Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sci Total Environ ; 921: 171108, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395159

RESUMO

Accumulation of metformin and its biotransformation product "guanylurea" are posing an increasing concern due to their low biodegradability under natural attenuated conditions. Therefore, in this study, we reviewed the unavoidable function of metformin in human body and the route of its release in different water ecosystems. In addition, metformin and its biotransformation product guanylurea in aquatic environments caused certain toxic effects on aquatic organisms which include neurotoxicity, endocrine disruption, production of ROS, and acetylcholinesterase disturbance in aquatic organisms. Moreover, microorganisms are the first to expose and deal with the release of these contaminants, therefore, the mechanisms of biodegradation pathways of metformin and guanylurea under aerobic and anaerobic environments were studied. It has been reported that certain microbes, such as Aminobacter sp. and Pseudomonas putida can carry potential enzymatic pathways to degrade the dead-end product "guanylurea", and hence guanylurea is no longer the dead-end product of metformin. However, these microbes can easily be affected by certain geochemical cycles, therefore, we proposed certain strategies that can be helpful in the enhanced biodegradation of metformin and its biotransformation product guanylurea. A better understanding of the biodegradation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of the emerging contaminants of concern, metformin and guanylurea in the near future.


Assuntos
Guanidina/análogos & derivados , Metformina , Ureia/análogos & derivados , Poluentes Químicos da Água , Humanos , Metformina/química , Ecossistema , Acetilcolinesterase/metabolismo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Biotransformação
2.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138964

RESUMO

To obtain biologically active species, a series of decavanadates (Hpbg)4[H2V10O28]·6H2O (1) (Htbg)4[H2V10O28]·6H2O; (2) (Hgnd)2(Hgnu)4[V10O28]; (3) (Hgnu)6[V10O28]·2H2O; and (4) (pbg = 1-phenyl biguanide, tbg = 1-(o-tolyl)biguanide, gnd = guanidine, and gnu = guanylurea) were synthesized and characterized by several spectroscopic techniques (IR, UV-Vis, and EPR) as well as by single crystal X-ray diffraction. Compound (1) crystallizes in space group P-1 while (3) and (4) adopt the same centrosymmetric space group P21/n. The unusual signal identified by EPR spectroscopy was assigned to a charge-transfer π(O)→d(V) process. Both stability in solution and reactivity towards reactive oxygen species (O2- and OH·) were screened through EPR signal modification. All compounds inhibited the development of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis bacterial strains in a planktonic state at a micromolar level, the most active being compound (3). However, the experiments conducted at a minimal inhibitory concentration (MIC) indicated that the compounds do not disrupt the biofilm produced by these bacterial strains. The cytotoxicity assayed against A375 human melanoma cells and BJ human fibroblasts by testing the viability, lactate dehydrogenase, and nitric oxide levels indicated compound (1) as the most active in tumor cells.


Assuntos
Anti-Infecciosos , Vanadatos , Humanos , Vanadatos/química , Anti-Infecciosos/farmacologia , Bactérias , Análise Espectral , Guanidinas/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
3.
Sci Total Environ ; 892: 164747, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37295518

RESUMO

The emerging contaminants metformin (MET) and its degradation product guanylurea (GUA) are released into aquatic environments through wastewater treatment plants (WWTPs). Thus, the environmental risks of wastewater with more treatments may be underestimated due to the lower effect concentration of GUA and the higher detected concentration of GUA in treated wastewater in comparison with MET. In this study, we aimed to investigate the combined toxicity mode of MET and GUA to Brachionus calyciflorus by simulating the degrees of wastewater treatments through adjustments to the ratio of MET and GUA in medium. The results showed that the 24 h-LC50 of MET, GUA, their mixtures of equal concentrations and the mixtures of equal toxic units to B. calyciflorus were 907.44, 544.53, 1185.82 and 940.52 mg/L, respectively, demonstrating GUA is significantly more toxic than MET. An antagonistic interaction between MET and GUA was found in mixture toxicity assessments. Compared with the control, MET treatments only significantly affected the intrinsic rate of population increase of rotifers (rm), while all life-table parameters were significantly affected by GUA. In addition, at medium and high concentrations (120 and 600 µmol/L), the net reproductive rate (R0) and rm of rotifers under GUA were significantly lower than those under MET. Notably, increased proportion of GUA relative to MET in binary-mixture treatments resulted in increased survival risk and reduced fecundity of rotifers. Moreover, the responses of population dynamics to exposures of MET and GUA were mainly attributed to the reproduction of rotifer, indicating that an improved wastewater treatment process is necessary to protect aquatic ecosystems. The study highlights the importance of considering the combined toxicity of emerging contaminants and degradation product in environmental risk assessment, especially the unintentional transformations of parent compound in treated wastewater.


Assuntos
Metformina , Rotíferos , Poluentes Químicos da Água , Animais , Metformina/toxicidade , Águas Residuárias , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco , Preparações Farmacêuticas
4.
Environ Toxicol Chem ; 42(8): 1709-1720, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37283207

RESUMO

Metformin, used to treat Type 2 diabetes, is the active ingredient of one of the most prescribed drugs in the world, with over 120 million yearly prescriptions globally. In wastewater-treatment plants (WWTPs), metformin can undergo microbial transformation to form the product guanylurea, which could have toxicological relevance in the environment. Surface water samples from 2018 to 2020 and sediment samples from 2020 were collected from six mixed-use watersheds in Quebec and Ontario, Canada, and analyzed to determine the metformin and guanylurea concentrations at each site. Metformin and guanylurea were present above their limits of quantification in 51.0% and 50.7% of all water samples and in 64% and 21% of all sediment samples, respectively. In surface water, guanylurea was often present at higher concentrations than metformin, while the inverse was true in sediment, with metformin frequently detected at higher concentrations than guanylurea. In addition, at all sites influenced solely by agriculture, concentrations of metformin and guanylurea were <1 µg/L in surface water, suggesting that agriculture is not a significant source of these compounds in the investigated watersheds. These data suggest that WWTPs and potentially septic system leaks are the most likely sources of the compounds in the environment. Guanylurea was detected at many of these sites above environmental concentrations of concern, where critical processes in fish may be affected. Due to the scarcity of available ecotoxicological data and the prominence of guanylurea across all sample sites, there is a need to perform more toxicological investigations of this transformation product and revisit regulations. The present study will help provide toxicologists with environmentally relevant concentration ranges in Canada. Environ Toxicol Chem 2023;42:1709-1720. © 2023 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Poluentes Químicos da Água , Animais , Metformina/química , Hipoglicemiantes/análise , Quebeque , Água , Ontário , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 886: 163921, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164071

RESUMO

Persistent and mobile (PM) substances are able to spread quickly in the water cycle and were thus identified as potentially problematic for the environment and water quality. If also toxic (PMT) or very persistent and very mobile (vPvM) their regulation under REACH as substances of very high concern is foreseen. Yet, knowledge on the effectiveness of advanced wastewater treatment in removing PM-substances from WWTP effluents is limited to few rather well-known chemicals. The occurrence and behavior of 111 suspected and known PM-substances was investigated in two wastewater treatment plants employing either powdered activated carbon (PAC, full-scale) or ozonation with subsequent sand/anthracite filtration (pilot-scale) and an additional granular activated carbon (GAC) filtration was investigated. 72 of the 111 PM-substances analyzed were detected at least once in the secondary effluent of either wastewater treatment plant, resulting in total concentrations of 104 µg/L and 40 µg/L, respectively. While PAC removed 32 % of PM-substances well, the total PM burden in the effluent was only reduced from 103 µg/L to 87 µg/L. Ozonation and the subsequent sand/anthracite filtration was able to reduce the PM burden in wastewater from 40 µg/L to 19 µg/L, showing a higher removal efficacy than PAC in this study. The additional GAC filtration further reduced the total PM-concentration to 13 µg/L. Among the investigated PM-chemicals detected were constituents of ionic liquids: The anion hexafluorophosphate was one of few chemicals that was detected in effluent concentrations >1 µg/L and could not be removed by the processes studied, showing that for some chemicals preventive actions may be required.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Areia , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Filtração , Carvão Mineral , Ozônio/química , Eliminação de Resíduos Líquidos
6.
Environ Sci Technol ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624085

RESUMO

Metformin is becoming one of the most common emerging contaminants in surface and wastewater. Its biodegradation generally leads to the accumulation of guanylurea in the environment, but the microorganisms and mechanisms involved in this process remain elusive. Here, Aminobacter sp. strain NyZ550 was isolated and characterized for its ability to grow on metformin as a sole source of carbon, nitrogen, and energy under oxic conditions. This isolate also assimilated a variety of nitrogenous compounds, including dimethylamine. Hydrolysis of metformin by strain NyZ550 was accompanied by a stoichiometric accumulation of guanylurea as a dead-end product. Based on ion chromatography, gas chromatography-mass spectrometry, and comparative transcriptomic analyses, dimethylamine was identified as an additional hydrolytic product supporting the growth of the strain. Notably, a microbial mixture consisting of strain NyZ550 and an engineered Pseudomonas putida PaW340 expressing a guanylurea hydrolase was constructed for complete elimination of metformin and its persistent product guanylurea. Overall, our results not only provide new insights into the metformin biodegradation pathway, leading to the commonly observed accumulation of guanylurea in the environment, but also open doors for the complete degradation of the new pollutant metformin.

7.
Microorganisms ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422372

RESUMO

Metformin is one of the most prescribed antidiabetic agents worldwide and is also considered for other therapeutic applications including cancer and endocrine disorders. It is largely unmetabolized by human enzymes and its presence in the environment has raised concern, with reported toxic effects on aquatic life and potentially also on humans. We report on the isolation and characterisation of strain MD1, an aerobic methylotrophic bacterium growing with metformin as its sole carbon, nitrogen and energy source. Strain MD1 degrades metformin into dimethylamine used for growth, and guanylurea as a side-product. Sequence analysis of its fully assembled genome showed its affiliation to Aminobacter niigataensis. Differential proteomics and transcriptomics, as well as mini-transposon mutagenesis of the strain, point to genes and proteins essential for growth with metformin and potentially associated with hydrolytic C-N cleavage of metformin or with cellular transport of metformin and guanylurea. The obtained results suggest the recent evolution of the growth-supporting capacity of strain MD1 to degrade metformin. Our results identify candidate proteins of the enzymatic system for metformin transformation in strain MD1 and will inform future research on the fate of metformin and its degradation products in the environment and in humans.

8.
Sci Total Environ ; 819: 153095, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038519

RESUMO

Recent studies have shown guanylurea (GUA) alters the growth and development of fish, induces oxidative stress, and disrupts the levels and expression of several genes, metabolites, and proteins related to the overall fitness of fish. Nonetheless, up to date, no study has assessed the potential neurotoxic effects that GUA may induce in non-target organisms. To fill the current knowledge gaps about the effects of this metabolite in the central nervous system of fish, we aimed to determine whether or not environmentally relevant concentrations of this metabolite may disrupt the behavior, redox status, AChE activity in Danio rerio adults. In addition, we also meant to assess if 25, 50, and 200 µg/L of GUA can alter the expression of several antioxidant defenses-, apoptosis-, AMPK pathway-, and neuronal communication-related genes in the brain of fish exposed for four months to GUA. Our results demonstrated that chronic exposure to GUA altered the swimming behavior of D. rerio, as fish remained more time frozen and traveled less distance in the tank compared to the control group. Moreover, this metabolite significantly increased the levels of oxidative damage biomarkers and inhibited the activity of acetylcholinesterase of fish in a concentration-dependent manner. Concerning gene expression, environmentally relevant concentrations of GUA downregulated the expression GRID2IP, PCDH17, and PCDH19, but upregulated Nrf1, Nrf2, p53, BAX, CASP3, PRKAA1, PRKAA2, and APP in fish after four months of exposure. Collectively, we can conclude that GUA may alter the homeostasis of several essential brain biomarkers, generating anxiety-like behavior in fish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Acetilcolinesterase/metabolismo , Animais , Guanidina/análogos & derivados , Guanidina/metabolismo , Estresse Oxidativo , Ureia/análogos & derivados , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
9.
Front Bioeng Biotechnol ; 10: 1086261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588930

RESUMO

Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonas mendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today.

10.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741630

RESUMO

The widely prescribed pharmaceutical metformin and its main metabolite, guanylurea, are currently two of the most common contaminants in surface and wastewater. Guanylurea often accumulates and is poorly, if at all, biodegraded in wastewater treatment plants. This study describes Pseudomonas mendocina strain GU, isolated from a municipal wastewater treatment plant, using guanylurea as its sole nitrogen source. The genome was sequenced with 36-fold coverage and mined to identify guanylurea degradation genes. The gene encoding the enzyme initiating guanylurea metabolism was expressed, and the enzyme was purified and characterized. Guanylurea hydrolase, a newly described enzyme, was shown to transform guanylurea to one equivalent (each) of ammonia and guanidine. Guanidine also supports growth as a sole nitrogen source. Cell yields from growth on limiting concentrations of guanylurea revealed that metabolism releases all four nitrogen atoms. Genes encoding complete metabolic transformation were identified bioinformatically, defining the pathway as follows: guanylurea to guanidine to carboxyguanidine to allophanate to ammonia and carbon dioxide. The first enzyme, guanylurea hydrolase, is a member of the isochorismatase-like hydrolase protein family, which includes biuret hydrolase and triuret hydrolase. Although homologs, the three enzymes show distinct substrate specificities. Pairwise sequence comparisons and the use of sequence similarity networks allowed fine structure discrimination between the three homologous enzymes and provided insights into the evolutionary origins of guanylurea hydrolase.IMPORTANCE Metformin is a pharmaceutical most prescribed for type 2 diabetes and is now being examined for potential benefits to COVID-19 patients. People taking the drug pass it largely unchanged, and it subsequently enters wastewater treatment plants. Metformin has been known to be metabolized to guanylurea. The levels of guanylurea often exceed that of metformin, leading to the former being considered a "dead-end" metabolite. Metformin and guanylurea are water pollutants of emerging concern, as they persist to reach nontarget aquatic life and humans, the latter if it remains in treated water. The present study has identified a Pseudomonas mendocina strain that completely degrades guanylurea. The genome was sequenced, and the genes involved in guanylurea metabolism were identified in three widely separated genomic regions. This knowledge advances the idea that guanylurea is not a dead-end product and will allow for bioinformatic identification of the relevant genes in wastewater treatment plant microbiomes and other environments subjected to metagenomic sequencing.


Assuntos
Proteínas de Bactérias/metabolismo , Guanidina/análogos & derivados , Hidrolases/metabolismo , Redes e Vias Metabólicas , Metformina/metabolismo , Ureia/análogos & derivados , Poluentes Químicos da Água/metabolismo , Amônia/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Biomineralização , Genoma Bacteriano/genética , Guanidina/metabolismo , Hidrolases/genética , Família Multigênica , Pseudomonas mendocina/genética , Pseudomonas mendocina/isolamento & purificação , Pseudomonas mendocina/metabolismo , Especificidade por Substrato , Ureia/metabolismo , Águas Residuárias/microbiologia
11.
Aquat Toxicol ; 232: 105761, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33550114

RESUMO

Metformin is a widely prescribed pharmaceutical used in the treatment of numerous human health disorders, including Type 2 Diabetes, and as a results of its widespread use, metformin is thought to be the most prevalent pharmaceutical in the aquatic environment by weight. The removal of metformin during the water treatment process is directly related to the formation of its primary degradation product, guanylurea, generally present at higher concentrations in surface waters relative to metformin. Growth effects observed in 28-day early life stage (ELS) Japanese medaka exposed to guanylurea were found to be similar to growth effects in 28-day ELS medaka exposed to metformin; however, effect concentrations were orders of magnitude below those of metformin. The present study uses a multi-omics approach to investigate potential mechanisms by which low-level, 1 ng · L-1 nominal, guanylurea exposure may lead to altered growth in 28-day post hatch medaka via shotgun metabolomics and proteomics and qPCR. Specifically, analyses show 6 altered metabolites, 66 altered proteins and 2 altered genes. Collectively, metabolomics, proteomics, and gene expression data (using qPCR) indicate that developmental exposure to guanylurea exposure alters a number of important pathways related to the overall health of ELS fish, including biomolecule metabolism, cellular energetics, nervous system function/development, cellular communication and structure, and detoxification of reactive oxygen species, among others. To our knowledge, this is the first study to both report the molecular level effects of guanylurea on non-target aquatic organisms, and to relate molecular-level changes to whole organism effects.

12.
Ecotoxicol Environ Saf ; 182: 109414, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31301597

RESUMO

Metformin (MET) is a pharmaceutical product mostly biotransformed in the environment to a transformation product, guanylurea (GUA). In ready biodegradability tests (RBTs), however, contrasting results have been observed for metformin. The objective of this study was to measure the biodegradation of MET and GUA in RBTs, using activated sludge from the local wastewater treatment plant, either directly or after pre-exposure to MET, in a chemostat. The activated sludge community was cultivated in chemostats, in presence or absence of MET, for a period of nine months, and was used in RBT after one, three and nine months. The results of this study showed that the original activated sludge was able to completely remove MET (15 mg/l) and the newly produced GUA (50% of C0MET) under the test conditions. Inoculation of the chemostat led to a rapid shift in the community composition and abundance. The community exposed to 1.5 mg/l of MET was still able to completely consume MET in the RBTs after one-month exposure, but three- and nine-months exposure resulted in reduced removal of MET in the RBTs. The ability of the activated sludge community to degrade MET and GUA is the result of environmental exposure to these chemicals as well as of conditions that could not be reproduced in the laboratory system. A MET-degrading strain belonging to the genus Aminobacter has been isolated from the chemostat community. This strain was able to completely consume 15 mg/l of MET within three days in the test. However, community analysis revealed that the fluctuation in relative abundance of this genus (<1%) could not be correlated to the fluctuation in biodegradation capacity of the chemostat community.


Assuntos
Biodegradação Ambiental , Hipoglicemiantes/metabolismo , Metformina/metabolismo , Microbiota , Biotransformação , Esgotos/química , Águas Residuárias
13.
Environ Toxicol Chem ; 38(5): 1023-1028, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30835871

RESUMO

Metformin is currently thought to be the highest drug by weight released into the aquatic environment, as a direct result of its widespread use in the treatment of a number of human health disorders. The removal of metformin from wastewaters is directly related to the formation of guanylurea (metformin's only known persistent degradation product), which is generally present at higher concentrations in surface waters than the parent compound. With metformin use rising steadily, it is important to characterize the effects of guanylurea on nontarget aquatic organisms. We recently demonstrated the effects of developmental exposure to environmentally relevant concentrations of metformin on the growth of early life stage (ELS) medaka as well as effects on the body weight of adult male fish following full-life cycle exposures. In the present study, we describe similar effects of guanylurea exposure on these endpoints and life stages. Guanylurea led to effects on growth in a 28-d ELS assessment that were similar to those of metformin; however, these effects occurred at concentrations in the ng/L range compared with the µg/L range for metformin. A possible sex-dependent association with body weight changes was also observed in adults following a 165-d full-life cycle exposure to guanylurea alone or in a mixture with metformin. To our knowledge, the present is the first study to report the toxicity of guanylurea to nontarget aquatic organisms. Environ Toxicol Chem 2019;00:1-6. © 2019 SETAC.


Assuntos
Guanidinas/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Metformina/toxicidade , Oryzias/crescimento & desenvolvimento , Ureia/análogos & derivados , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Guanidinas/química , Masculino , Metformina/química , Oryzias/anatomia & histologia , Ureia/química , Ureia/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Environ Pollut ; 245: 735-745, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30500753

RESUMO

The degradation of metformin (MET) and guanylurea (GUA) fortified separately in freshly collected two top soils (0-10 cm) from New Zealand's pastoral region was studied under controlled laboratory conditions. Incubation studies were carried at 30 °C under aerobic conditions at 60% of maximum water holding capacity and at two (0.5 mg/kg and 5 mg/kg) nominal soil concentrations. Degradation profiles revealed a bi-phasic pattern of both the compounds with an initial rapid degradation followed by slow dissipation rate, resulting in poor fits by simple first order kinetics. However, the use of three non-linear mathematical models sufficiently described the measured data and well supported by an array of statistical indices to judge model's ability to fit the measured datasets. Further evaluation using box-whisker plots showed that double first-order in parallel (DFOP) and first-order two-compartment (FOTC) models best fitted the data points followed by the Bi-exponential (BEXP) model. Mechanistic assumptions from DFOP and FOTC suggest that degradation of MET and GUA proceeds at two different rates, possibly in two compartments. The calculated DT50 using both models were in the range of 2.7-15.5 days and 0.9-4 days, while 90% dissipation time (DT90) varied between 91 and 123 days and 44 and 137 days for MET and GUA, respectively. Degradation of both compounds were dependent on soil types and properties, incubation conditions and initial substrate concentration. Formation of GUA with decrease in MET concentration over time confirmed that GUA is a transformation product concomitantly formed from aerobic degradation of MET in soil.


Assuntos
Biodegradação Ambiental , Metformina/metabolismo , Modelos Teóricos , Poluentes do Solo/metabolismo , Solo/química , Cinética , Metformina/análise , Metformina/química , Nova Zelândia , Dinâmica não Linear , Microbiologia do Solo , Poluentes do Solo/análise
15.
Chemosphere ; 216: 855-865, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30385066

RESUMO

Metformin (MET), CAS 1115-70-4 (Metformin hydrochloride), is an antidiabetic drug with high usage in North America and Europe and has become the subject of regulatory interest. A pharmaceutical industry working group investigated environmental risks of MET. Environmental fate and chronic effects data were collated across the industry for the present risk assessment. Predicted environmental concentrations (PECs) for MET were modeled for the USA and Europe using the PhATE and GREAT-ER models, respectively. PECs were compared with measured environmental concentrations (MECs) for the USA and Europe. A predicted no effect concentration (PNEC) of 1 mg/L for MET was derived by deterministic procedures, applying an assessment factor of 10 to the lowest no observed effect concentration (i.e., 10 mg/L) from multiple chronic studies with algae, daphnids and fish. The PEC/PNEC and MEC/PNEC risk characterization ratios were <1, indicating no significant risk for MET with high Margins of Safety (MOS) of >868. MET is known to degrade during wastewater treatment to guanylurea (GUU, CAS 141-83-3), which we have shown to further degrade. There are no GUU toxicity data in the literature; hence, chronic studies for GUU were conducted to derive a PNEC of 0.16 mg/L. PECs were derived for GUU as for MET, plus MECs were retrieved from the literature. The PEC/PNEC and MEC/PNEC risk characterization ratios for GUU were also <1, with an MOS of >6.5. Based on standard risk assessment procedures for both MET and its transformation product GUU, there is no significant risk to aquatic life.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Hipoglicemiantes/efeitos adversos , Metformina/efeitos adversos , Animais , Europa (Continente) , Peixes , Humanos , Medição de Risco , Estados Unidos , Poluentes Químicos da Água/análise
16.
Chemosphere ; 216: 844-854, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30449313

RESUMO

Metformin (MET) is a pharmaceutical with very high use worldwide that is excreted in unchanged form, leading to concern about potential aquatic life impacts associated with MET, and its primary transformation product guanylurea (GUU). This study presents, in two companion papers, a risk assessment following internationally accepted guidelines of MET and GUU in surface water based on literature data, previously unpublished studies, and a new degradation test that resolves conflicting earlier results. Previous studies have shown that MET is removed during sewage treatment, primarily through transformation to GUU. In addition, measurements in WWTPs suggest that MET is not only transformed to GUU, but that GUU is further biodegraded. A prolonged inherent biodegradation test strongly suggests not only primary transformation of MET to GUU, but also subsequent full mineralization of GUU, with both degradation phases starting after a clear lag phase. MET may partition from surface water to sediment, where both transformation to GUU and in part mineralization is possible, depending on the presence of competent degrading microorganisms. In addition, MET may form non-extractable residues in sediments (12.8-73.5%). Both MET and GUU may be anaerobically degraded during sludge digestion, in soils or in sediments. Bioconcentration factor (BCF) values in crops and most plants are close to 1 suggesting low bioaccumulation potential, moreover, at least some plants can metabolize MET to GUU; however, in aquatic plants higher BCFs were found, up to 53. Similarly, neither MET nor GUU are expected to bioaccumulate in fish based on estimated values of BCFs ≤3.16.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Cimetidina/análogos & derivados , Hipoglicemiantes/efeitos adversos , Metformina/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Cimetidina/efeitos adversos , Humanos , Medição de Risco
17.
Environ Pollut ; 244: 19-27, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30317086

RESUMO

Recent classification of metformin as an emerging contaminant warrants assessment of its fate and behaviour in the natural environment especially with land-based application of potentially contaminated wastewaters and biosolids. The present study provided further insight into the sorption mechanisms of metformin and its transformation product guanylurea in soil and upon biosolid fortification. Decreased metformin sorption (12.4%) as measured by the effective distribution coefficient (Kdeff) was observed with biosolids amendment while significant increase (2500%) in guanylurea sorption was calculated. Analysis of co-solute effects confirmed their contrasting sorption mechanisms with the absence of competitive effects in unamended soil. Results of the column tests were in good agreement with the batch sorption studies as the fitted values of retardation factors decreased and increased for metformin and guanylurea, respectively, upon addition of biosolids. The shapes of the breakthrough curves suggest slower desorption rates for both compounds in unamended soil resulting to non-equilibrium conditions and back-end tailings. However, in biosolid-amended soil columns, these tailings were less pronounced resembling equilibrium transport. Results also demonstrated enhanced mobility of both compounds upon biosolids fortification. The non-equilibrium chemical transport model fitted the measured data well (0.975 > r2 > 0.988) especially for unamended soils which suggests the existence of non-equilibrium conditions and rate-limited sorption sites.


Assuntos
Metformina/química , Modelos Químicos , Poluentes do Solo/química , Solo/química , Adsorção
18.
Adv Mar Biol ; 81: 23-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471658

RESUMO

This review discusses the occurrence, impact, analysis and treatment of metformin and guanylurea in coastal aquatic environments of Canada, USA and Europe. Metformin, a biguanide in chemical classification, is widely used as one of the most effective first-line oral drugs for type 2 diabetes. It is difficult to be metabolized by the human body and exists in both urine and faeces samples in these regions. Guanylurea is metformin's biotransformation product. Consequently, significant concentrations of metformin and guanylurea have been reported in wastewater treatment plants (WWTPs) and coastal aquatic environments. The maximum concentrations of metformin and guanylurea in surface water samples were as high as 59,000 and 4502ngL-1, respectively. Metformin can be absorbed in non-target organisms by plants and in Atlantic salmon (Salmo salar). Guanylurea has a confirmed mitotic activity in plant cells. Analysis methods of metformin are currently developed based on high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The removal of metformin from aquatic environments in the target regions is summarized. The review helps to fill a knowledge gap and provides insights for regulatory considerations. The potential options for managing these emerging pollutants are outlined too.


Assuntos
Metformina/química , Ureia/química , Poluentes Químicos da Água/química , Canadá/epidemiologia , Diabetes Mellitus/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Estados Unidos/epidemiologia , Ureia/análogos & derivados
19.
Sci Total Environ ; 645: 1323-1333, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30248856

RESUMO

Single solute sorption mechanisms of metformin (MET) and guanylurea (GUA) were investigated in six soils and three model sorbents (kaolinite, bentonite and humic acid) at varying initial pH and background electrolyte (Ca2+) concentrations. Electrostatic interaction and cation exchange were proposed as mechanisms of MET sorption. At initial solution pH between pKa1 and pKa2, electrostatic interaction is the dominating mechanism of MET sorption. However, as pH approaches pKa1, cation exchange becomes a significant mechanism of sorption as evidenced by the increased distribution coefficient (Kd) values in Matawhero (130-fold) and Nelson (2000-fold) soils with high cation exchange capacities (CEC) and permanently negative charged sites and when equilibrium pH < pKa1 where the divalent cationic form dominates in the solution. Furthermore, results showed higher sorption of MET on bentonite with effective distribution coefficient (Kdeff) value of 14.92 L/kg with high permanent negative charges than on kaolinite (Kdeff = 6.70 L/kg), a variable charge clay. Increased MET sorption at low equilibrium pH on kaolinite (Kdeff = 2.3 × 107 L/kg) and humic acid (Kdeff = 20.86 L/kg) further suggest cation exchange is also possible at pH < pKa1. On the other hand, two lines of evidence suggest cation exchange as an important mechanism of GUA sorption: (a) the positive correlation between cation exchange capacity and Kdeff values and (b) decreased Kdeff values as the Ca2+ concentration in solution was increased in all soils. Biosolids amendment of three soils resulted in contrasting effects on sorption affinities with a decrease for MET and increase for GUA, further confirming sorption mechanisms and significance of solution pH and CEC on the sorption of MET and GUA, respectively.

20.
Environ Pollut ; 243(Pt A): 255-262, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179806

RESUMO

Sewage sludge from a municipal wastewater treatment facility employing activated sludge process was pre-incubated with varying substrates and mixtures of substrates including metformin (MET), guanylurea (GUA) and glucose. The biomass from enriched cultures separately utilising MET and glucose/GUA was then used to investigate the kinetics of aerobic biodegradation of MET and GUA, respectively, as individual substrates in batch reactors. The results showed that GUA can be completely degraded as a nitrogen source when glucose is provided as a carbon and energy source. On the contrary, MET can be biodegraded as a sole carbon and energy source. However, formation of by-product GUA in solution, which acts as a nitrogen source, rapidly increased the degradation rate of MET resembling autocatalytic behaviour. At low starting concentration of 5 mg/L, the specific substrate utilisation rates of MET and GUA were 0.0033 day-1 and 0.0013 day-1, respectively, which is reported first time in this study. Out of the five biodegradation kinetic models used to describe substrate utilisation, the Quiroga-Sales-Romero (QSR) model was found to predict the measured MET and GUA degradation profile well supported by the goodness of fit parameters. Furthermore, the QSR model was able to describe the autocatalytic degradation of MET and the incomplete biodegradation of GUA in solution.


Assuntos
Bactérias Aeróbias/metabolismo , Biodegradação Ambiental , Metformina/análise , Esgotos/química , Glucose/química , Cinética , Metformina/análogos & derivados , Ureia/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA