Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39120466

RESUMO

Cerebrovascular and neurological diseases exhibit sex-specific patterns in prevalence, severity, and regional specificity, some of which are associated with altered cerebral blood flow (CBF). Females often exhibit higher resting CBF, but understanding the impact of sex per se on CBF is hampered by study variability in age, comorbidities, medications, and control for menstrual cycle or hormone therapies. A majority of studies report whole brain CBF without differentiating between grey and white matter, or without assessing regional CBF. Thus, fundamental sex differences in regional or whole-brain CBF remain unclarified. While controlling for the above confounders, we tested the hypothesis that females will exhibit higher total grey and white matter perfusion as well as regional grey matter perfusion. Adults 18-30 years old (females=22, males=26), were studied using arterial spin labeling (ASL) magnetic resonance imaging (MRI) scans followed by Computational Anatomy Toolbox (CAT12) analysis in Statistical Parametric Mapping (SPM12) to quantify CBF relative to brain volume. Females displayed 40% higher perfusion globally (females =62±9, males=45±10mL/100g/min, p<0.001), grey matter (females=75±11, males=54±12mL/100g/min, p<0.001), and white matter (females=44±6, males=32±7mL/100g/min, p<0.001). Females exhibited greater perfusion than males in 67 of the 68 regions tested, ranging from 14-66% higher. A second MRI approach (4D flow) focused on large arteries confirmed the sex difference in global CBF. These data indicate strikingly higher basal CBF in females at global, grey, and white matter levels and across dozens of brain regions, and offer new clarity into fundamental sex differences in global and regional CBF regulation prior to aging or pathology.

2.
Front Vet Sci ; 11: 1390971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139602

RESUMO

Metabolic/neurodegenerative encephalopathies encompass a wide list of conditions that share similar clinical and magnetic resonance imaging (MRI) characteristics, challenging the diagnostic process and resulting in numerous tests performed in order to reach a definitive diagnosis. The aims of this multicentric, retrospective and descriptive study are: (I) to describe the MRI features of dogs and cats with metabolic/neurodegenerative encephalopathies; (II) to attempt an MRI recognition pattern classifying these conditions according to the involvement of grey matter, white matter or both; and (III) to correlate the MRI findings with previous literature. A total of 100 cases were recruited, comprising 81 dogs and 19 cats. These included hepatic encephalopathy (20 dogs and three cats), myelinolysis (five dogs), intoxications (seven dogs and one cat), thiamine deficiency (two dogs and seven cats), hypertensive encephalopathy (three dogs and two cats), neuronal ceroid lipofuscinosis (11 dogs and one cat), gangliosidosis (three dogs and two cats), fucosidosis (one dog), L-2-hydroxyglutaric aciduria (13 dogs and one cat), Lafora disease (11 dogs), spongiform leukoencephalomyelopathy (one dog) and cerebellar cortical degeneration (four dogs and two cats). None of the hepatic encephalopathies showed the previously described T1-weighted hyperintensity of the lentiform nuclei. Instead, there was involvement of the cerebellar nuclei (8/23), which is a feature not previously described. Dogs with myelinolysis showed novel involvement of a specific white matter structure, the superior longitudinal fasciculus (5/5). Thiamine deficiency affected numerous deep grey nuclei with novel involvement of the oculomotor nuclei (3/9), thalamic nuclei, subthalamus and cerebellar nuclei (1/9). Cats with hypertensive encephalopathy had a more extensive distribution of the white matter changes when compared to dogs, extending from the parietal and occipital lobes into the frontal lobes with associated mass effect and increased brain volume. Lysosomal storage disease showed white matter involvement only, with neuronal ceroid lipofuscinosis characterised by severe brain atrophy when compared to gangliosidosis and fucosidosis. All patients with L-2-hydroxyglutaric aciduria had a characteristic T2-weighted hyperintense swelling of the cerebral and cerebellar cortical grey matter, resulting in increased brain volume. Lafora disease cases showed either normal brain morphology (5/11) or mild brain atrophy (6/11). Dogs with cerebellar cortical degeneration had more marked cerebellar atrophy when compared to cats. This study shows the important role of MRI in distinguishing different metabolic/neurodegenerative encephalopathies according to specific imaging characteristics.

3.
Brain Commun ; 6(4): fcae199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993284

RESUMO

Alzheimer's disease is characterized by cognitive impairment and progressive brain atrophy. Recent human neuroimaging studies reported atypical anatomical and functional changes in some regions in the default mode network in patients with Alzheimer's disease, but which brain area of the default mode network is the key region whose atrophy disturbs the entire network activity and consequently contributes to the symptoms of the disease remains unidentified. Here, in this case-control study, we aimed to identify crucial neural regions that mediated the phenotype of Alzheimer's disease, and as such, we examined the intrinsic neural timescales-a functional metric to evaluate the capacity to integrate diverse neural information-and grey matter volume of the regions in the default mode network using resting-state functional MRI images and structural MRI data obtained from individuals with Alzheimer's disease and cognitively typical people. After confirming the atypically short neural timescale of the entire default mode network in Alzheimer's disease and its link with the symptoms of the disease, we found that the shortened neural timescale of the default mode network was associated with the aberrantly short neural timescale of the left angular gyrus. Moreover, we revealed that the shortened neural timescale of the angular gyrus was correlated with the atypically reduced grey matter volume of this parietal region. Furthermore, we identified an association between the neural structure, brain function and symptoms and proposed a model in which the reduced grey matter volume of the left angular gyrus shortened the intrinsic neural time of the region, which then destabilized the entire neural timescale of the default mode network and resultantly contributed to cognitive decline in Alzheimer's disease. These findings highlight the key role of the left angular gyrus in the anatomical and functional aetiology of Alzheimer's disease.

4.
Brain Commun ; 6(4): fcae234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077376

RESUMO

In multiple sclerosis clinical trials, MRI outcome measures are typically extracted at a whole-brain level, but pathology is not homogeneous across the brain and so whole-brain measures may overlook regional treatment effects. Data-driven methods, such as independent component analysis, have shown promise in identifying regional disease effects but can only be computed at a group level and cannot be applied prospectively. The aim of this work was to develop a technique to extract longitudinal independent component analysis network-based measures of co-varying grey matter volumes, derived from T1-weighted volumetric MRI, in individual study participants, and assess their association with disability progression and treatment effects in clinical trials. We used longitudinal MRI and clinical data from 5089 participants (22 045 visits) with multiple sclerosis from eight clinical trials. We included people with relapsing-remitting, primary and secondary progressive multiple sclerosis. We used data from five negative clinical trials (2764 participants, 13 222 visits) to extract the independent component analysis-based measures. We then trained and cross-validated a least absolute shrinkage and selection operator regression model (which can be applied prospectively to previously unseen data) to predict the independent component analysis measures from the same regional MRI volume measures and applied it to data from three positive clinical trials (2325 participants, 8823 visits). We used nested mixed-effect models to determine how networks differ across multiple sclerosis phenotypes are associated with disability progression and to test sensitivity to treatment effects. We found 17 consistent patterns of co-varying regional volumes. In the training cohort, volume loss was faster in four networks in people with secondary progressive compared with relapsing-remitting multiple sclerosis and three networks with primary progressive multiple sclerosis. Volume changes were faster in secondary compared with primary progressive multiple sclerosis in four networks. In the combined positive trials cohort, eight independent component analysis networks and whole-brain grey matter volume measures showed treatment effects, and the magnitude of treatment-placebo differences in the network-based measures was consistently greater than with whole-brain grey matter volume measures. Longitudinal network-based analysis of grey matter volume changes is feasible using clinical trial data, showing differences cross-sectionally and longitudinally between multiple sclerosis phenotypes, associated with disability progression, and treatment effects. Future work is required to understand the pathological mechanisms underlying these regional changes.

5.
Arch Gerontol Geriatr ; 126: 105546, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38941948

RESUMO

OBJECTIVES: To examine the associaiton between environmental measures and brain volumes and its potential mediators. STUDY DESIGN: This was a prospective study. METHODS: Our analysis included 34,454 participants (53.4% females) aged 40-73 years at baseline (between 2006 and 2010) from the UK Biobank. Brain volumes were measured using magnetic resonance imaging between 2014 and 2019. RESULTS: Greater proximity to greenspace buffered at 1000 m at baseline was associated with larger volumes of total brain measured 8.8 years after baseline assessment (standardized ß (95% CI) for each 10% increment in coverage: 0.013(0.005,0.020)), grey matter (0.013(0.006,0.020)), and white matter (0.011(0.004,0.017)) after adjustment for covariates and air pollution. The corresponding numbers for natural environment buffered at 1000 m were 0.010 (0.004,0.017), 0.009 (0.004,0.015), and 0.010 (0.004,0.016), respectively. Similar results were observed for greenspace and natural environment buffered at 300 m. The strongest mediator for the association between greenspace buffered at 1000 m and total brain volume was smoking (percentage (95% CI) of total variance explained: 7.9% (5.5-11.4%)) followed by mean sphered cell volume (3.3% (1.8-5.8%)), vitamin D (2.9% (1.6-5.1%)), and creatinine in blood (2.7% (1.6-4.7%)). Significant mediators combined explained 18.5% (13.2-25.3%) of the association with total brain volume and 32.9% (95% CI: 22.3-45.7%) of the association with grey matter volume. The percentage (95% CI) of the association between natural environment and total brain volume explained by significant mediators combined was 20.6% (14.7-28.1%)). CONCLUSIONS: Higher coverage percentage of greenspace and environment may benefit brain health by promoting healthy lifestyle and improving biomarkers including vitamin D and red blood cell indices.

6.
Front Hum Neurosci ; 18: 1276057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826616

RESUMO

Introduction: The cause of Developmental Coordination Disorder (DCD) is unknown, but neuroimaging evidence suggests that DCD may be related to altered brain development. Children with DCD show less structural and functional connectivity compared to typically developing (TD) children, but few studies have examined cortical volume in children with DCD. The purpose of this study was to investigate cortical grey matter volume using voxel-based morphometry (VBM) in children with DCD compared to TD children. Methods: This cross-sectional study was part of a larger randomized-controlled trial (ClinicalTrials.gov ID: NCT02597751) that involved various MRI scans of children with/without DCD. This paper focuses on the anatomical scans, performing VBM of cortical grey matter volume in 30 children with DCD and 12 TD children. Preprocessing and VBM data analysis were conducted using the Computational Anatomy Tool Box-12 and a study-specific brain template. Differences between DCD and TD groups were assessed using a one-way ANOVA, controlling for total intracranial volume. Regression analyses examined if motor and/or attentional difficulties predicted grey matter volume. We used threshold-free cluster enhancement (5,000 permutations) and set an alpha level of 0.05. Due to the small sample size, we did not correct for multiple comparisons. Results: Compared to the TD group, children with DCD had significantly greater grey matter in the left superior frontal gyrus. Lower motor scores (meaning greater impairment) were related to greater grey matter volume in left superior frontal gyrus, frontal pole, and right middle frontal gyrus. Greater grey matter volume was also significantly correlated with higher scores on the Conners 3 ADHD Index in the left superior frontal gyrus, superior parietal lobe, and precuneus. These results indicate that greater grey matter volume in these regions is associated with poorer motor and attentional skills. Discussion: Greater grey matter volume in the left superior frontal gyrus in children with DCD may be a result of delayed or absent healthy cortical thinning, potentially due to altered synaptic pruning as seen in other neurodevelopmental disorders. These findings provide further support for the hypothesis that DCD is related to altered brain development.

7.
Brain Sci ; 14(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38928605

RESUMO

Although previous behavioral studies have associated reactive aggression (RA) and proactive aggression (PA) with traditional masculinity, further investigation is needed into the traditional masculinity-linked neuroanatomical characteristics of RA and PA. This study analyzed the traditional masculinity-by-aggression interaction in 705 participants (350 men) by measuring grey matter volume (GMV). We have expanded on previous studies and found that traditional masculinity was not associated with RA and PA when not controlled for traditional femininity. However, the association appeared when controlling for it. Furthermore, we found significant traditional masculinity-by-RA interactions on the GMV in the bilateral superior frontal gyrus, a region known to be involved in cognitive control. When traditional masculinity scores were 1 standard deviation above the mean, there was a positive correlation between RA and the GMV in the bilateral superior frontal gyrus. Conversely, when traditional masculinity scores were 1 standard deviation below the mean, there was a negative correlation between RA and the GMV in the region. However, no traditional masculinity-linked neuroanatomical characteristics of PA were found. The results indicated that individuals with high/low traditional masculinity perceived RA as a different outcome (gain or loss) of self-control. The results supported an opportunity to develop prevention or intervention strategies for RA.

8.
J Neurol ; 271(8): 5290-5300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861034

RESUMO

OBJECTIVE: Half of ALS patients are cognitively and/or behaviourally impaired. As cognition/behaviour and cerebral glucose metabolism can be correlated by means of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET), we aimed to utilise FDG-PET, first, to replicate group-level differences in glucose metabolism between non-demented ALS patients separated into non-impaired (ALSni), cognitively impaired (ALSci), behaviourally impaired (ALSbi), and cognitively and behaviourally impaired (ALScbi) groups; second, to investigate glucose metabolism and performance in various cognitive domains; and third, to examine the impact of partial volume effects correction (PVEC) of the FDG-PET data on the results. METHODS: We analysed neuropsychological, clinical, and imaging data from 67 ALS patients (30 ALSni, 21 ALSci, 5 ALSbi, and 11 ALScbi). Cognition was assessed with the Edinburgh Cognitive and Behavioural ALS Screen, and two social cognition tests. FDG-PET and structural MRI scans were acquired for each patient. Voxel-based statistical analyses were undertaken on grey matter volume (GMV) and non-corrected vs. PVE-corrected FDG-PET scans. RESULTS: ALSci and ALScbi had lower cognitive scores than ALSni. In contrast to both ALSni and ALSci, ALScbi showed widespread hypometabolism in the superior- and middle-frontal gyri in addition to the right temporal pole. Correlations were observed between the GMV, the FDG-PET signal, and various cognitive scores. The FDG-PET results were largely unaffected by PVEC. INTERPRETATION: Our study identified widespread differences in hypometabolism in the ALScbi-ni but not in the ALSci-ni group comparison, raising the possibility that cerebral metabolism may be more closely related to the presence of behavioural changes than to mild cognitive deficits.


Assuntos
Esclerose Lateral Amiotrófica , Fluordesoxiglucose F18 , Glucose , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Fluordesoxiglucose F18/metabolismo , Idoso , Glucose/metabolismo , Imageamento por Ressonância Magnética , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo
9.
Brain ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703370

RESUMO

Gray matter (GM) atrophies were observed in multiple sclerosis, neuromyelitis optica spectrum disorders (both anti-aquaporin-4 antibody-positive [AQP4+], and -negative [AQP4-] subtypes NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Revealing the pathogenesis of brain atrophy in these disorders would help their differential diagnosis and guide therapeutic strategies. To determine the neurobiological underpinnings of GM atrophies in multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD, and MOGAD, we conducted a virtual histology analysis that links T1-weighted image derived GM atrophy and gene expression using a multicenter cohort of 324 patients with multiple sclerosis, 197 patients with AQP4+ NMOSD, 75 patients with AQP4- NMOSD, 47 patients with MOGAD, and 2,169 healthy controls (HCs). First, interregional GM atrophy profiles across the cortical and subcortical regions were determined by Cohen's d between patients with multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD, MOGAD and HCs. Then, the GM atrophy profiles were spatially correlated with the gene expressions extracted from the Allen Human Brain Atlas, respectively. Finally, we explored the virtual histology of clinical feature relevant GM atrophy by subgroup analysis that stratified by physical disability, disease duration, number of relapses, lesion burden, and cognitive function. Multiple sclerosis showed severe widespread GM atrophy pattern, mainly involving subcortical nuclei and brainstem. AQP4+ NMOSD showed obvious widespread GM atrophy pattern, predominately located in occipital cortex as well as cerebellum. AQP4- NMOSD showed mild widespread GM atrophy pattern, mainly located in frontal and parietal cortices. MOGAD showed GM atrophy mainly involving the frontal and temporal cortices. High expression of genes specific to microglia, astrocytes, oligodendrocytes, and endothelial cells in multiple sclerosis, S1 pyramidal cells in AQP4+ NMOSD, as well as S1 and CA1 pyramidal cells in MOGAD had spatial correlations with GM atrophy profiles were observed, while no atrophy profile related gene expression was found in AQP4- NMOSD. Virtual histology of clinical feature relevant GM atrophy mainly pointed to the shared neuronal and endothelial cells among the four neuroinflammatory diseases. The unique underlying virtual histology patterns were microglia, astrocytes, and oligodendrocytes for multiple sclerosis; astrocytes for AQP4+ NMOSD; and oligodendrocytes for MOGAD. Neuronal and endothelial cells were shared potential targets across these neuroinflammatory diseases. These findings might help their differential diagnosis and optimal therapeutic strategies.

10.
BMC Neurol ; 24(1): 174, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789945

RESUMO

BACKGROUND: The thalamus has a central role in the pathophysiology of idiopathic cervical dystonia (iCD); however, the nature of alterations occurring within this structure remain largely elusive. Using a structural magnetic resonance imaging (MRI) approach, we examined whether abnormalities differ across thalamic subregions/nuclei in patients with iCD. METHODS: Structural MRI data were collected from 37 patients with iCD and 37 healthy controls (HCs). Automatic parcellation of 25 thalamic nuclei in each hemisphere was performed based on the FreeSurfer program. Differences in thalamic nuclei volumes between groups and their relationships with clinical information were analysed in patients with iCD. RESULTS: Compared to HCs, a significant reduction in thalamic nuclei volume primarily in central medial, centromedian, lateral geniculate, medial geniculate, medial ventral, paracentral, parafascicular, paratenial, and ventromedial nuclei was found in patients with iCD (P < 0.05, false discovery rate corrected). However, no statistically significant correlations were observed between altered thalamic nuclei volumes and clinical characteristics in iCD group. CONCLUSION: This study highlights the neurobiological mechanisms of iCD related to thalamic volume changes.


Assuntos
Imageamento por Ressonância Magnética , Tálamo , Torcicolo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Torcicolo/diagnóstico por imagem , Torcicolo/patologia , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto , Idoso , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia
11.
Hum Brain Mapp ; 45(7): e26705, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716698

RESUMO

The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.


Assuntos
Canto , Substância Branca , Humanos , Adulto , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Adulto Jovem , Canto/fisiologia , Idoso de 80 Anos ou mais , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Substância Branca/anatomia & histologia , Envelhecimento/fisiologia , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão
12.
Neurobiol Dis ; 197: 106539, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789058

RESUMO

BACKGROUND: Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. METHODS: We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). FINDINGS: In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: -0.37, p = 2*10-46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10-4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM âˆ¼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. INTERPRETATION: Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.


Assuntos
Demência , Substância Cinzenta , Ferro , Doença de Parkinson , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos de Coortes , Demência/genética , Demência/patologia , Demência/diagnóstico por imagem , Estudo de Associação Genômica Ampla , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/diagnóstico por imagem , Biobanco do Reino Unido , Reino Unido/epidemiologia
13.
Parkinsonism Relat Disord ; 124: 106985, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718478

RESUMO

BACKGROUND: Essential tremor (ET) and dystonic tremor (DT) are the two most common tremor disorders, and misdiagnoses are very common due to similar tremor symptoms. In this study, we explore the structural network mechanisms of ET and DT using brain grey matter (GM) morphological networks and combine those with machine learning models. METHODS: 3D-T1 structural images of 75 ET patients, 71 DT patients, and 79 healthy controls (HCs) were acquired. We used voxel-based morphometry to obtain GM images and constructed GM morphological networks based on the Kullback-Leibler divergence-based similarity (KLS) method. We used the GM volumes, morphological relations, and global topological properties of GM-KLS morphological networks as input features. We employed three classifiers to perform the classification tasks. Moreover, we conducted correlation analysis between discriminative features and clinical characteristics. RESULTS: 16 morphological relations features and 1 global topological metric were identified as the discriminative features, and mainly involved the cerebello-thalamo-cortical circuits and the basal ganglia area. The Random Forest (RF) classifier achieved the best classification performance in the three-classification task, achieving a mean accuracy (mACC) of 78.7%, and was subsequently used for binary classification tasks. Specifically, the RF classifier demonstrated strong classification performance in distinguishing ET vs. HCs, ET vs. DT, and DT vs. HCs, with mACCs of 83.0 %, 95.2 %, and 89.3 %, respectively. Correlation analysis demonstrated that four discriminative features were significantly associated with the clinical characteristics. CONCLUSION: This study offers new insights into the structural network mechanisms of ET and DT. It demonstrates the effectiveness of combining GM-KLS morphological networks with machine learning models in distinguishing between ET, DT, and HCs.


Assuntos
Tremor Essencial , Substância Cinzenta , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/patologia , Distúrbios Distônicos/diagnóstico , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Tremor/diagnóstico por imagem , Tremor/diagnóstico , Tremor/patologia , Adulto
14.
Brain Res ; 1837: 148986, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714227

RESUMO

The major depressive disorder (MDD) is a common and severe mental disorder. To identify a reliable biomarker for MDD is important for early diagnosis and prevention. Given easy access and high reproducibility, the structural magnetic resonance imaging (sMRI) is an ideal method to identify the biomarker for depression. In this study, sMRI data of first episode, treatment-naïve 66 MDD patients and 54 sex-, age-, and education-matched healthy controls (HC) were used to identify the differences in gray matter volume (GMV), group-level, individual-level covariance connections. Finally, the abnormal GMV and individual covariance connections were applied to classify MDD from HC. MDD patients showed higher GMV in middle occipital gyrus (MOG) and precuneus (PCun), and higher structural covariance connections between MOG and PCun. In addition, the Allen Human Brain Atlas (AHBA) was applied and revealed the genetic basis for the changes of gray matter volume. Importantly, we reported that GMV in MOG, PCun and structural covariance connectivity between MOG and PCun are able to discriminate MDD from HC. Our results revealed structural underpinnings for MDD, which may contribute towards early discriminating for depression.


Assuntos
Biomarcadores , Transtorno Depressivo Maior , Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Adulto Jovem , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/diagnóstico por imagem , Tamanho do Órgão , Pessoa de Meia-Idade
15.
Schizophr Res ; 269: 123-129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772324

RESUMO

BACKGROUND: Persistent auditory verbal hallucinations (pAVHs) are a fundamental manifestation of schizophrenia (SCZ), yet the exact connection between pAVHs and brain structure remains contentious. This study aims to explore the potential correlation between pAVHs and alterations in grey matter volume (GMV) within specific brain regions among individuals diagnosed with SCZ. METHODS: 76 SCZ patients with pAVHs (pAVH group), 57 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) were investigated using 3 T magnetic resonance imaging. The P3 hallucination item of the Positive and Negative Syndrome Scale was used to assess the severity of pAVHs. Voxel-based morphometry was used to analyze the GMV profile between the three groups. RESULTS: Compared to the non-AVH and HC groups, the pAVH group exhibited extensive reduction in GMV within the frontotemporal cortex. Conversely, no significant difference in GMV was observed between the non-AVH and HC groups. The severity of pAVHs showed a negative correlation with GMV in several regions, including the right fusiform, right inferior temporal, right medial orbitofrontal, right superior frontal, and right temporal pole (p = 0.0036, Bonferroni correction). Stepwise linear regression analysis revealed that GMV in the right temporal pole (ß = -0.29, p = 0.001) and right fusiform (ß = -0.21, p = 0.01) were significantly associated with the severity of pAVHs. CONCLUSIONS: Widespread reduction in GMV is observed within the frontotemporal cortex, particularly involving the right temporal pole and right fusiform, which potentially contribute to the pathogenesis of pAVHs in individuals with chronic SCZ.


Assuntos
Substância Cinzenta , Alucinações , Imageamento por Ressonância Magnética , Esquizofrenia , Lobo Temporal , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Alucinações/patologia , Alucinações/fisiopatologia , Masculino , Feminino , Adulto , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Doença Crônica , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Pessoa de Meia-Idade , Adulto Jovem , China , População do Leste Asiático
16.
Brain Commun ; 6(3): fcae122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712322

RESUMO

The concept of brain reserve capacity has emerged in stroke recovery research in recent years. Imaging-based biomarkers of brain health have helped to better understand outcome variability in clinical cohorts. Still, outcome inferences are far from being satisfactory, particularly in patients with severe initial deficits. Neurorehabilitation after stroke is a complex process, comprising adaption and learning processes, which, on their part, are critically influenced by motivational and reward-related cognitive processes. Amongst others, dopaminergic neurotransmission is a key contributor to these mechanisms. The question arises, whether the amount of structural reserve capacity in the dopaminergic system might inform about outcome variability after severe stroke. For this purpose, this study analysed imaging and clinical data of 42 severely impaired acute stroke patients. Brain volumetry was performed within the first 2 weeks after the event using the Computational Anatomy Toolbox CAT12, grey matter volume estimates were collected for seven key areas of the human dopaminergic system along the mesocortical, mesolimbic and nigrostriatal pathways. Ordinal logistic regression models related regional volumes to the functional outcome, operationalized by the modified Rankin Scale, obtained 3-6 months after stroke. Models were adjusted for age, lesion volume and initial impairment. The main finding was that larger volumes of the amygdala and the nucleus accumbens at baseline were positively associated with a more favourable outcome. These data suggest a link between the structural state of mesolimbic key areas contributing to motor learning, motivational and reward-related brain networks and potentially the success of neurorehabilitation. They might also provide novel evidence to reconsider dopaminergic interventions particularly in severely impaired stroke patients to enhance recovery after stroke.

17.
medRxiv ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38562879

RESUMO

Background: Adolescents with disrupted rest-activity rhythms (RAR) including shorter sleep duration, later sleep timing and low physical activity levels have higher risk for mental and behavioral problems. However, it remains unclear whether the same associations can be observed for within-subject changes in RAR. Methods: Our longitudinal investigation on RAR used Fitbit data from the Adolescent Brain Cognitive Development (ABCD) Study at the 2-year (FL2: aged 10-13 years) and 4-year follow-up (FL4: aged 13-16 years). 963 youths had good-quality Fitbit data at both time points. In this study we examined changes in RAR from FL2 to FL4, their environmental and demographic contributors as well as brain and behavioral correlates. Results: From FL2 to FL4, adolescents showed decreases in sleep duration and physical activity as well as delayed sleep timing (Cohen's d .44-.75). The contributions of environmental and demographic factors to RAR changes were greatest to sleep timing (explained 10% variance) and least to sleep duration (explained 1% variance). Delays in sleep timing had stronger correlations with behavioral problems including greater impulsivity and poor academic performance than reductions in sleep duration or physical activity. Additionally, the various brain measures differed in their sensitivity to RAR changes. Reductions in sleep duration were associated with decreased brain functional connectivity between subcortical regions and sensorimotor and cingulo-opercular networks and with enhanced functional connectivity between sensorimotor, visual and auditory networks. Delays in sleep timing were mainly associated with grey matter changes in subcortical regions. Conclusions: The current findings corroborate the role of sleep and physical activity in adolescent's brain neurodevelopment and behavior problems. RAR might serve as biomarkers for monitoring behavioral problems in adolescents and to serve as potential therapeutic targets for mental disorders.

18.
Cerebellum ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639874

RESUMO

The present study aims to investigate the relationship between cerebellar volumes and cognitive reserve in individuals with Mild Cognitive Impairment (MCI). A description of proxies of cerebellar cognitive reserve in terms of different volumes across lobules is also provided. 36 individuals with MCI underwent neuropsychological (MoCA, MMSE, Clock test, CRIq) assessment and neuroimaging acquisition with magnetic resonance imaging at 3 T. Simple linear correlations were applied between cerebellar volumes and cognitive measures. Multiple linear regression models were then used to estimate standardized regression coefficients and 95% confidence intervals. Simple linear correlations between cerebellar lobules volumes and cognitive features highlighted a significant association between CRIq_Working activity and specific motor cerebellar volumes: Left_V (ρ = 0.40, p = 0.02), Right_V (r = 0.42, p = 0.002), Vermis_VIIIb (ρ = 0.47, p = 0.003), Left_X (ρ = -0.46, p = 0.002) and Vermis_X (r = 0.35, p = 0.03). Furthermore, CRIq_Working activity scores correlated with certain cerebellar lobules implicated in cognition: Left_Crus_II, Vermis VIIb, Left_IX. MMSE was associated only with the Right_VIIB volume (r = 0.35, p = 0.02), while Clock Drawing Test scores correlated with both Left_Crus_I and Right_Crus_I (r = -0.42 and r = 0.42, p = 0.02, respectively). This study suggests that a higher cognitive reserve is associated with specific cerebellar lobule volumes and that Working activity may play a predominant role in this association. These findings contribute to the understanding of the relationship between cerebellar volumes and cognitive reserve, highlighting the potential modulatory role of Working activity on cerebellum response to cognitive decline.

19.
Front Aging Neurosci ; 16: 1367563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590757

RESUMO

Memory-related impairments in type 2 diabetes may be mediated by insulin resistance and hyperglycemia. Previous cross-sectional studies have controversially suggested a relationship between metabolic control and a decrease in hippocampal volumes, but only longitudinal studies can test this hypothesis directly. We performed a longitudinal morphometric study to provide a direct test of a possible role of higher levels of glycated hemoglobin with long term brain structural integrity in key regions of the memory system - hippocampus, parahippocampal gyrus and fusiform gyrus. Grey matter volume was measured at two different times - baseline and after ~7 years. We found an association between higher initial levels of HbA1C and grey matter volume loss in all three core memory regions, even in the absence of mild cognitive impairment. Importantly, these neural effects persisted in spite of the fact that patients had significantly improved their glycemic control. This suggests that early high levels of HbA1c might be irreversibly associated with subsequent long-term atrophy in the medial temporal cortex and that early intensive management is critical.

20.
Indian J Pediatr ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573449

RESUMO

OBJECTIVES: To examine the relationship between sleep and subcortical brain structures using a shape analysis approach. METHODS: A total of 98 children with overweight/obesity (10.0 ± 1.1 y, 59 boys) were included in the cross-sectional analyses. Sleep behaviors (i.e., wake time, sleep onset time, total time in bed, total sleep time, sleep efficiency, and wakening after sleep onset) were estimated with wrist-worn accelerometers. The shape of the subcortical brain structures was acquired by magnetic resonance imaging. A partial correlation permutation approach was used to examine the relationship between sleep behaviors and brain shapes. RESULTS: Among all the sleep variables studied, only total time in bed was significantly related to pallidum and putamen structure, such that those children who spent more time in bed had greater expansions in the right and left pallidum (211-751 voxels, all p's <0.04) and right putamen (1783 voxels, p = 0.03). CONCLUSIONS: These findings suggest that more time in bed was related to expansions on two subcortical brain regions in children with overweight/obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA