoproteins are rich in seminal plasma, playing essential roles in supporting sperm function and fertilization process. The alteration of seminal plasma glycans and its correspond glycoproteins may lead to sperm dysfunction and even infertility. In present study, an integrative analysis of glycoproteomic and proteomic was performed to investigate the changes of site-specific glycans and glycoptoteins in seminal plasma of asthenozoospermia. By large scale profiling and quantifying 5,018 intact N-glycopeptides in seminal plasma, we identified 92 intact N-glycopeptides from 34 glycoproteins changed in asthenozoospermia. Especially, fucosylated glycans containing lewis x, lewis y and core fucosylation were significantly up-regulated in asthenozoospermia compared to healthy donors. The up-regulation of fucosylated glycans in seminal plasma may interfere sperm surface compositions and regulation of immune response, which subsequently disrupts sperm function. Three differentiated expression of seminal vesicle-specific glycoproteins (fibronectin, seminogelin-2, and glycodelin) were also detected with fucosylation alteration in seminal plasma of asthenozoospermia. The interpretation of the altered site-specific glycan structures provides data for the diagnosis and etiology analysis of male infertility, as well as providing new insights into the potential therapeutic targets for male infertility.


Assuntos
Astenozoospermia , Fucose , Sêmen , Humanos , Masculino , Astenozoospermia/metabolismo , Sêmen/metabolismo , Sêmen/química , Fucose/metabolismo , Glicoproteínas/metabolismo , Proteômica , Adulto , Regulação para Cima , Polissacarídeos/metabolismo , Polissacarídeos/química , Glicosilação , Glicopeptídeos/metabolismo , Glicopeptídeos/análise
10.
J Funct Biomater ; 15(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39057306

RESUMO

In this work, a new type of FE-1 COF material is prepared by a reversible imine condensation reaction with diaminoferrocene and diaminodiformaldehyde as materials. The material is connected by imine bonds to form a COF skeleton, and the presence of plenty of nitrogen-containing groups gives the material good hydrophilicity; the presence of metal Fe ions provides the material application potential in the enrichment of phosphopeptides. According to the different binding abilities of N-glycopeptide and phosphopeptide on FE-1 COF, it can simultaneously enrich N-glycopeptide and phosphopeptide through different elution conditions to realize its controllable and selective enrichment. Using the above characteristics, 18 phosphopeptides were detected from α-casein hydrolysate, 8 phosphopeptides were detected from ß-casein hydrolysate and 21 glycopeptides were detected from IgG hydrolysate. Finally, the gradual elution strategy was used; 16 phosphopeptides and 19 glycopeptides were detected from the α-casein hydrolysate and IgG hydrolysate. The corresponding glycopeptides and phosphopeptides were identified from the human serum. It proves that the FE-1 COF material has a good enrichment effect on phosphopeptides and glycopeptides.

11.
Anal Chim Acta ; 1317: 342907, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030008

RESUMO

BACKGROUND: The study of glycopeptides is associated with challenges regarding the microheterogeneity of different isomeric glycans occupying the same glycosylation sites in glycoproteins. It is immensely valuable to perform both qualitative and quantitative site-specific glycosylation analysis of glycopeptide isomers due to their link to several diseases. Achieving isomeric separation of glycopeptides is particularly challenging due to the low abundance of glycopeptides as well as inefficient ionization. Although some methods have demonstrated the isomeric separation of glycopeptides, a more efficient nanoflow-based stationary phase is needed for the isomeric separation of both N- and O-glycopeptides. RESULTS: In this study, the separation of N- and O-glycopeptide isomers at 75 °C was achieved with an in-house packed 1 cm long mesoporous graphitized carbon (MGC) column. Different gradient compositions of the optimized mobile phase for separating permethylated glycans on MGC column were tested, and we observed efficient separation of N- and O-glycopeptide isomers at a gradient elution time of 120 min. After achieving the isomeric separation of sialylated glycopeptides from model glycoproteins derived from bovine fetuin, the separation of isomeric glycopeptides derived from asialofetuin, α-1 glycoprotein and human blood serum were also demonstrated. Furthermore, the developed method for the separation of isomeric N- and O-glycopeptide on MGC column showed high reproducibility over three months. We observed an average retention time shift of 1 min and consistent resolution of separated peaks throughout three months. SIGNIFICANCE AND NOVELTY: MGC column can serve as an efficient tool for obtaining the isomeric separation of N- and O-glycopeptide from complex biological samples in future studies. This will enable a more profound understanding of the roles played by isomeric N- and O-glycopeptide in important biological processes and their correlations to various disease progressions.


Assuntos
Glicopeptídeos , Grafite , Espectrometria de Massas em Tandem , Glicopeptídeos/química , Glicopeptídeos/isolamento & purificação , Isomerismo , Grafite/química , Porosidade , Humanos , Bovinos , Cromatografia Líquida/métodos , Animais , Espectrometria de Massa com Cromatografia Líquida
12.
Neurosci Lett ; 836: 137883, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38914278

RESUMO

Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) is a pleiotropic peptide known to promote many beneficial processes following neural damage and cell death after stroke. Despite PACAP's known neurotrophic and anti-inflammatory properties, it has not realized its translational potential due to a poor pharmacokinetic profile (non-linear PK/PD), and limited Blood-Brain Barrier Penetration (BBB) permeability. We have previously shown that glycosylation of PACAP increases stability and enhances BBB penetration. In addition, our prior studies showed reduced neuronal cell death and neuroinflammation in models of Parkinson's disease and Traumatic Brain Injury (TBI). In this study we show that a PACAP(1-27) glucoside retains the known neurotrophic activity of native PACAP(1-27)in vitro and a 5-day daily treatment regimen (100 nM) leads to neurite-like extensions in PC12 cells. In addition, we show that intraperitoneal injection of a PACAP(1-27) lactoside (10 mg/kg) with improved BBB-penetration, given 1-hour after reperfusion in a Transient Middle Cerebral Artery Occlusion (tMCAO) mouse model, reduces the infarct size after the ischemic injury in males significantly by âˆ¼ 36 %, and the data suggest a dose-dependency. In conclusion, our data support further development of PACAP glycopeptides as promising novel drug candidates for the treatment of stroke, an area with an urgent clinical need.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Masculino , Ratos , Camundongos , Células PC12 , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glicosídeos/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/patologia
13.
Anal Bioanal Chem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877149

RESUMO

Identification of O-glycopeptides from tandem mass spectrometry data is complicated by the near complete dissociation of O-glycans from the peptide during collisional activation and by the combinatorial explosion of possible glycoforms when glycans are retained intact in electron-based activation. The recent O-Pair search method provides an elegant solution to these problems, using a collisional activation scan to identify the peptide sequence and total glycan mass, and a follow-up electron-based activation scan to localize the glycosite(s) using a graph-based algorithm in a reduced search space. Our previous O-glycoproteomics methods with MSFragger-Glyco allowed for extremely fast and sensitive identification of O-glycopeptides from collisional activation data but had limited support for site localization of glycans and quantification of glycopeptides. Here, we report an improved pipeline for O-glycoproteomics analysis that provides proteome-wide, site-specific, quantitative results by incorporating the O-Pair method as a module within FragPipe. In addition to improved search speed and sensitivity, we add flexible options for oxonium ion-based filtering of glycans and support for a variety of MS acquisition methods and provide a comparison between all software tools currently capable of O-glycosite localization in proteome-wide searches.

14.
Angew Chem Int Ed Engl ; 63(37): e202407131, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38935849

RESUMO

Pancreatic cancer is one of the deadliest cancers worldwide, mainly due to late diagnosis. Therefore, there is an urgent need for novel diagnostic approaches to identify the disease as early as possible. We have developed a diagnostic assay for pancreatic cancer based on the detection of naturally occurring tumor associated autoantibodies against Mucin-1 (MUC1) using engineered glycopeptides on nanoparticle probes. We used a structure-guided approach to develop unnatural glycopeptides as model antigens for tumor-associated MUC1. We designed a collection of 13 glycopeptides to bind either SM3 or 5E5, two monoclonal antibodies with distinct epitopes known to recognize tumor associated MUC1. Glycopeptide binding to SM3 or 5E5 was confirmed by surface plasmon resonance and rationalized by molecular dynamics simulations. These model antigens were conjugated to gold nanoparticles and used in a dot-blot assay to detect autoantibodies in serum samples from pancreatic cancer patients and healthy volunteers. Nanoparticle probes with glycopeptides displaying the SM3 epitope did not have diagnostic potential. Instead, nanoparticle probes displaying glycopeptides with high affinity for 5E5 could discriminate between cancer patients and healthy controls. Remarkably, the best-discriminating probes show significantly better true and false positive rates than the current clinical biomarkers CA19-9 and carcinoembryonic antigen (CEA).


Assuntos
Autoanticorpos , Glicopeptídeos , Mucina-1 , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/sangue , Mucina-1/imunologia , Mucina-1/sangue , Mucina-1/química , Glicopeptídeos/imunologia , Glicopeptídeos/química , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoanticorpos/química , Nanopartículas Metálicas/química , Ouro/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Nanopartículas/química
15.
Chembiochem ; : e202400391, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877657

RESUMO

Interactions between the tumor-associated carbohydrate antigens of Mucin 1 (MUC1) and the carbohydrate-binding proteins, lectins, often lead to the creation of a pro-tumor microenvironment favoring tumor initiation, progression, metastasis, and immune evasion. Macrophage galactose binding lectin (MGL) is a C-type lectin receptor found on antigen-presenting cells that facilitates the uptake of carbohydrate antigens for antigen presentation, modulating the immune response homeostasis, autoimmunity, and cancer. Considering the crucial role of tumor-associated forms of MUC1 and MGL in tumor immunology, a thorough understanding of their binding interaction is essential for it to be exploited for cancer vaccine strategies. The synthesis of MUC1 glycopeptide models carrying a single or multiple Tn and/or sialyl-Tn antigen(s) is described. A novel approach for the sialyl-Tn threonine building block suitable for the solid phase peptide synthesis was developed. The thermodynamic profile of the binding interaction between the human MGL and MUC1 glycopeptide models was analyzed using isothermal titration calorimetry. The measured dissociation constants for the sialyl-Tn-bearing peptide epitopes were consistently lower compared to the Tn antigen and ranged from 10 µM for mono- to 1 µM for triglycosylated MUC1 peptide, respectively. All studied interactions, regardless of the glycan's site of attachment or density, exhibited enthalpy-driven thermodynamics.

16.
J Proteome Res ; 23(7): 2661-2673, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38888225

RESUMO

The analysis of the structures of glycans present on glycoproteins is an essential component for determining glycoprotein function; however, detailed glycan structural assignment on glycopeptides from proteomics mass spectrometric data remains challenging. Glycoproteomic analysis by mass spectrometry currently can provide significant, yet incomplete, information about the glycans present, including the glycan monosaccharide composition and in some circumstances the site(s) of glycosylation. Advancements in mass spectrometric resolution, using high-mass accuracy instrumentation and tailored MS/MS fragmentation parameters, coupled with a dedicated definition of diagnostic fragmentation ions have enabled the determination of some glycan structural features, or glycotopes, expressed on glycopeptides. Here we present a collation of diagnostic glycan fragments produced by traditional positive-ion-mode reversed-phase LC-ESI MS/MS proteomic workflows and describe the specific fragmentation energy settings required to identify specific glycotopes presented on N- or O-linked glycopeptides in a typical proteomics MS/MS experiment.


Assuntos
Glicopeptídeos , Polissacarídeos , Proteômica , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Glicopeptídeos/química , Proteômica/métodos , Polissacarídeos/química , Polissacarídeos/análise , Glicosilação , Glicoproteínas/química , Glicoproteínas/análise , Espectrometria de Massas por Ionização por Electrospray , Íons/química , Sequência de Aminoácidos , Humanos , Cromatografia Líquida , Cromatografia de Fase Reversa , Dados de Sequência Molecular
17.
Rev Esp Quimioter ; 37(4): 299-322, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38840420

RESUMO

Antimicrobial agents are widely used, and drug interactions are challenging due to increased risk of adverse effects or reduced efficacy. Among the interactions, the most important are those affecting metabolism, although those involving drug transporters are becoming increasingly known. To make clinical decisions, it is key to know the intensity of the interaction, as well as its duration and time-dependent recovery after discontinuation of the causative agents. It is not only important to be aware of all patient treatments, but also of supplements and natural medications that may also interact. Although they can have serious consequences, most interactions can be adequately managed with a good understanding of them. Especially in patients with polipharmacy it is compulsory to check them with an electronic clinical decision support database. This article aims to conduct a narrative review focusing on the major clinically significant pharmacokinetic drug-drug interactions that can be seen in patients receiving treatment for bacterial infections.


Assuntos
Antibacterianos , Interações Medicamentosas , Humanos , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Antibacterianos/efeitos adversos , Infecções Bacterianas/tratamento farmacológico
18.
Angew Chem Int Ed Engl ; 63(28): e202404703, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655625

RESUMO

Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a ß-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via ß-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing ß-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Glicopeptídeos , Humanos , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Animais , Viroses/tratamento farmacológico , Viroses/metabolismo , Irinotecano/química , Irinotecano/farmacologia , Camundongos , Linhagem Celular Tumoral
19.
Carbohydr Res ; 538: 109094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564900

RESUMO

Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.


Assuntos
Glicopeptídeos , Glicoproteínas , Humanos , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Espectrometria de Massas/métodos , Polissacarídeos
20.
J Pharm Biomed Anal ; 244: 116123, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554555

RESUMO

Monoclonal antibodies like Herceptin play a pivotal role in modern therapeutics, with their glycosylation patterns significantly influencing their bioactivity. To characterize the N-glycan profile and their relative abundance in Herceptin, we employed two analytical methods: hydrophilic interaction chromatography with fluorescence detection (HILIC-FLD) for released glycans and liquid chromatography tandem mass spectrometry (LC-MS/MS) for glycopeptides. Our analysis included 21 European Union (EU)-Herceptin lots and 14 United States (US)-Herceptin lots. HILIC-FLD detected 25 glycan species, including positional isomers, revealing comparable chromatographic profiles for both EU and US lots. On the other hand, LC-MS/MS identified 26 glycoforms within the glycopeptide EEQYNSTYR. Both methods showed that a subset of glycans dominated the total abundance. Notably, EU-Herceptin lots with an expiration date of October 2022 exhibited increased levels of afucosylated and high mannose N-glycans. Our statistical comparisons showed that the difference in quantitative results between HILIC-FLD and LC-MS/MS is significant, indicating that the absolute quantitative values depend on the choice of the analytical method. However, despite these differences, both methods demonstrated a strong correlation in relative glycan proportions. This study contributes to the comprehensive analysis of Herceptin's glycosylation, offering insights into the influence of analytical methods on glycan quantification and providing valuable information for the biopharmaceutical industry.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos , Trastuzumab , Humanos , Antineoplásicos Imunológicos/análise , Antineoplásicos Imunológicos/química , Glicopeptídeos/análise , Glicopeptídeos/química , Glicosilação , Espectrometria de Massa com Cromatografia Líquida/métodos , Polissacarídeos/análise , Polissacarídeos/química , Espectrometria de Massas em Tandem/métodos , Trastuzumab/análise , Trastuzumab/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA