Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biomol Struct Dyn ; 38(17): 5253-5265, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31920158

RESUMO

Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.


Assuntos
Actinas , Lisofosfolipídeos , Citoesqueleto/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 116(43): 21563-21572, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31515449

RESUMO

The p75 neurotrophin (NT) receptor (p75NTR) plays a crucial role in balancing survival-versus-death decisions in the nervous system. Yet, despite 2 decades of structural and biochemical studies, a comprehensive, accepted model for p75NTR activation by NT ligands is still missing. Here, we present a single-molecule study of membrane p75NTR in living cells, demonstrating that the vast majority of receptors are monomers before and after NT activation. Interestingly, the stoichiometry and diffusion properties of the wild-type (wt) p75NTR are almost identical to those of a receptor mutant lacking residues previously believed to induce oligomerization. The wt p75NTR and mutated (mut) p75NTR differ in their partitioning in cholesterol-rich membrane regions upon nerve growth factor (NGF) stimulation: We argue that this is the origin of the ability of wt p75NTR , but not of mut p75NTR, to mediate immature NT (proNT)-induced apoptosis. Both p75NTR forms support proNT-induced growth cone retraction: We show that receptor surface accumulation is the driving force for cone collapse. Overall, our data unveil the multifaceted activity of the p75NTR monomer and let us provide a coherent interpretative frame of existing conflicting data in the literature.


Assuntos
Apoptose/fisiologia , Cones de Crescimento/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Sistema Nervoso/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso/genética , Receptor de Fator de Crescimento Neural/genética
3.
Biol Open ; 8(7)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208997

RESUMO

BMP7 evokes acute chemotropic PI3K-dependent responses, such as growth cone collapse and monocyte chemotaxis, as well as classical Smad-dependent gene transcription. That these divergent responses can be activated in the same cell raises the question of how the BMP-dependent signaling apparatus is manipulated to produce chemotropic and transcriptional signals. RNA interference and site-directed mutagenesis were used to explore functional and structural BMP receptor requirements for BMP7-evoked chemotropic activity. We show that specific type II BMP receptor subunits, ActRIIA and BMPR2, are required for BMP7-induced growth cone collapse in developing spinal neurons and for chemotaxis of monocytes. Reintroduction of wild-type ActRIIA into monocytic cells lacking endogenous ActRIIA restores BMP7-evoked chemotaxis, whereas expression of an ActRIIA K76A receptor variant fails to rescue. BMP7-evoked Smad-dependent signaling is unaffected by either ActRIIA knockdown or expression of the ActRIIA K76A variant. In contrast, BMP7-evoked PI3K-dependent signaling is significantly disturbed in the presence of ActRIIA K76A. These results support a model for selective engagement of chemotropic BMPs with type II BMP receptors, through specific residues, that results in strict regulation of PI3K-dependent signal transduction.This article has an associated First Person interview with the first author of the paper.

4.
Front Pharmacol ; 8: 805, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184495

RESUMO

Memory impairments in Alzheimer's disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid ß (Aß) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aß plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aß. Additionally, it prevented Aß-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aß-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons.

5.
Methods Mol Biol ; 1493: 223-235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27787854

RESUMO

Semaphorin guidance molecules act through different receptor complexes to activate multiple signaling cascades leading to changes in axonal growth cone behavior and morphology. We describe here approaches for studying the effect of individual Semaphorins on isolated forebrain neurons from mouse embryos and dissecting downstream signaling pathways. These approaches include the production of recombinant Semaphorin ligands, the culture of dissociated primary neurons, the manipulation of gene expression by electroporation in primary neurons, and functional assays to assess axon outgrowth and growth cone collapse.


Assuntos
Neurônios/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Animais , Axônios/metabolismo , Células Cultivadas , Eletroporação , Expressão Gênica , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Camundongos , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Transfecção
6.
J Biol Chem ; 291(51): 26262-26272, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27803162

RESUMO

Establishment of a proper balance of excitatory and inhibitory connectivity is achieved during development of cortical networks and adjusted through synaptic plasticity. The neural cell adhesion molecule (NCAM) and the receptor tyrosine kinase EphA3 regulate the perisomatic synapse density of inhibitory GABAergic interneurons in the mouse frontal cortex through ephrin-A5-induced growth cone collapse. In this study, it was demonstrated that binding of NCAM and EphA3 occurred between the NCAM Ig2 domain and EphA3 cysteine-rich domain (CRD). The binding interface was further refined through molecular modeling and mutagenesis and shown to be comprised of complementary charged residues in the NCAM Ig2 domain (Arg-156 and Lys-162) and the EphA3 CRD (Glu-248 and Glu-264). Ephrin-A5 induced co-clustering of surface-bound NCAM and EphA3 in GABAergic cortical interneurons in culture. Receptor clustering was impaired by a charge reversal mutation that disrupted NCAM/EphA3 association, emphasizing the importance of the NCAM/EphA3 binding interface for cluster formation. NCAM enhanced ephrin-A5-induced EphA3 autophosphorylation and activation of RhoA GTPase, indicating a role for NCAM in activating EphA3 signaling through clustering. NCAM-mediated clustering of EphA3 was essential for ephrin-A5-induced growth cone collapse in cortical GABAergic interneurons, and RhoA and a principal effector, Rho-associated protein kinase, mediated the collapse response. This study delineates a mechanism in which NCAM promotes ephrin-A5-dependent clustering of EphA3 through interaction of the NCAM Ig2 domain and the EphA3 CRD, stimulating EphA3 autophosphorylation and RhoA signaling necessary for growth cone repulsion in GABAergic interneurons in vitro, which may extend to remodeling of axonal terminals of interneurons in vivo.


Assuntos
Neurônios GABAérgicos/metabolismo , Cones de Crescimento/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptor EphA3/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Efrina-A5/genética , Efrina-A5/metabolismo , Camundongos , Camundongos Mutantes , Moléculas de Adesão de Célula Nervosa/genética , Fosforilação/fisiologia , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP
7.
Neurobiol Aging ; 36(5): 1808-19, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25772059

RESUMO

Amyloid ß (Aß)-induced axonal degeneration is a major cause of Alzheimer's disease (AD) pathology. However, the critical target to prevent Aß-induced axonal degeneration remains unknown. Here, we analyzed growth cone collapse elicited by Aß, a putative early Aß-induced event in axons. Although no study has yet shown influence of Aß on the growth cone, we first visualized Aß-initiated growth cone collapse in cultured neurons. Furthermore, we determined that the collapse was triggered by clathrin-mediated endocytosis probably via Aß-Ca(2+) signaling. The inhibition of clathrin-mediated endocytosis prevented Aß-induced axonal loss both in vitro and in vivo and prevented memory impairment in an AD mouse model. Our results clarified the important role of clathrin-mediated endocytosis in Aß-induced collapse of growth cone that leads to axonal degeneration and memory impairment.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos adversos , Peptídeos beta-Amiloides/metabolismo , Axônios/metabolismo , Axônios/patologia , Endocitose/fisiologia , Degeneração Neural/etiologia , Animais , Sinalização do Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Clatrina/fisiologia , Modelos Animais de Doenças , Cones de Crescimento/metabolismo , Cones de Crescimento/patologia , Transtornos da Memória/etiologia , Camundongos Endogâmicos , Neurônios
8.
J Neurochem ; 128(2): 267-79, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117969

RESUMO

EphrinA/EphA-dependent axon repulsion is crucial for synaptic targeting in developing neurons but downstream molecular mechanisms remain obscure. Here, it is shown that ephrinA5/EphA3 triggers proteolysis of the neural cell adhesion molecule (NCAM) by the metalloprotease a disintegrin and metalloprotease (ADAM)10 to promote growth cone collapse in neurons from mouse neocortex. EphrinA5 induced ADAM10 activity to promote ectodomain shedding of polysialic acid-NCAM in cortical neuron cultures, releasing a ~ 250 kDa soluble fragment consisting of most of its extracellular region. NCAM shedding was dependent on ADAM10 and EphA3 kinase activity as shown in HEK293T cells transfected with dominant negative ADAM10 and kinase-inactive EphA3 (K653R) mutants. Purified ADAM10 cleaved NCAM at a sequence within the E-F loop of the second fibronectin type III domain (Leu(671) -Lys(672) /Ser(673) -Leu(674) ) identified by mass spectrometry. Mutations of NCAM within the ADAM10 cleavage sequence prevented EphA3-induced shedding of NCAM in HEK293T cells. EphrinA5-induced growth cone collapse was dependent on ADAM10 activity, was inhibited in cortical cultures from NCAM null mice, and was rescued by WT but not ADAM10 cleavage site mutants of NCAM. Regulated proteolysis of NCAM through the ephrin5/EphA3/ADAM10 mechanism likely impacts synapse development, and may lead to excess NCAM shedding when disrupted, as implicated in neurodevelopmental disorders such as schizophrenia. PSA-NCAM and ephrinA/EphA3 coordinately regulate inhibitory synapse development. Here, we have found that ephrinA5 stimulates EphA3 kinase and ADAM10 activity to promote PSA-NCAM cleavage at a site in its second FNIII repeat, which regulates ephrinA5-induced growth cone collapse in GABAergic and non-GABAergic neurons. These findings identify a new regulatory mechanism which may contribute to inhibitory connectivity.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Cones de Crescimento/fisiologia , Proteínas de Membrana/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptor EphA3/metabolismo , Receptor EphA5/metabolismo , Proteína ADAM10 , Animais , Células Cultivadas , Córtex Cerebral/citologia , Fibronectinas/metabolismo , Cones de Crescimento/ultraestrutura , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Moléculas de Adesão de Célula Nervosa/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA