RESUMO
Seeds are initiated from the carpel margin meristem (CMM) and high seed yield is top one of breeding objectives for many crops. ß-1,3-glucanases play various roles in plant growth and developmental processes; however, whether it participates in CMM development and seed formation remains largely unknown. Here, we identified a ß-1,3-glucanase gene (GLU19) as a determinant of CMM callose deposition and seed yield in cotton. GLU19 was differentially expressed in carpel tissues between Gossypium barbadense (Gb) and Gossypium hirsutum (Gh). Based on resequencing data, one interspecies-specific InDel in the promoter of GLU19 was further detected. The InDel was involved in the binding site of the CRABS CLAW (CRC) transcription factor, a regulator of carpel development. We found that the CRC binding affinity to the GLU19 promoter of G. barbadense was higher than that of G. hirsutum. Since G. barbadense yields fewer seeds than G. hirsutum, we speculated that stronger CRC binding to the GLU19 promoter activated higher expression of GLU19 which in turn suppressed seed production. Consistent with this hypothesis was that the overexpression of GhGLU19 caused reduced seed number, boll weight and less callose formation in CMM. Conversely, GhGLU19-knockdown (GhGLU19-KD) cotton led to the opposite phenotypes. By crossing GhGLU19-KD lines with several G. hirsutum and G. barbadense cotton accessions, all F1 and F2 plants carrying GhGLU19-KD transgenic loci exhibited higher seed yield than control plants without the locus. The increased seed effect was also found in the down-regulation of Arabidopsis orthologs lines, indicating that this engineering strategy may improve the seed yield in other crops.
Assuntos
Regulação da Expressão Gênica de Plantas , Glucana 1,3-beta-Glucosidase , Gossypium , Proteínas de Plantas , Sementes , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Glucana 1,3-beta-Glucosidase/metabolismo , Glucana 1,3-beta-Glucosidase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fibra de Algodão , Glucanos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Between 2016 and 2018, the Agriculture Research Center's Sakha Agriculture Research Station conducted two rounds of pedigree selection on a segregating population of cotton (Gossypium barbadense L.) using the F2, F3, and F4 generations resulting from crossing Giza 94 and Suvin. In 2016, the top 5% of plants from the F2 population were selected based on specific criteria. The superior families from the F3 generation were then selected to produce the F4 families in 2017, which were grown in the 2018 summer season in single plant progeny rows and bulk experiments with a randomized complete block design of three replications. Over time, most traits showed increased mean values in the population, with the F2 generation having higher Genotypic Coefficient of Variance (GCV) and Phenotypic Coefficient of Variance (PCV) values compared to the succeeding generations for the studied traits. The magnitude of GCV and PCV in the F3 and F4 generations was similar, indicating that genotype had played a greater role than the environment. Moreover, the mean values of heritability in the broad sense increased from generation to generation. Selection criteria I2, I4, and I5 were effective in improving most of the yield and its component traits, while selection criterion I1 was efficient in improving earliness traits. Most of the yield and its component traits showed a positive and significant correlation with each other, highlighting their importance in cotton yield. This suggests that selecting to improveone or more of these traits would improve the others. Families number 9, 13, 19, 20, and 21 were the best genotypes for relevant yield characters, surpassing the better parent, check variety, and giving the best values for most characters. Therefore, the breeder could continue to use these families in further generations as breeding genotypes to develop varieties with high yields and its components.
Assuntos
Fibra de Algodão , Gossypium , Melhoramento Vegetal , Cruzamentos Genéticos , Egito , Gossypium/genética , Fenótipo , Locos de Características QuantitativasRESUMO
Sulfotransferases (SOTs) (EC 2.8.2.-) are sulfate regulatory proteins in a variety of organisms that have been previously shown to be involved in regulating a variety of physiological and biological processes, such as growth, development, adaptation to land, stomatal closure, drought tolerance, and response to pathogen infection. However, there is a lack of comprehensive identification and systematic analysis of SOT in cotton, especially in G. barbadense. In this study, we used bioinformatics methods to analyze the structural characteristics, phylogenetic relationships, gene structure, expression patterns, evolutionary relationships, selection pressure and stress response of SOT gene family members in G. barbadense. In this study, a total of 241 SOT genes were identified in four cotton species, among which 74 SOT gene members were found in G. barbadense. According to the phylogenetic tree, 241 SOT protein sequences were divided into five distinct subfamilies. We also mapped the physical locations of these genes on chromosomes and visualized the structural information of SOT genes in G. barbadense. We also predicted the cis-acting elements of the SOT gene in G. barbadense, and we identified the repetitive types and collinearity analysis of SOT genes in four cotton species. We calculated the Ka/Ks ratio between homologous gene pairs to elucidate the selective pressure between SOT genes. Transcriptome data were used to explore the expression patterns of SOT genes, and then qRT-PCR was used to detect the expression patterns of GBSOT4, GBSOT17 and GBSOT33 under FOV stress. WGCNA (weighted gene co-expression network analysis) showed that GB_A01G0479 (GBSOT4) belonged to the MEblue module, which may regulate the resistance mechanism of G. barbadense to FOV through plant hormones, signal transduction and glutathione metabolism. In addition, we conducted a VIGS (virus-induced gene silencing) experiment on GBSOT4, and the results showed that after FOV inoculation, the plants with a silenced target gene had more serious leaf wilting, drying and cracking than the control group, and the disease index of the plants with the silenced target gene was significantly higher than that of the control group. This suggests that GBSOT4 may be involved in protecting the production of G. barbadense from FOV infection. Subsequent metabolomics analysis showed that some flavonoid metabolites, such as Eupatorin-5-methylether (3'-hydroxy-5,6,7,4'-tetramethoxyflavone, were accumulated in cotton plants in response to FOV infection.
RESUMO
Cotton breeding programs have focused on agronomically-desirable traits. Without targeted selection for tolerance to high temperature extremes, cotton will likely be more vulnerable to environment-induced yield loss. Recently-developed methods that couple chlorophyll fluorescence induction measurements with temperature response experiments could be used to identify genotypic variation in photosynthetic thermotolerance of specific photosynthetic processes for field-grown plants. It was hypothesized that diverse cotton genotypes would differ significantly in photosynthetic thermotolerance, specific thylakoid processes would exhibit differential sensitivities to high temperature, and that the most heat tolerant process would exhibit substantial genotypic variation in thermotolerance plasticity. A two-year field experiment was conducted at Tifton and Athens, Georgia, USA. Experiments included 10 genotypes in 2020 and 11 in 2021. Photosynthetic thermotolerance for field-collected leaf samples was assessed by determining the high temperature threshold resulting in a 15% decline in photosynthetic efficiency (T15) for energy trapping by photosystem II (ΦPo), intersystem electron transport (ΦEo), and photosystem I end electron acceptor reduction (ΦRo). Significant genotypic variation in photosynthetic thermotolerance was observed, but the response was dependent on location and photosynthetic parameter assessed. ΦEo was substantially more heat sensitive than ΦPo or ΦRo. Significant genotypic variation in thermotolerance plasticity of ΦEo was also observed. Identifying the weakest link in photosynthetic tolerance to high temperature will facilitate future selection efforts by focusing on the most heat-susceptible processes. Given the genotypic differences in environmental plasticity observed here, future research should evaluate genotypic variation in acclimation potential in controlled environments.
RESUMO
Cotton has been domesticated independently four times for its fiber, but the genomic targets of selection during each domestication event are mostly unknown. Comparative analysis of the transcriptome during cotton fiber development in wild and cultivated materials holds promise for revealing how independent domestications led to the superficially similar modern cotton fiber phenotype in upland (G. hirsutum) and Pima (G. barbadense) cotton cultivars. Here we examined the fiber transcriptomes of both wild and domesticated G. hirsutum and G. barbadense to compare the effects of speciation versus domestication, performing differential gene expression analysis and coexpression network analysis at four developmental timepoints (5, 10, 15, or 20 days after flowering) spanning primary and secondary wall synthesis. These analyses revealed extensive differential expression between species, timepoints, domestication states, and particularly the intersection of domestication and species. Differential expression was higher when comparing domesticated accessions of the two species than between the wild, indicating that domestication had a greater impact on the transcriptome than speciation. Network analysis showed significant interspecific differences in coexpression network topology, module membership, and connectivity. Despite these differences, some modules or module functions were subject to parallel domestication in both species. Taken together, these results indicate that independent domestication led G. hirsutum and G. barbadense down unique pathways but that it also leveraged similar modules of coexpression to arrive at similar domesticated phenotypes.
Assuntos
Domesticação , Transcriptoma , Transcriptoma/genética , Perfilação da Expressão Gênica , Fibra de Algodão , Genômica , Gossypium/genéticaRESUMO
Allotetraploid cotton plants Gossypium hirsutum and Gossypium barbadense have been widely cultivated for their natural, renewable textile fibres. Even though ncRNAs in domesticated cotton species have been extensively studied, systematic identification and annotation of lncRNAs and miRNAs expressed in various tissues and developmental stages under various biological contexts are limited. This influences the comprehension of their functions and future research on these cotton species. Here, we report high confidence lncRNAs and miRNA collection from G. hirsutum accession and G. barbadense accession using large-scale RNA-seq and small RNA-seq datasets incorporated into a user-friendly database, CoNCRAtlas. This database provides a wide range and depth of lncRNA and miRNA annotation based on the systematic integration of extensive annotations such as expression patterns derived from transcriptome data analysis in thousands of samples, as well as multi-omics annotations. We assume this comprehensive resource will accelerate evolutionary and functional studies in ncRNAs and inform future breeding programs for cotton improvement. CoNCRAtlas is accessible at http://www.nipgr.ac.in/CoNCRAtlas/.
RESUMO
BACKGROUND: Upland cotton is one of the utmost significant strategic fiber crops, and play a vital role in the global textile industry. METHODS AND RESULTS: A total of 128 genotypes comprised Gossypium hirsutum L, Gossypium barbadense L., and pure lines were used to examine genetic diversity using iPBS-retrotransposon markers system. Eleven highly polymorphic primers yielded 287 bands and 99.65% polymorphism was recorded. The mean polymorphism information content was estimated at 0.297 and the average diversity indices for the effective number of alleles, Shannon's information index, and overall gene diversity were 1.481, 0.443, and 0.265, respectively. The analysis of molecular variance (AMOVA) revealed that 69% of the genetic variation was within the population. A model-based STRUCTURE algorithm divided the entire germplasm into four populations and one un-classified population, the genotypes G42 (originating in Egypt) and G128 (originating in the United States), showed the highest genetic distance (0.996) so these genotypes could be suggested for breeding programs as parental lines. CONCLUSIONS: This is the first investigation using an iPBS-retrotransposon marker system to examine the genetic diversity and population structure of upland cotton germplasm. The rich diversity found in upland cotton germplasm could be exploited as a genetic resource when developing breeding programs and could also help with efforts to breed cotton around the world. These findings also show the applicability and effectiveness of iPBS-retrotransposons for the molecular characterization of cotton germplasm.
Assuntos
Gossypium , Retroelementos , Gossypium/genética , Variação Genética/genética , Melhoramento Vegetal , Polimorfismo Genético/genética , Fibra de AlgodãoRESUMO
INTRODUCTION: Sea-island cotton (Gossypium barbadense, Gb) is one of the major sources of high-grade natural fiber. Besides the common annual Gb cotton, perennial Gb cotton is also cultivated, but studies on perennial Gb cotton are rare. OBJECTIVES: We aimed to make a systematic analysis of perennial sea-island cotton and lay a foundation for its utilization in breeding, and try to identify the representative structural variations (SVs) in sea-island cotton, and to reveal the population differentiation and adaptive improvement of sea-island cotton. METHODS: Through genome assembly of one perennial Gb cotton accession (named Gb_M210936) and comparative genome analysis, variations during Gb cotton domestication were identified by comparing Gb_M210936 with annual Gb accession 3-79 and with wild allotetraploid cotton G. darwinii. Six perennial Gb accessions combining with the resequenced 1,129 cotton accessions were used to conduct population and genetic analysis. Large haplotype blocks (haploblocks), generated from interspecific introgressions and intraspecific inversions, were identified and were used to analyze their effects on population differentiation and agronomic traits of sea-island cotton. RESULTS: One reference genome of perennial sea-island cotton was assembled. Representative SVs in sea-island cotton were identified, and 31 SVs were found to be associated with agronomic traits. Perennial Gb cotton had a closer kinship with the wild-to-landrace continuum Gb cotton from south America where Gb cotton is originally domesticated. Haploblocks were associated with agronomic traits improvement of sea-island cotton, promoted sea-island cotton differentiation into three subgroups, were suffered from breeding selection, and may drive Gb cotton to be adapted to central Asian. CONCLUSION: Our study made up the lack of perennial Gb cotton genome, and clarified that exotic introgressions improved the traits of sea-island cotton, promoted the population differentiation, and drove sea-island cotton adaptive to central Asia, which will provide new insights for the genetic breeding improvement of sea-island cottons.
Assuntos
Gossypium , Melhoramento Vegetal , Gossypium/genética , Haplótipos , Fenótipo , Genoma de Planta/genéticaRESUMO
Ascorbate oxidase (AO) and skewed5 (SKU5)-similar (SKS) proteins belong to the multicopper oxidase (MCO) family and play important roles in plants in response to environmental stress via modulation of oxidoreduction homeostasis. Currently, reports on the response of Gossypium barbadense MCO to Verticillium wilt (VW) caused by Verticillium dahliae are still limited. Herein, RNA sequencing of two G. barbadense cultivars of VW-resistant XH21 and VW-susceptible XH7 under V. dahliae treatment, combined with physiological and genetic analysis, was performed to analyze the function and mechanism of multicopper oxidases GbAO and GbSKS involved in V. dahliae resistance. The identified differentially expressed genes are mainly involved in the regulation of oxidoreduction reaction, and extracellular components and signaling. Interestingly, ascorbate oxidase family members were discovered as the most significantly upregulated genes after V. dahliae treatment, including GbAO3A/D, GbSKS3A/D, and GbSKS16A/D. H2O2 and Asc contents, especially reductive Asc in both XH21 and XH7, were shown to be increased. Silenced expression of respective GbAO3A/D, GbSKS3A/D, and GbSKS16A/D in virus-induced gene silencing (VIGS) cotton plants significantly decreased the resistance to V. dahliae, coupled with the reduced contents of pectin and lignin. Our results indicate that AO might be involved in cotton VW resistance via the regulation of cell wall components.
Assuntos
Ascomicetos , Gossypium , Gossypium/genética , Gossypium/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Ascorbato Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Ascomicetos/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Introgression of superior fiber traits from Pima cotton (Gossypium barbadense, GB) into high yield Upland cotton (G. hirsutum) has been a breeding objective for many years in a few breeding programs in the world. However, progress has been very slow due to introgression barriers resulting from whole genome hybridization between the two species. To minimize such barriers, chromosome substitution lines (CS-B) from Pima cotton 3-79 in an Upland cotton cultivar TM-1 were developed. A multiparent advanced generation inter-cross (MAGIC) population consisting of 180 recombinant inbred lines (RILs) was subsequently made using the 18 CS-B lines and three Upland cotton cultivars as parents. In this research, we sequenced the whole genomes of the 21 parents and 180 RILs to examine the G. barbadense introgression. Of the 18 CS-B lines, 11 contained the target GB chromosome or chromosome segment, two contained more than two GB chromosomes, and five did not have the expected introgression. Residual introgression in non-target chromosomes was prevalent in all CS-B lines. A clear structure existed in the MAGIC population and the 180 RILs were distributed into three groups, i.e., high, moderate, and low GB introgression. Large blocks of GB chromosome introgression were still present in some RILs after five cycles of random-mating, an indication of recombination suppression or other unknown reasons present in the population. Identity by descent analysis revealed that the MAGIC RILs contained less introgression than expected. This research presents an insight on understanding the complex problems of introgression between cotton species.
Assuntos
Fibra de Algodão , Gossypium , Gossypium/genética , Iodeto de Potássio , Cruzamentos Genéticos , Melhoramento Vegetal , GenômicaRESUMO
Premise: The shape of young cotton (Gossypium) fibers varies within and between commercial cotton species, as revealed by previous detailed analyses of one cultivar of G. hirsutum and one of G. barbadense. Both narrow and wide fibers exist in G. hirsutum cv. Deltapine 90, which may impact the quality of our most abundant renewable textile material. More efficient cellular phenotyping methods are needed to empower future research efforts. Methods: We developed semi-automated imaging methods for young cotton fibers and a novel machine learning algorithm for the rapid detection of tapered (narrow) or hemisphere (wide) fibers in homogeneous or mixed populations. Results: The new methods were accurate for diverse accessions of G. hirsutum and G. barbadense and at least eight times more efficient than manual methods. Narrow fibers dominated in the three G. barbadense accessions analyzed, whereas the three G. hirsutum accessions showed a mixture of tapered and hemisphere fibers in varying proportions. Discussion: The use or adaptation of these improved methods will facilitate experiments with higher throughput to understand the biological factors controlling the variable shapes of young cotton fibers or other elongating single cells. This research also enables the exploration of links between early cell shape and mature cotton fiber quality in diverse field-grown cotton accessions.
RESUMO
Background: PIN proteins are an important class of auxin polar transport proteins that play an important regulatory role in plant growth and development. However, their characteristics and functions have not been identified in Gossypium barbadense. Methods: PIN family genes were identified in the cotton species G. barbadense, Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum, and detailed bioinformatics analyses were conducted to explore the roles of these genes in G. barbadense using transcriptome data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) technology. Functional verification of the genes was performed using virus-induced gene silencing (VIGS) technology. Results: A total of 138 PIN family genes were identified in the four cotton species; the genes were divided into seven subgroups. GbPIN gene family members were widely distributed on 20 different chromosomes, and most had repeated duplication events. Transcriptome analysis showed that some genes had differential expression patterns in different stages of fiber development. According to 'PimaS-7' and '5917' transcript component association analysis, the transcription of five genes was directly related to endogenous auxin content in cotton fibers. qRT-PCR analysis showed that the GbPIN7 gene was routinely expressed during fiber development, and there were significant differences among materials. Transient silencing of the GbPIN7 gene by VIGS led to significantly higher cotton plant growth rates and significantly lower endogenous auxin content in leaves and stems. This study provides comprehensive analyses of the roles of PIN family genes in G. barbadense and their expression during cotton fiber development. Our results will form a basis for further PIN auxin transporter research.
Assuntos
Gossypium , Família Multigênica , Gossypium/genética , Família Multigênica/genética , Proteínas de Plantas/genética , Fibra de Algodão , Ácidos IndolacéticosRESUMO
Rhizosphere microbial communities are recognized as crucial products of intimate interactions between plant and soil, playing important roles in plant growth and health. Enhancing the understanding of this process is a promising way to promote the next green revolution by applying the multifunctional benefits coming with rhizosphere microbiomes. In this study, we propagated eight cotton genotypes (four upland cotton cultivars and four sea-land cotton cultivars) with varying levels of resistance to Verticillium dahliae in three distinct soil types. Amplicon sequencing was applied to profile both bacterial and fungal communities in the rhizosphere of cotton. The results revealed that soil origin was the primary factor causing divergence in rhizosphere microbial community, with plant genotype playing a secondary role. The Shannon and Simpson indices revealed no significant differences in the rhizosphere microbial communities of Gossypium barbadense and G. hirsutum. Soil origin accounted for 34.0 and 59.05% of the total variability in the PCA of the rhizosphere bacterial and fungal communities, respectively, while plant genotypes within species only accounted for 1.1 to 6.6% of the total variability among microbial population. Similar results were observed in the Bray-Curtis indices. Interestingly, the relative abundance of Acidobacteria phylum in G. barbadense was greater in comparison with that of G. hirsutum. These findings suggested that soil origin and cotton genotype modulated microbiome assembly with soil predominantly shaping rhizosphere microbiome assembly, while host genotype slightly tuned this recruitment process by changing the abundance of specific microbial consortia.
RESUMO
To generate high-yielding cultivars with favorable fiber quality traits, cotton breeders can use information about combining ability and gene activity within a population to locate elite parents and potential F1 crosses. To this end, in the current study, twelve cotton parents (eight genotypes as female parents and four testers) and their F1 crosses obtained utilizing the linex tester mating design were evaluated for their general and specialized combining abilities (GCA and SCA, respectively) of yield traits. The findings showed that for all the investigated variables, variances owing to genotypes, parents, crosses, and parent vs cross showed extremely significant (P ≤ 0.01) differences. Additionally, throughout the course of two growing seasons, the mean squares for genotypes (parents and crosses) showed strong significance for all the variables under study. The greatest and most desired means for all the examined qualities were in the parent G.94, Pima S6, and tester G.86. The best crossings for the qualities examined were G.86 (G.89 × G.86), G.93 × Suvin, and G.86 × Suvin. The parents' Suvin, G89x G86 and TNB were shown to have the most desired general combining ability effects for seed cotton yield/plant, lint yield/plant, boll weight, number of bolls/plants, and lint index, while Suvin, G.96 and pima S6 were preferred for favored lint percentage. For seed cotton yield, lint percentage, boll weight, and number of bolls per plant per year, the cross-G.86 x (G.89 × G.86) displayed highly significant specific combining ability impacts. The crosses G.86 × Suvin, Kar x TNB, G.93 × Suvin, and G.93 × TNB for all the studied traits for each year and their combined were found to have highly significant positive heterotic effects relative to better parent, and they could be used in future cotton breeding programs for improving the studied traits.
Assuntos
Gossypium , Iodeto de Potássio , Fibra de Algodão , Cruzamentos Genéticos , Egito , Gossypium/genética , Vigor Híbrido , Melhoramento VegetalRESUMO
Gossypium barbadense possesses a superior fiber quality because of its fiber length and strength. An in-depth analysis of the underlying genetic mechanism could aid in filling the gap in research regarding fiber strength and could provide helpful information for Gossypium barbadense breeding. Three quantitative trait loci related to fiber strength were identified from a Gossypium barbadense recombinant inbred line (PimaS-7 × 5917) for further analysis. RNA sequencing was performed in the fiber tissues of PimaS-7 × 5917 0-35 days postanthesis. Four specific modules closely related to the secondary wall-thickening stage were obtained using the weighted gene coexpression network analysis. In total, 55 genes were identified as differentially expressed from 4 specific modules. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for enrichment analysis, and Gbar_D11G032910, Gbar_D08G020540, Gbar_D08G013370, Gbar_D11G033670, and Gbar_D11G029020 were found to regulate fiber strength by playing a role in the composition of structural constituents of cytoskeleton and microtubules during fiber development. Quantitative real-time PCR results confirmed the accuracy of the transcriptome data. This study provides a quick strategy for exploring candidate genes and provides new insights for improving fiber strength in cotton.
Assuntos
Gossypium , Locos de Características Quantitativas , Fibra de Algodão , Redes Reguladoras de Genes , Gossypium/genética , Fenótipo , Melhoramento Vegetal , TranscriptomaRESUMO
In previous research on the resistance of cotton to Verticillium wilt (VW), Gossypium hirsutum and G. barbadense were usually used as the susceptible and resistant cotton species, despite their different genetic backgrounds. Herein, we present data independent acquisition (DIA)-based comparative proteomic analysis of two G. barbadense cultivars differing in VW tolerance, susceptible XH7 and resistant XH21. A total of 4,118 proteins were identified, and 885 of them were differentially abundant proteins (DAPs). Eight co-expressed modules were identified through weighted gene co-expression network analysis. GO enrichment analysis of the module that significantly correlated with V. dahliae infection time revealed that oxidoreductase and peroxidase were the most significantly enriched GO terms. The last-step rate-limiting enzyme for ascorbate acid (AsA) biosynthesis was further uncovered in the significantly enriched GO terms of the 184 XH21-specific DAPs. Additionally, the expression of ascorbate peroxidase (APX) members showed quick accumulation after inoculation. Compared to XH7, XH21 contained consistently higher AsA contents and rapidly increased levels of APX expression, suggesting their potential importance for the resistance to V. dahliae. Silencing GbAPX1/12 in both XH7 and XH 21 resulted in a dramatic reduction in VW resistance. Our data indicate that APX-mediated oxidoreductive metabolism is important for VW resistance in cotton.
RESUMO
Upland cotton (Gossypium hirsutum) has long been an important fiber crop, but the narrow genetic diversity of modern G. hirsutum limits the potential for simultaneous improvement of yield and fiber quality. It is an effective approach to broaden the genetic base of G. hirsutum through introgression of novel alleles from G. barbadense with excellent fiber quality. In the present study, an interspecific chromosome segment substitution lines (CSSLs) population was established using G. barbadense cultivar Pima S-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. A total of 105 quantitative trait loci (QTL), including 85 QTL for fiber quality and 20 QTL for lint percentage (LP), were identified based on phenotypic data collected from four environments. Among these QTL, 25 stable QTL were detected in two or more environments, including four for LP, eleven for fiber length (FL), three for fiber strength (FS), six for fiber micronaire (FM), and one for fiber elongation (FE). Eleven QTL clusters were observed on nine chromosomes, of which seven QTL clusters harbored stable QTL. Moreover, eleven major QTL for fiber quality were verified through analysis of introgressed segments of the eight superior lines with the best comprehensive phenotypes. A total of 586 putative candidate genes were identified for 25 stable QTL associated with lint percentage and fiber quality through transcriptome analysis. Furthermore, three candidate genes for FL, GH_A08G1681 (GhSCPL40), GH_A12G2328 (GhPBL19), and GH_D02G0370 (GhHSP22.7), and one candidate gene for FM, GH_D05G1346 (GhAPG), were identified through RNA-Seq and qRT-PCR analysis. These results lay the foundation for understanding the molecular regulatory mechanism of fiber development and provide valuable information for marker-assisted selection (MAS) in cotton breeding.
RESUMO
Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (FOV) is one of the most destructive diseases in cotton (Gossypium spp.) production, and use of resistant cultivars is the most cost-effective method managing the disease. To understand the genetic basis of cotton resistance to FOV race 7 (FOV7), this study evaluated a recombinant inbred line (RIL) population of 110 lines of G. barbadense from a cross between susceptible Xinhai 14 and resistant 06-146 in eight tests and constructed a high-density genetic linkage map with resequencing-based 933,845 single-nucleotide polymorphism (SNP) markers covering a total genetic distance of 2483.17 cM. Nine quantitative trait loci (QTLs) for FOV7 resistance were identified, including qFOV7-D03-1 on chromosome D03 in two tests. Through a comparative analysis of gene expression and DNA sequence for predicted genes within the QTL region between the two parents and selected lines inoculated with FOV7, GB_D03G0217 encoding for a calmodulin (CaM)-like (CML) protein was identified as a candidate gene. A further analysis confirmed that the expression of GB_D03G0217 was suppressed, leading to increased disease severity in plants of the resistant parent with virus induced gene silencing (VIGS).
RESUMO
Gossypium hirsutum and Gossypium barbadense are the widely cultivated tetraploid cottons around the world, which evolved great differences in the fiber yield and quality due to the independent domestication process. To reveal the genetic basis of the difference, we integrated 90 samples from ten time points during the fiber developmental period for investigating the dynamics of gene expression changes associated with fiber in G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 and acc. 3-79. Globally, 44,484 genes expressed in all three cultivars account for 61.14% of the total genes. About 61.39% (N = 3,412) of the cotton transcription factors were involved in fiber development, which consisted of 58 cotton TF families. The differential analysis of intra- and interspecies showed that 3 DPA had more expression changes. To discover the genes with temporally changed expression profiles during the whole fiber development, 1,850 genes predominantly expressed in G. hirsutum and 1,050 in G. barbadense were identified, respectively. Based on the weighted gene co-expression network and time-course analysis, several candidate genes, mainly involved in the secondary cell wall synthesis and phytohormones, were identified in this study, underlying possibly the transcriptional regulation and molecular mechanisms of the fiber quality differences between G. barbadense and G. hirsutum. The quantitative real-time PCR validation of the candidate genes was consistent with the RNA-seq data. Our study provides a strong rationale for the analysis of gene function and breeding of high-quality cotton.
RESUMO
Seed size and shape are key agronomic traits affecting seedcotton yield and seed quality in cotton (Gossypium spp.). However, the genetic mechanisms that regulate the seed physical traits in cotton are largely unknown. In this study, an interspecific backcross inbred line (BIL) population of 250 BC1F7 lines, derived from the recurrent parent Upland CRI36 (Gossypium hirsutum) and Hai7124 (Gossypium barbadense), was used to investigate the genetic basis of cotton seed physical traits via quantitative trait locus (QTL) mapping and candidate gene identification. The BILs were tested in five environments, measuring eight seed size and shape-related traits, including 100-kernel weight, kernel length width and their ratio, kernel area, kernel girth, kernel diameter, and kernel roundness. Based on 7,709 single nucleotide polymorphic (SNP) markers, a total of 49 QTLs were detected and each explained 2.91-35.01% of the phenotypic variation, including nine stable QTLs mapped in at least three environments. Based on pathway enrichment, gene annotation, genome sequence, and expression analysis, five genes encoding starch synthase 4, transcription factor PIF7 and MYC4, ubiquitin-conjugating enzyme E27, and THO complex subunit 4A were identified as candidate genes that might be associated with seed size and shape. Our research provides valuable information to improve seed physical traits in cotton breeding.