Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.666
Filtrar
1.
J Transl Med ; 22(1): 727, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103918

RESUMO

BACKGROUND: Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques. METHODS: Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts. RESULTS: ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups. CONCLUSION: LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.


Assuntos
Endotelina-1 , Camundongos Endogâmicos C57BL , Neuroproteção , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Endotelina-1/metabolismo , Neuroproteção/efeitos dos fármacos , Eletrorretinografia , Lycium/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica , Masculino , Camundongos , Degeneração Neural/patologia , Degeneração Neural/tratamento farmacológico
2.
Intern Med ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39111893

RESUMO

A 25-year-old Japanese man developed visual disturbance with eye pain and was diagnosed with optic neuritis associated with anti-myelin oligodendrocyte glycoprotein antibodies. His symptoms improved temporarily after steroid therapy but chronically relapsed many times after tapering the steroid dose. He became highly steroid-dependent and was referred to our department for reconsideration of the treatment strategy. Maintenance intravenous immunoglobulin (IVIg) therapy successfully decreased the annual recurrence rate from 1.15 to 0.27 times/year and the maintenance dose of oral prednisolone from 35 to 5 mg/day. Maintenance IVIg therapy is a promising option for preventing disease relapse in such cases.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39112615

RESUMO

BACKGROUND: The nucleus basalis of Meynert (NBM) is known to play a crucial role in the development and pathogenesis of Alzheimer's Disease (AD), particularly the cholinergic system within the NBM. However, the relationship between synaptic loss in the NBM and the clinical profile of AD remains unclear. METHODS: In our study, we included 44 Aß-negative normal controls (CN) and 76 Aß-positive participants with cognitive impairment (CI). All participants underwent structural and diffusion magnetic resonance imaging (MRI), as well as positron emission tomography (PET) imaging to measure synaptic vesicle glycoprotein 2 A (SV2A) levels (Trial registration: NCT05623124. Registered 21 November 2022). The SV2A standardized uptake value ratios (SUVR) distribution in the NBM of CN participants was used as the reference norm. We investigated the association between NBM synaptic density and clinical performance, traditional AD biomarkers, and white matter tracts that passed the NBM. RESULTS: Participants with cognitive impairment (CI) who had NBM synaptic density below 1.5 standard deviations (SD) or 0.5 SD of the norm exhibited worse cognitive performance compared to cognitively normal (CN) individuals. Crucially, the extent of deviation in synaptic density from the norm was directly proportional to the severity of cognitive impairment and neurodegeneration biomarkers. Furthermore, among patients with cognitive impairment, synaptic loss in the NBM was associated with potential impairment in the density and organization of neurites within the white matter tracts connected to the NBM. Finally, neurite density index in the medial tracts may play a mediating role in the relationship between NBM synaptic density and MMSE scores. CONCLUSION: The extent that synaptic density in NBM deviated from the norm suggested the extent of worse cognitive performance and severe neurodegeneration. Furthermore, cognitive impairment associated with synaptic loss in the NBM may be mediated by its pathological impact on NBM white matter tracts.

4.
Cancer Immunol Immunother ; 73(10): 191, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105816

RESUMO

Drugs or cellular products that bind to gp100 are being investigated for treatment of cutaneous melanoma. The relative specificity of gp100 expression in melanocytes makes it an attractive target to harness for therapeutic intent. For example, Tebentafusp, a bispecific gp100 peptide-HLA-directed CD3 T cell engager, has generated significant enthusiasm in recent years due to its success in improving outcomes for uveal melanoma and is being studied in cutaneous melanoma. However, the extent and intensity of gp100 expression in advanced cutaneous melanoma has not been well studied. Here, we interrogated a large cohort of primary and metastatic melanomas for gp100 expression by immunohistochemistry. Expression in metastatic samples was globally higher and almost uniformly positive, however the degree of intensity was variable. Using a quantitative immunofluorescence method, we confirmed the variability in expression. As gp100-binding drugs are assessed in clinical trials, the association between activity of the drugs and the level of gp100 expression should be studied in order to potentially improve patient selection.


Assuntos
Melanoma , Neoplasias Cutâneas , Antígeno gp100 de Melanoma , Humanos , Melanoma/metabolismo , Melanoma/patologia , Antígeno gp100 de Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/metabolismo , Melanoma Maligno Cutâneo , Imuno-Histoquímica
5.
Front Pharmacol ; 15: 1369659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086396

RESUMO

COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.

6.
Int Immunopharmacol ; 140: 112847, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39088922

RESUMO

Trypanosomes are the extracellular protozoan parasites that cause human African trypanosomiasis disease in humans and nagana disease in animals. Tsetse flies act as a vector for the transmission of the disease in African countries. Animals infected with these parasites become useless or workless, and if not treated, disease can be fatal. There are many side effects associated with old treatments and some of them result in death in 5% of cases. There is a major surface glycoprotein in the parasite known as variant surface glycoprotein. The immune system of the host develops antibodies against this antigen but due to antigenic variation, parasites evade the immune response. Currently, no vaccine is available that provides complete protection. In murine models, only partial protection was observed using certain antigens. In order to develop vaccines against trypanosomes, molecular biology and immunology tools have been used. Immunization is the sole method for the control of disease because the eradication of the vector from endemic areas is an impossible task. Genetic vaccines can carry multiple genes encoding different antigens of the same parasite or different parasites. DNA immunization induces the activation of both cellular immune response and humoral immune response along with the generation of memory. This review highlights the importance of DNA vaccines and advances in the development of DNA vaccines against T. brucei.

7.
Biochem Biophys Rep ; 39: 101779, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39099605

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) or Dabie bandavirus is an emerging pathogen responsible for SFTS. It is considered a novel threat to human health, given the high associated fatality. SFTSV is a segmented negative-strand RNA virus containing three single-stranded RNAs, with the M segment encoding the glycoproteins Gn and Gc. Gc is vital for viral entry into the host cell surface, along with the Gn protein. As the Gc is the surface-exposable antigen from virions, it is a critical diagnostic marker of infection. Although various SFTSV Gn or N protein-based sero-diagnostic methods have been developed, there are no commercially available sero-diagnostic kits. Therefore, we generated monoclonal antibodies (mAbs) against SFTSV Gc and explored their application in serum diagnostic tests to develop sensitive serodiagnostic tools covering broad-range genotypes (A to F). First, 10 SFTSV Gc antibody-binding fragments (Fabs) were isolated using a phage display system and converted into human IgGs. Enzyme-linked immunosorbent assays (ELISA) of the SFTSV and Rift Valley fever virus (RVFV: same genus as SFTSV) Gc antigens showed that all antibodies attached to the SFTSV Gc protein had high affinity. An immunofluorescence assay (IFA), to verify the cross-reactivity of seven antibodies with high affinities for various SFTSV genotypes (A, B2, B3, D, and F) and detect mAb binding with intact Gc proteins, revealed that five IgG type mAbs were bound to intact Gc proteins of various genotypes. Six high-affinity antibodies were selected using ELISA and IFA. The binding capacity of the six antibodies against the SFTSV Gc antigen was measured using surface plasmon resonance. All antibodies had high binding capacity. Consequently, these antibodies serve as valuable markers in the serological diagnosis of SFTSV.

8.
J Proteome Res ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101792

RESUMO

Human programmed cell death protein 1 (hPD-1) is an essential receptor in the immune checkpoint pathway. It has played an important role in cancer therapy. However, not all patients respond positively to the PD-1 antibody treatment, and the underlying mechanism remains unknown. PD-1 is a transmembrane glycoprotein, and its extracellular domain (ECD) is reported to be responsible for interactions and signal transduction. This domain contains 4 N-glycosylation sites and 25 potential O-glycosylation sites, which implicates the importance of glycosylation. The structure of hPD-1 has been intensively studied, but the glycosylation of this protein, especially the glycan on each glycosylation site, has not been comprehensively illustrated. In this study, hPD-1 ECD expressed by human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells was analyzed; not only N- and O-glycosylation sites but also the glycans on these sites were comprehensively analyzed using mass spectrometry. In addition, hPD-1 ECD binding to different anti-hPD-1 antibodies was tested, and N-glycans were found functioned differently. All of this glycan information will be beneficial for future PD-1 studies.

9.
Poult Sci ; 103(10): 104098, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39096831

RESUMO

Investigations were performed to determine the systemic immune and small intestine (SI) morphological responses of Ross 708 broilers to the Marek's Disease vaccine (MDV) administered alone or in conjunction with the in ovo and dietary administration of calcifediol (25OHD3). Live embryonated hatching eggs were assigned at random to 3 in ovo treatments at 18 d of incubation. Pre-specified in ovo treatments were: commercial MDV-alone-injected (50 µL) or commercial MDV containing 1.2 (MDV+25OHD3-1.2) or 2.4 (MDV+25OHD3-2.4) µg of 25OHD3. A noninjected control treatment was also included. For the growing phase, broilers received a commercial diet containing 250 IU of vitamin D3 /kg (control) or a commercial diet supplemented with 2,760 IU of 25OHD3 /kg (Hy-D diet). For determination of serum IgG, nitric oxide, and α-1-acid glycoprotein (AGP) at 14 and 40 d of age (doa), blood was collected from 1 bird per pen (48 total). In the duodenum, jejunum, and ileum of the same bird, villus length (VL), crypt depth (CD), VL to CD ratio (VCR), and villus surface area were also determined. There were no significant dietary x in ovo treatment interactions for any of the variables examined. However, birds fed Hy-D diets had lower serum AGP levels at 14 doa when compared to those fed un-supplemented commercial diets. Additionally, at 40 doa, birds in the MDV+25OHD3-1.2 and MDV+25OHD3-2.4 treatments experienced a decrease in serum AGP in comparison to those belonging to the noninjected and MDV-alone treatment groups. A higher jejunal VCR was observed at 14 and 40 doa in birds that belonged to the MDV+25OHD3-1.2 treatment when compared to those in the noninjected and MDV-alone treatment groups, and dietary Hy-D increased the VL of the duodenum and jejunum in birds at 14 and 40 doa when compared to those fed the commercial diet. In conclusion, both dietary or in ovo administration of 25OHD3 lowered inflammatory reactions and improved the SI morphology of broilers that were in ovo-injected with the MDV.

10.
Angew Chem Int Ed Engl ; : e202411213, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103293

RESUMO

A bioinspired semisynthesis of human-interleukin-6 bearing N-glycan at Asn143 (143glycosyl-IL-6) was performed by intentional glycosylation effects and protein folding chemistry for regioselective peptide-backbone activation. 143Glycosyl-IL-6 is a genetically coded cytokine, but isolation was difficult owing to a tiny amount. IL6-polypeptide (1-141-position) with an intentionally inserted cysteine at 142-position was expressed in E. coli. The expressed polypeptide was treated with a chemical folding process to make a specific helices bundle conformation through native two-disulfide bonds (43-49 and 72-82). Utilizing the successfully formed free-142-cysteine, sequential conversions using cyanation of 142-cysteine, hydrazinolysis, and thioesterification created a long polypeptide (1-141)-thioester. However, the resultant polypeptide-thioester caused considerable aggregation owing to a highly hydrophobic peptide sequence. After the reduction of two-disulfide bonds of polypeptide (1-141)-thioester, an unprecedented hydrophilic N-glycan tag was inserted at the resultant cysteine thiols. The N-glycan tags greatly stabilized polypeptide-thioester. The subsequent native chemical ligation and desulfurization successfully gave a whole 143glycosyl-IL-6 polypeptide (183-amino acids). Removal of four N-glycan tags and immediate one-pot in vitro folding protocol efficiently produced the folded 143glycosyl-IL-6. The folded 143glycosyl-IL-6 exhibited potent cell proliferation activity. The combined studies with molecular dynamics simulation, semisynthesis, and bioassays predict the bioactive conformation of latent 143glycosyl-IL-6.

11.
Vet Res Commun ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106005

RESUMO

Changes to ivermectin (IVM [22,23-dihydro avermectin B1a + 22,23-dihydro avermectin B1b]) toxicokinetics (TK) with and without P-glycoprotein (P-gp) inhibition by cyclosporin A (CsA) were examined in rainbow trout (Oncorhynchus mykiss). Rainbow trout were injected with 175 µg/kg 3H-IVM (8.6 µCi/mg IVM) with or without co-administration of 480 µg/kg CsA into the caudal vasculature. Fish were sacrificed at various time points (0.25, 0.5, 1, 3, 24, 48, 96, and 168 h) for organ and tissue sampling (blood, liver, kidney, gill, intestines, brain [5 regions], eye, gonad, and fat) which were analyzed for IVM-derived radioactivity. The IVM concentration decreased over time in blood, liver, kidney, and gill, while concentrations in other tissues remained constant. The highest maximum IVM concentration (Cmax) was found in kidney, followed by liver; the lowest Cmax was found in eye, followed by brain and adipose tissue. The highest % of the administered dose was found in the blood 15 min post-IVM administration, followed by the intestine at 60 min post-IVM administration. P-gp inhibition by CsA did not significantly affect calculated TK parameters (AUC [7.33 ± 0.73 - 11.5 ± 2.5 mg•h/kg], mean residence time [84.7 ± 21 - 125 ± 55 h], T1/2 [58.7 ± 15 - 86.8 ± 38 h], clearance rate [0.0152 ± 0.0033 - 0.0239 ± 0.0024 L/kg•h], or volume of distribution [1.91 ± 0.47 - 2.02 ± 0.33 L/kg]), but resulted in small but significant changes in the % administered dose found in blood and medulla. These results suggest that P-gp plays a limited role in overall IVM TK, and that its role in xenobiotic protection may be much less robust in fish than it is in mammals.

12.
J Thromb Haemost ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147240

RESUMO

BACKGROUND: Snake venom botrocetin facilitates von Willebrand factor (VWF) binding to platelet GPIbα and has been widely used for the diagnosis of von Willebrand diseases and GPIb-related disorders. Botrocetin is also commonly employed for the development/characterization of antithrombotics targeting the GPIb-VWF axis. OBJECTIVE: To explore the alternative receptor(s)/mechanisms participate in botrocetin-induced platelet aggregation. METHODS: The effects of botrocetin on platelet aggregation were examined using platelets from wild-type, VWF and fibrinogen-deficient, GPIbα-deficient, IL4Rα/GPIbα-transgenic and αIIbß3-deficient mice, Bernard-Soulier syndrome (BSS) and healthy human samples. Platelet-fibrinogen and platelet-VWF interaction were measured using flow cytometry. GPIbα-VWF binding was evaluated utilizing ELISA. Botrocetin-αIIbß3 and botrocetin-GPIbα interactions were measured using ELISA and fluorescence anisotropy assays. Heparinized whole blood from healthy donors was examined for thrombus formation and growth in a perfusion chamber. RESULTS: Botrocetin could induce aggregation of platelets from a BSS patient and GPIbα-deficient mice as well as platelets lacking the N-terminal extracellular domain of GPIbα. Botrocetin could interact with αIIbß3 and facilitated αIIbß3-VWF interaction independent of GPIb. Botrocetin competitively bound to the ligand-binding domain of activated rather than resting αIIbß3. Although botrocetin-induced platelet aggregation requires VWF, strikingly, in the absence of VWF, botrocetin blocked fibrinogen and other ligand binding to αIIbß3, and inhibited platelet aggregation and thrombus formation. Consistently, recombinant botrocetin defective in VWF binding inhibited αIIbß3 and GPIb-mediated platelet aggregation, spreading and thrombus formation. CONCLUSION: Our study provides insights into avoiding the misdiagnosis of GPIb-related disorders and developing botrocetin mutants as potential new antithrombotics that may simultaneously target both αIIbß3 and GPIbα.

13.
Int J Biol Macromol ; : 134638, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147351

RESUMO

The SARS-CoV-2 pandemic, responsible for approximately 7 million deaths worldwide, highlights the urgent need to understand the molecular mechanisms of the virus in order to prevent future outbreaks. The Spike glycoprotein of SARS-CoV-2, which is critical for viral entry through its interaction with ACE2 and other host cell receptors, has been a focus of study. This research goes beyond receptor recognition to explore Spike's influence on cellular metabolism. AP-MS interactome analysis revealed an interaction between the Spike S1 domain and lactate dehydrogenase B (LDHB), which was further confirmed by co-immunoprecipitation and immunofluorescence, indicating colocalisation in cells expressing the S1 domain. The study showed that Spike inhibits the catalytic activity of LDHB, leading to increased lactate levels in HEK-293T cells overexpressing the S1 subunit. The hypothesised mechanism is that Spike deprives LDHB of NAD+, facilitating a metabolic switch from aerobic to anaerobic energy production during infection. The Spike-NAD+ interacting region was characterised and mainly involves the W436 within the RDB domain. This novel hypothesis suggests that the Spike protein may play a broader role in altering host cell metabolism, thereby contributing to the pathophysiology of viral infection.

14.
EMBO Mol Med ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148004

RESUMO

Intravenous thrombolysis using recombinant tissue plasminogen activator (tPA) remains the primary treatment for patients with acute ischemic stroke (AIS). However, the mechanism of tPA-related hemorrhagic transformation (HT) remains poorly understood. Elevation of histidine-rich glycoprotein (HRG) expression was detected by nano-liquid chromatography tandem mass spectrometry at 1 h following tPA infusion as compared to baseline prior to tPA infusion (discovery cohort, n = 10), which was subsequently confirmed in a validation cohort (n = 157) by ELISA. Surprisingly, no elevation of HRG was detected in individuals who subsequently developed HT. During in vitro experiments, HRG reduced neutrophil NETosis, inflammatory cytokine production, and migration across the blood-brain barrier induced by tPA. In a photothrombotic murine AIS model, HRG administration ameliorated HT with delayed thrombolysis, by inhibiting neutrophil immune infiltration and downregulating pro-inflammatory signaling pathways. Neutrophil depletion or NETosis inhibition also alleviated HT, whereas HRG siRNA treatment exacerbated HT. In conclusion, fluctuations in HRG levels may reflect tPA therapy and its associated HT. The inhibitory effect of HRG on neutrophils may counteract tPA-induced immune abnormalities and HT in patients with AIS.

15.
Mult Scler J Exp Transl Clin ; 10(3): 20552173241274610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148657

RESUMO

Background: Myelin oligodendrocyte glycoprotein antibody associated disease (MOGAD) is a relatively new disease entity in the field of demyelinating disorders. Its first diagnostic criteria have recently been published. Objectives: We evaluated the positive predictive value (PPV) for MOG-IgG testing and report the clinical and radiologic features with respect to the recently published criteria. Methods: A retrospective study was conducted at three centers in Dallas, Texas. Patients with positive MOG-IgG testing on cell-based assays at any time were included. Positive cases were reviewed by at least two neuroimmunologists for fulfillment of the criteria. Results: We included 235 patients. The PPV of seropositivity at any time was 78.3% overall, 52.6% for low titer, and 90.1% for high titer. Children had a higher PPV than adults (93.9% versus 67.2%). Positive predictive value was 6.3% in those without a core clinical demyelinating attack. Children more often have the typical imaging features of MOGAD in optic neuritis than adults. Conclusions: We report a PPV of 78.3% for MOG-IgG testing using the 2023 MOGAD diagnostic criteria. Children had higher PPV and frequency of supporting imaging features. Careful consideration is necessary when assigning patients with no core demyelinating event and low titers a MOGAD diagnosis.

16.
Virus Genes ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150471

RESUMO

The complete genome sequence of Orthotospovirus tomatozonae (tomato zonate spot virus, TZSV) isolated in Japan was determined and compared with that of Chinese isolates. The lengths of the S, M, and L segments of the RNA genomes of the Japanese isolate (TZSV-TZ1-3) were 3194, 4675, and 8916 nucleotides, respectively, which were similar to the Chinese isolates. Moreover, the eight motifs on the RNA-dependent RNA polymerase (RdRp) gene were conserved in both TZSV-TZ1-3 and Chinese TZSV isolates (TZSV-Bidens and TZSV-Tomato-YN). The nucleotide identity of the genes among the TZSV isolates was more than 94%, indicating low diversity among viruses. The phylogenetic analysis and the prediction of the cleavage sites in the glycoprotein showed that the TZSV-TZ1-3 isolate was closely related to TZSV-Tomato-YN isolated from China. However, there were unique frameshifts and deletions on the RdRp and glycoprotein genes of the TZSV-Tomato-YN isolate, suggesting that both isolates were genetically distinct. The findings of this study indicate that the TZSV-TZ1-3 isolate originated in China and show the sequence diversity among TZSV isolates.

17.
J Clin Med ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124794

RESUMO

Background: Antiphospholipid antibody (aPL) testing is critical for the classification of antiphospholipid syndrome. The 2023 ACR/EULAR classification criteria recommend the use of enzyme-linked immunosorbent assays (ELISAs) and specific thresholds for aPL positivity. Since non-ELISA methods are increasingly used, we compared and evaluated ELISA and non-ELISA aPL assays in a real-world maximum care hospital setting. Methods: Between January 2021 and June 2024, anticardiolipin (aCL; IgG and IgM) and anti-beta2 glycoprotein I (aß2GPI; IgG and IgM) antibodies were measured using ELISA (n = 5115) and a chemiluminescence-based automated immunoassay (CLIA) (n = 3820). Results of parallel testing were compared, and associations with clinical and laboratory characteristics were evaluated. Results: A total of 946 samples were tested using ELISA and CLIA in parallel. A total of 136 (14%) specimens were positive for at least one aPL, and 55 (6%) specimens were from patients diagnosed with APS. Among the latter, 47 (85%) and 41 (75%) patients were positive when ELISA- or CLIA-based aPL assays were used, respectively. After applying the >40 units threshold of the new classification criteria, the number of aPL-positive specimens was significantly lower. In the entire cohort, the agreement between ELISA and CLIA aPL assays was acceptable only for aß2GPI IgG; the results from the two methods did not agree for aCL IgG/IgM and aß2GPI IgM. In APS patients, the agreement between ELISA and CLIA aPL assays was acceptable for aß2GPI IgG and IgM but poor for aCL IgG and IgM. Antibody levels in APS patients were significantly higher using CLIA compared to ELISA. Conclusions: The method-dependent discrepancies between ELISA- and CLIA-based aPL assays regarding the quantitative and qualitative results are substantial. Both methods are suitable for APS classification, but the choice of aPL assay may influence the classification, and therefore, aPL results should be interpreted carefully in the clinical context.

18.
Virology ; 598: 110187, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094503

RESUMO

Recombinant SARS-CoV-2 S protein expression was examined in Vero cells by imaging using the human monoclonal antibody panel (PD4, PD5, sc23, and sc29). The PD4 and sc29 antibodies recognised conformational specific epitopes in the S2 protein subunit at the Endoplasmic reticulum and Golgi complex. While PD5 and sc23 detected conformationally specific epitopes in the S1 protein subunit at the Golgi complex, only PD5 recognised the receptor binding domain (RBD). A comparison of the staining patterns of PD5 with non-conformationally specific antibodies that recognises the S1 subunit and RBD suggested the PD5 recognised a conformational structure within the S1 protein subunit. Our data suggests the antibody binding epitopes recognised by the human monoclonal antibodies formed at different locations in the secretory pathway during S protein transport, but a conformational change in the S1 protein subunit at the Golgi complex formed antibody binding epitopes that are recognised by virus neutralising antibodies.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Complexo de Golgi , Conformação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Complexo de Golgi/metabolismo , Chlorocebus aethiops , Animais , Células Vero , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Epitopos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/virologia
19.
Xenobiotica ; : 1-15, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126503

RESUMO

This study aimed to determine changes in the hydrolysis of vicagrel, a substrate drug of arylacetamide deacetylase (Aadac) and carboxylesterase 2 (Ces2), in P-glycoprotein (P-gp)-deficient or P-gp-inhibited mice and to elucidate the mechanisms involved.Male wild-type (WT) and P-gp knock-out (KO) mice were used to investigate the systemic exposure of vicagrel thiol active metabolite H4 and platelet response to vicagrel, and the mRNA and protein expression levels of intestinal Aadac and Ces2. Moreover, WT mice were administered vicagrel alone or in combination with elacridar (a potent P-gp inhibitor) to determine drug-drug interactions.Compared with WT mice, P-gp KO mice exhibited significant increases in the systemic exposure of H4, the protein expression levels of intestinal Aadac and Ces2, and inhibition of ADP-induced platelet aggregation by vicagrel. However, the H4 exposure was positively correlated with intestinal Aadac protein expression levels but did not vary with short-term inhibition of P-gp efflux activity by elacridar.P-gp-deficient mice, rather than elacridar-treated mice, exhibited significant upregulation of intestinal Aadac and Ces2 and thus, enhanced metabolic activation of and platelet response to vicagrel, suggesting that the metabolic activation of vicagrel may vary with P-gp deficiency, not P-gp inhibition, in mice.

20.
Best Pract Res Clin Rheumatol ; : 101986, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39138042

RESUMO

Antiphospholipid syndrome (APS) in children is a rare disease associated with significant morbidity and mortality. In comparison with APS in adults, pediatric APS has a more severe presentation with frequent recurrences of thrombotic events and a higher probability of life-threatening catastrophic APS. Nonthrombotic manifestations are also more common in the pediatric age group and can precede thrombosis. New classification criteria have been introduced recently and have not yet been assessed in pediatric patients with APS. In addition to anticoagulation drugs, other novel therapies have emerged including the use of B cell and complement inhibitors, especially in catastrophic APS. The purpose of this review is to provide a broad overview of aPL-related clinical manifestations in pediatric patients based on the analysis of published cohorts and data from the international pediatric APS registry. We also aim to illustrate APS in infants caused by transplacentally transferred maternal aPL, which is very rarely associated with acute thrombotic events in the perinatal period and more frequently with long-term neurodevelopmental abnormalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA