Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cureus ; 16(4): e59210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38807795

RESUMO

Fosmanogepix, a prodrug of Manogepix (MGX), is a groundbreaking antifungal agent with broad-spectrum activity against yeasts, including Cryptococcus and Candida, as well as molds. It exhibits effectiveness against drug-resistant strains, such as Candida strains resistant to echinocandins and Aspergillus strains resistant to azoles. Furthermore, fosmanogepix shows activity against pathogens that typically resist other classes of drugs, such as Scedosporium, Lomentospora prolificans, and Fusarium, although its efficacy against Mucorales varies. In animal models, fosmanogepix has demonstrated notable effectiveness against disseminated infections caused by various Candida species, Coccidioides immitis, and Fusarium solani. It has also shown efficacy in pulmonary infection models involving Aspergillus fumigatus, Aspergillus flavus, Scedosporium prolificans, Scedosporium apiospermum, and Rhizopus arrhizus. Clinical trials have revealed excellent oral bioavailability (>90%), enabling a seamless transition between intravenous and oral formulations without compromising blood concentrations. Fosmanogepix exhibits favorable profiles in terms of drug interactions, tolerability, and extensive distribution in various tissues, making it an appealing choice for treating invasive fungal infections. This comprehensive review aims to examine the outcomes of published data on fosmanogepix, encompassing in vitro, in vivo, and clinical investigations.

2.
Antimicrob Agents Chemother ; 67(5): e0141922, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37022196

RESUMO

Fosmanogepix (FMGX), a novel antifungal available in intravenous (IV) and oral formulations, has broad-spectrum activity against pathogenic yeasts and molds, including fungi resistant to standard of care antifungals. This multicenter, open-label, single-arm study evaluated FMGX safety and efficacy for treatment of candidemia and/or invasive candidiasis caused by Candida auris. Eligible participants were ≥18 years, with established candidemia and/or invasive candidiasis caused by C. auris, (cultured within 120 h [for candidemia] or 168 h [for invasive candidiasis without candidemia] with accompanying clinical signs) and limited treatment options. Participants were treated with FMGX (≤42 days; loading dose: 1000 mg IV twice daily [Day 1], followed by 600 mg IV once daily [QD]). Switching to oral FMGX 800 mg QD was permitted from Day 4. Primary endpoint was treatment success (survival and clearance of C. auris from blood/tissue cultures without additional antifungals) at the end of the study treatment (EOST), assessed by an independent data review committee (DRC). Day 30 survival was a secondary endpoint. In vitro susceptibility of Candida isolates was assessed. Nine participants with candidemia (male:6, female:3; 21 to 76 years) in intensive care units in South Africa were enrolled; all received IV FMGX only. DRC-assessed treatment success at EOST and Day 30 survival were 89% (8/9). No treatment related adverse events or study drug discontinuations were reported. FMGX demonstrated potent in vitro activity against all C. auris isolates (MIC range: 0.008 to 0.015 µg/mL [CLSI]; 0.004-0.03 µg/mL [EUCAST]), with the lowest MICs compared to other antifungals tested. Thus, the results showed that FMGX was safe, well-tolerated, and efficacious in participants with candidemia caused by C. auris.


Assuntos
Candidemia , Candidíase Invasiva , Humanos , Masculino , Feminino , Antifúngicos/efeitos adversos , Candidemia/microbiologia , Candida auris , Candidíase Invasiva/tratamento farmacológico , Resultado do Tratamento , Testes de Sensibilidade Microbiana
3.
Antimicrob Agents Chemother ; 67(4): e0162322, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36988461

RESUMO

Fosmanogepix (FMGX, APX001), a first-in-class, intravenous (i.v.) and oral (p.o.) antifungal prodrug candidate is currently in clinical development for the treatment of invasive fungal infections. Manogepix (MGX, APX001A), the active moiety of FMGX, interferes with cell wall synthesis by targeting fungal glycosylphosphatidylinositol-anchored cell wall transfer protein 1, thereby causing loss of cell viability. Data from two phase 1, placebo-controlled, single-ascending dose (SAD) and multiple-ascending dose (MAD) studies evaluating safety, tolerability, and pharmacokinetics of FMGX (doses up to 1,000 mg, i.v. and p.o.) are presented. Eligible participants were healthy adults (aged 18 to 55 years) randomized to receive either FMGX or placebo. Across both phase 1 studies, 151 of 154 participants (aged 23 to 35 years; FMGX: 116, placebo: 38) completed the study. Administration of FMGX i.v. demonstrated linear- and dose-proportional pharmacokinetics of MGX in terms of geometric mean maximum concentration of drug in serum (Cmax) (SAD: 0.16 to 12.0 µg/mL, dose: 10 to 1,000 mg; MAD: 0.67 to 15.4 µg/mL, dose: 50 to 600 mg) and area under the concentration-time curve (AUC) (SAD: 4.05 to 400, MAD: 6.39 to 245 µg · h/mL). With single and repeat p.o., dose-proportional increases in Cmax (SAD: 1.30 to 6.41 µg/mL, dose: 100 to 500 mg; MAD: 6.18 to 21.3 µg/mL, dose: 500 to 1,000 mg) and AUC (SAD: 87.5 to 205, MAD: 50.8 to 326 µg · h/mL) were also observed, with high oral bioavailability (90.6% to 101.2%). Administration of FMGX p.o. under post cibum conditions improved tolerability versus ante cibum conditions. No severe treatment-emergent adverse events (TEAEs), serious AEs, or withdrawals due to a drug-related TEAEs were reported with single or multiple i.v. and p.o. doses. Preclinical target exposures were achieved and were not accompanied by any serious/unexpected concerns with generally safe and well-tolerated dose regimens.


Assuntos
Antifúngicos , Infecções Fúngicas Invasivas , Adulto , Humanos , Antifúngicos/efeitos adversos , Voluntários Saudáveis , Disponibilidade Biológica , Infecções Fúngicas Invasivas/tratamento farmacológico , Área Sob a Curva , Método Duplo-Cego , Relação Dose-Resposta a Droga
4.
J Fungi (Basel) ; 8(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36294667

RESUMO

Invasive fungal infections have mortality rates of 30-90%, depending on patient co-morbidities and the causative pathogen. The frequent emergence of drug resistance reduces the efficacy of currently approved treatment options, highlighting an urgent need for antifungals with new modes of action. Addressing this need, fosmanogepix (N-phosphonooxymethylene prodrug of manogepix; MGX) is the first in a new class of gepix drugs, and acts as a broad-spectrum, orally bioavailable inhibitor of the essential fungal glycosylphosphatidylinositol (GPI) acyltransferase Gwt1. MGX inhibits the growth of diverse fungal pathogens and causes accumulation of immature GPI-anchored proteins in the fungal endoplasmic reticulum. Relevant to the ongoing clinical development of fosmanogepix, we report a synergistic, fungicidal interaction between MGX and inhibitors of the protein phosphatase calcineurin against important human fungal pathogens. To investigate this synergy further, we evaluated a library of 124 conditional expression mutants covering 95% of the genes encoding proteins involved in GPI-anchor biosynthesis or proteins predicted to be GPI-anchored. Strong negative chemical-genetic interactions between the calcineurin inhibitor FK506 and eleven GPI-anchor biosynthesis genes were identified, indicating that calcineurin signalling is required for fungal tolerance to not only MGX, but to inhibition of the GPI-anchor biosynthesis pathway more broadly. Depletion of these GPI-anchor biosynthesis genes, like MGX treatment, also exposed fungal cell wall (1→3)-ß-D-glucans. Taken together, these findings suggest the increased risk of invasive fungal infections associated with use of calcineurin inhibitors as immunosuppressants may be mitigated by their synergistic fungicidal interaction with (fos)manogepix and its ability to enhance exposure of immunostimulatory glucans.

5.
mBio ; 13(6): e0234722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222509

RESUMO

Cryptococcal Meningitis (CM) is uniformly fatal if not treated, and treatment options are limited. We previously reported on the activity of APX2096, the prodrug of the novel Gwt1 inhibitor APX2039, in a mouse model of CM. Here, we investigated the efficacy of APX2039 in mouse and rabbit models of CM. In the mouse model, the controls had a mean lung fungal burden of 5.95 log10 CFU/g, whereas those in the fluconazole-, amphotericin B-, and APX2039-treated mice were 3.56, 4.59, and 1.50 log10 CFU/g, respectively. In the brain, the control mean fungal burden was 7.97 log10 CFU/g, while the burdens were 4.64, 7.16, and 1.44 log10 CFU/g for treatment with fluconazole, amphotericin B, and APX2039, respectively. In the rabbit model of CM, the oral administration of APX2039 at 50 mg/kg of body weight twice a day (BID) resulted in a rapid decrease in the cerebrospinal fluid (CSF) fungal burden, and the burden was below the limit of detection by day 10 postinfection. The effective fungicidal activity (EFA) was -0.66 log10 CFU/mL/day, decreasing from an average of 4.75 log10 CFU/mL to 0 CFU/mL, over 8 days of therapy, comparing favorably with good clinical outcomes in humans associated with reductions of the CSF fungal burden of -0.4 log10 CFU/mL/day, and, remarkably, 2-fold the EFA of amphotericin B deoxycholate in this model (-0.33 log10 CFU/mL/day). A total drug exposure of the area under the concentration-time curve from 0 to 24 h (AUC0-24) of 25 to 50 mg · h/L of APX2039 resulted in near-maximal antifungal activity. These data support the further preclinical and clinical evaluation of APX2039 as a new oral fungicidal monotherapy for the treatment of CM. IMPORTANCE Cryptococcal meningitis (CM) is a fungal disease with significant global morbidity and mortality. The gepix Gwt1 inhibitors are a new class of antifungal drugs. Here, we demonstrated the efficacy of APX2039, the second member of the gepix class, in rabbit and mouse models of cryptococcal meningitis. We also analyzed the drug levels in the blood and cerebrospinal fluid in the highly predictive rabbit model and built a mathematical model to describe the behavior of the drug with respect to the elimination of the fungal pathogen. We demonstrated that the oral administration of APX2039 resulted in a rapid decrease in the CSF fungal burden, with an effective fungicidal activity of -0.66 log10 CFU/mL/day, comparing favorably with good clinical outcomes in humans associated with reductions of -0.4 log10 CFU/mL/day. The drug APX2039 had good penetration of the central nervous system and is an excellent candidate for future clinical testing in humans for the treatment of CM.


Assuntos
Anfotericina B , Meningite Criptocócica , Humanos , Coelhos , Animais , Camundongos , Anfotericina B/uso terapêutico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Fluconazol/uso terapêutico , Quimioterapia Combinada
6.
Antimicrob Agents Chemother ; 66(11): e0102822, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36286491

RESUMO

We evaluated the in vitro activity of manogepix and comparator agents against 1,435 contemporary fungal isolates collected worldwide from 73 medical centers in North America, Europe, the Asia-Pacific region, and Latin America during 2020. Of the isolates tested, 74.7% were Candida spp.; 3.7% were non-Candida yeasts, including 27 Cryptococcus neoformans var. grubii (1.9%); 17.1% were Aspergillus spp.; and 4.5% were other molds. All fungal isolates were tested by reference broth microdilution according to CLSI methods. Based on MIC90 values, manogepix (MIC50/MIC90, 0.008/0.06 mg/liter) was 16- to 64-fold more active than anidulafungin, micafungin, and fluconazole against Candida spp. isolates and the most active agent tested. Similarly, manogepix (MIC50/MIC90, 0.5/1 mg/liter) was ≥8-fold more active than anidulafungin, micafungin, and fluconazole against C. neoformans var. grubii. Based on minimum effective concentration for 90% of the isolates tested (MEC90) and MIC90 values, manogepix (MEC90, 0.03 mg/liter) was 16- to 64-fold more potent than itraconazole, posaconazole, and voriconazole (MIC90s, 0.5 to 2 mg/liter) against 246 Aspergillus spp. isolates. Aspergillus fumigatus isolates exhibited a wild-type (WT) phenotype for the mold-active triazoles, including itraconazole (87.0% WT) and voriconazole (96.4% WT). Manogepix was highly active against uncommon species of Candida, non-Candida yeasts, and rare molds, including 11 isolates of Candida auris (MIC50/MIC90, 0.004/0.015 mg/liter) and 12 isolates of Scedosporium spp. (MEC50/MEC90, 0.06/0.12 mg/liter). Additional studies are in progress to evaluate the clinical utility of the manogepix prodrug fosmanogepix in difficult-to-treat resistant fungal infections.


Assuntos
Cryptococcus neoformans , Fluconazol , Anidulafungina/farmacologia , Micafungina/farmacologia , Fluconazol/farmacologia , Voriconazol/farmacologia , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Candida , Aspergillus , Farmacorresistência Fúngica
7.
Antimicrob Agents Chemother ; 66(7): e0038022, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35670592

RESUMO

Invasive pulmonary aspergillosis (IPA), invasive mucormycosis (IM), and invasive fusariosis (IF) are associated with high mortality and morbidity. Fosmanogepix (FMGX) is a first-in-class antifungal in clinical development with demonstrated broad-spectrum activity in animal models of infections. We sought to evaluate the benefit of combination therapy of FMGX plus liposomal amphotericin B (L-AMB) in severe delayed-treatment models of murine IPA, IM, and IF. While FMGX was equally as effective as L-AMB in prolonging the survival of mice infected with IPA, IM, or IF, combination therapy was superior to monotherapy in all three models. These findings were validated by greater reductions in the tissue fungal burdens (determined by quantitative PCR) of target organs in all three models versus the burdens in infected vehicle-treated (placebo) or monotherapy-treated mice. In general, histopathological examination of target organs corroborated the findings for fungal tissue burdens among all treatment arms. Our results show that treatment with the combination of FMGX plus L-AMB demonstrated high survival rates and fungal burden reductions in severe animal models of invasive mold infections, at drug exposures in mice similar to those achieved clinically. These encouraging results warrant further investigation of the FMGX-plus-L-AMB combination treatment for severely ill patients with IPA, IM, and IF.


Assuntos
Fusariose , Aspergilose Pulmonar Invasiva , Mucormicose , Anfotericina B/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Fungos , Fusariose/tratamento farmacológico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Camundongos , Mucormicose/tratamento farmacológico
8.
Comput Struct Biotechnol J ; 20: 850-863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222844

RESUMO

The emergence of resistance to first-line antimalarials, including artemisinin, the last effective malaria therapy in some regions, stresses the urgent need to develop new effective treatments against this disease. The identification and validation of metabolic pathways that could be targeted for drug development may strongly contribute to accelerate this process. In this study, we use fully characterized specific inhibitors targeting glycan biosynthetic pathways as research tools to analyze their effects on the growth of the malaria parasite Plasmodium falciparum and to validate these metabolic routes as feasible chemotherapeutic targets. Through docking simulations using models predicted by AlphaFold, we also shed new light into the modes of action of some of these inhibitors. Molecules inhibiting N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase (GlcNAc-PI de-N-acetylase, PIGL/GPI12) or the inositol acyltransferase (GWT1), central for glycosylphosphatidylinositol (GPI) biosynthesis, halt the growth of intraerythrocytic asexual parasites during the trophozoite stages of the intraerythrocytic developmental cycle (IDC). Remarkably, the nucleoside antibiotic tunicamycin, which targets UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (ALG7) and N-glycosylation in other organisms, induces a delayed-death effect and inhibits parasite growth during the second IDC after treatment. Our data indicate that tunicamycin induces a specific inhibitory effect, hinting to a more substantial role of the N-glycosylation pathway in P. falciparum intraerythrocytic asexual stages than previously thought. To sum up, our results place GPI biosynthesis and N-glycosylation pathways as metabolic routes with potential to yield much-needed therapeutic targets against the parasite.

9.
Antimicrob Agents Chemother ; 65(10): e0068221, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34310205

RESUMO

Invasive aspergillosis (IA) due to Aspergillus fumigatus is a deadly infection for which new antifungal therapies are needed. Here, we demonstrate the efficacy of a Gwt1 inhibitor, APX2041, and its prodrug, APX2104, against A. fumigatus. The wild-type, azole-resistant, and echinocandin-resistant A. fumigatus strains were equally susceptible to APX2041 in vitro. APX2104 treatment in vivo significantly prolonged survival of neutropenic mice challenged with the wild-type and azole-resistant strains, revealing APX2104 as a potentially promising therapeutic against IA.


Assuntos
Aspergillus fumigatus , Pró-Fármacos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica/genética , Isoxazóis , Camundongos , Testes de Sensibilidade Microbiana , Pró-Fármacos/farmacologia
10.
J Pestic Sci ; 46(2): 198-205, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34135681

RESUMO

Aminopyrifen is a novel 2-aminonicotinate fungicide with unique chemistry and a novel mode of action. The fungicide showed high antifungal activity mainly against Ascomycetes and its related anamorphic fungi under in vitro and pot conditions (EC50 values: 0.0039-0.23 mg/L and 1.2-12 mg/L, respectively). The active ingredient strongly inhibited germ-tube elongation of Botrytis cinerea below 0.1 mg/L and invasion into a plant. The compound exhibited no cross-resistance to commercial fungicides in B. cinerea. The antifungal agent showed high preventive efficacy and translaminar action. In the field, aminopyrifen controlled gray mold and powdery mildew at 150 mg/L. Our findings suggest that aminopyrifen is useful for protecting crops from various plant pathogens.

11.
J Glob Antimicrob Resist ; 26: 117-127, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051400

RESUMO

OBJECTIVES: Manogepix, the active moiety of the prodrug fosmanogepix, is a novel antifungal with activity against major fungal pathogens including Candida (except Candida krusei), Aspergillus and difficult-to-treat/rare moulds. We tested manogepix and comparators against 2669 contemporary (2018-2019) fungal isolates collected from 82 medical centres in North America (42.3%), Europe (37.9%), Asia-Pacific (12.3%) and Latin America (7.6%). Of these, 70.7% were Candida spp., 3.6% were non-Candida yeasts including 49 Cryptococcus neoformans var. grubii, 21.7% were Aspergillus spp. and 4.1% were other moulds. METHODS: Isolates were tested for antifungal susceptibility by the CLSI reference broth microdilution method. RESULTS: Manogepix (MIC50/90, 0.008/0.06 mg/L) was the most active agent tested against Candida spp. isolates; corresponding anidulafungin, micafungin and fluconazole MIC90 values were 16- to 64-fold higher. Similarly, manogepix (MIC50/90, 0.5/2 mg/L) was ≥4-fold more active than anidulafungin, micafungin and fluconazole against C. neoformans var. grubii. Against Aspergillus spp., manogepix (MEC50/90, 0.015/0.03 mg/L) had comparable activity to anidulafungin and micafungin. Low manogepix concentrations inhibited uncommon species of Candida, non-Candida yeasts, and rare moulds including Scedosporium spp. and Lomentospora (Scedosporium) prolificans. CONCLUSION: Manogepix exhibited potent activity against contemporary fungal isolates, including echinocandin- and azole-resistant strains of Candida and Aspergillus spp., respectively. Although rare, Candida strains that were non-wild type for manogepix demonstrated resistance to fluconazole. However, the clinical relevance of this finding is unknown. The extended spectrum of manogepix is noteworthy for its activity against many less-common yet antifungal-resistant strains. Clinical studies are underway to evaluate the utility of fosmanogepix against difficult-to-treat resistant fungal infections.


Assuntos
Antifúngicos , Isoxazóis , Aminopiridinas , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Pichia
12.
J Fungi (Basel) ; 6(4)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105672

RESUMO

Fosmanogepix is a first-in-class antifungal currently in Phase 2 clinical trials for the treatment of invasive fungal infections caused by Candida, Aspergillus and rare molds. Fosmanogepix is the N-phosphonooxymethylene prodrug of manogepix, an inhibitor of the fungal enzyme Gwt1. Manogepix demonstrates broad spectrum in vitro activity against yeasts and molds, including difficult to treat pathogens. Because of its novel mechanism of action, manogepix retains potency against many resistant strains including echinocandin-resistant Candida and azole-resistant Aspergillus. Manogepix is also active against pathogens that demonstrate intrinsic resistance to other drug classes, such as Scedosporium, Lomentospora prolificans, and Fusarium with variable activity against Mucorales. Fosmanogepix demonstrates significant in vivo efficacy in mouse and rabbit disseminated infection models due to C. albicans, C. glabrata, C. auris, C. tropicalis, Coccidioides immitis, and F. solani as well as pulmonary infection models of A. fumigatus, A. flavus, S. prolificans, S. apiospermum and Rhizopus arrhizus. Clinical trials demonstrated high oral bioavailability (>90%), enabling switching between fosmanogepix intravenous and oral formulations without compromising blood levels. Favorable drug-drug interaction, tolerability, and wide tissue distribution profiles are observed making fosmanogepix an attractive option for the treatment of invasive fungal infections. This systematic review summarizes the findings of published data on fosmanogepix.

13.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32839219

RESUMO

An ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. Laboratory surveillance revealed NY C. auris isolates are resistant to fluconazole, with variable resistance to other currently used broad-spectrum antifungal drugs, and that several isolates are panresistant. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug fosmanogepix is currently in phase 2 clinical development for the treatment of fungal infections. We evaluated the susceptibility of 200 New York C. auris isolates to MGX and 10 comparator drugs using CLSI methodology. MGX demonstrated lower MICs than comparators (MIC50 and MIC90, 0.03 mg/liter; range, 0.004 to 0.06 mg/liter). The local epidemiological cutoff value (ECV) for MGX indicated all C. auris isolates were within the population of wild-type (WT) strains; 0.06 mg/liter defines the upper limit of wild type (UL-WT). MGX was 8- to 32-fold more active than the echinocandins, 16- to 64-fold more active than the azoles, and 64-fold more active than amphotericin B. No differences were found in the MGX or comparators' MIC50, MIC90, or geometric mean (GM) values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris panresistant isolates was 0.008 to 0.015 mg/liter, and the median and mode MIC values were 0.015 mg/liter, demonstrating that MGX retains activity against these isolates. These data support further clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates.


Assuntos
Antifúngicos , Candida , Aminopiridinas , Antifúngicos/farmacologia , Surtos de Doenças , Isoxazóis , Testes de Sensibilidade Microbiana , New York , América do Norte
14.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32661007

RESUMO

The glycosylphosphatidylinositol anchor biosynthesis inhibitor gepinacin demonstrates broad-spectrum antifungal activity and negligible mammalian toxicity in culture but is metabolically labile. The stability and bioactivity of 39 analogs were tested in vitro to identify LCUT-8, a stabilized lead with increased potency and promising single-dose pharmacokinetics. Unfortunately, no antifungal activity was seen at the maximum dosing achievable in a neutropenic rabbit model. Nevertheless, structure-activity relationships identified here suggest strategies to further improve compound potency, solubility, and stability.


Assuntos
Antifúngicos , Glicosilfosfatidilinositóis , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Coelhos , Relação Estrutura-Atividade
15.
Artigo em Inglês | MEDLINE | ID: mdl-32205345

RESUMO

Mucormycosis is a life-threatening infection with high mortality that occurs predominantly in immunocompromised patients. Manogepix (MGX) is a novel antifungal that targets Gwt1, a protein involved in an early step in the conserved glycosylphosphotidyl inositol (GPI) posttranslational modification pathway of surface proteins in eukaryotic cells. Inhibition of fungal inositol acylation by MGX results in pleiotropic effects, including inhibition of maturation of GPI-anchored proteins necessary for growth and virulence. MGX has been previously shown to have in vitro activity against some strains of Mucorales. Here, we assessed the in vivo activity of the prodrug fosmanogepix, currently in clinical development for the treatment of invasive fungal infections, against two Rhizopus arrhizus strains with high (4.0 µg/ml) and low (0.25 µg/ml) minimum effective concentration (MEC) values. In both invasive pulmonary infection models, treatment of mice with 78 mg/kg or 104 mg/kg fosmanogepix, along with 1-aminobenzotriazole to enhance the serum half-life of MGX in mice, significantly increased median survival time and prolonged overall survival by day 21 postinfection compared to placebo. In addition, administration of fosmanogepix resulted in a 1 to 2 log reduction in both lung and brain fungal burden. For the 104 mg/kg fosmanogepix dose, tissue clearance and survival were comparable to clinically relevant doses of isavuconazole (ISA), which is FDA approved for the treatment of mucormycosis. These results support continued development of fosmanogepix as a first-in-class treatment for invasive mucormycosis.


Assuntos
Antifúngicos , Mucormicose , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Humanos , Isoxazóis , Camundongos , Testes de Sensibilidade Microbiana , Mucormicose/tratamento farmacológico , Rhizopus , Rhizopus oryzae
16.
Artigo em Inglês | MEDLINE | ID: mdl-32179530

RESUMO

Manogepix is a broad-spectrum antifungal agent that inhibits glycosylphosphatidylinositol (GPI) anchor biosynthesis. Using whole-genome sequencing, we characterized two efflux-mediated mechanisms in the fungal pathogens Candida albicans and Candida parapsilosis that resulted in decreased manogepix susceptibility. In C. albicans, a gain-of-function mutation in the transcription factor gene ZCF29 activated expression of ATP-binding cassette transporter genes CDR11 and SNQ2 In C. parapsilosis, a mitochondrial deletion activated expression of the major facilitator superfamily transporter gene MDR1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Candida albicans/genética , Candida parapsilosis/genética , Isoxazóis/farmacologia , Transporte Biológico/genética , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/metabolismo , Farmacorresistência Fúngica/genética , Genoma Fúngico/genética , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma
17.
Artigo em Inglês | MEDLINE | ID: mdl-31818813

RESUMO

There are limited treatment options for immunosuppressed patients with lethal invasive fungal infections due to Fusarium and Scedosporium Manogepix (MGX; APX001A) is a novel antifungal that targets the conserved Gwt1 enzyme required for localization of glycosylphosphatidylinositol-anchored mannoproteins in fungi. We evaluated the in vitro activity of MGX and the efficacy of the prodrug fosmanogepix (APX001) in immunosuppressed murine models of hematogenously disseminated fusariosis and pulmonary scedosporiosis. The MGX minimum effective concentration (MEC) for Scedosporium isolates was 0.03 µg/ml and ranged from 0.015 to 0.03 µg/ml for Fusarium isolates. In the scedosporiosis model, treatment of mice with 78 mg/kg and 104 mg/kg of body weight fosmanogepix, along with 1-aminobenzotriazole (ABT) to enhance the serum half-life of MGX, significantly increased median survival time versus placebo from 7 days to 13 and 11 days, respectively. Furthermore, administration of 104 mg/kg fosmanogepix resulted in an ∼2-log10 reduction in lung, kidney, or brain conidial equivalents/gram tissue (CE). Similarly, in the fusariosis model, 78 mg/kg and 104 mg/kg fosmanogepix plus ABT enhanced median survival time from 7 days to 12 and 10 days, respectively. A 2- to 3-log10 reduction in kidney and brain CE was observed. In both models, reduction in tissue fungal burden was corroborated with histopathological data, with target organs showing reduced or no abscesses in fosmanogepix-treated mice. Survival and tissue clearance were comparable to a clinically relevant high dose of liposomal amphotericin B (10 to 15 mg/kg). Our data support the continued development of fosmanogepix as a first-in-class treatment for infections caused by these rare molds.


Assuntos
Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Fusariose/tratamento farmacológico , Fusarium/efeitos dos fármacos , Hospedeiro Imunocomprometido , Infecções Fúngicas Invasivas/tratamento farmacológico , Isoxazóis/farmacologia , Scedosporium/efeitos dos fármacos , Aminopiridinas/sangue , Aminopiridinas/farmacocinética , Animais , Antifúngicos/sangue , Antifúngicos/farmacocinética , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/microbiologia , Esquema de Medicação , Combinação de Medicamentos , Fusariose/imunologia , Fusariose/microbiologia , Fusariose/mortalidade , Fusarium/crescimento & desenvolvimento , Fusarium/imunologia , Meia-Vida , Humanos , Infecções Fúngicas Invasivas/imunologia , Infecções Fúngicas Invasivas/microbiologia , Infecções Fúngicas Invasivas/mortalidade , Isoxazóis/sangue , Isoxazóis/farmacocinética , Rim/efeitos dos fármacos , Rim/imunologia , Rim/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Pró-Fármacos , Scedosporium/crescimento & desenvolvimento , Scedosporium/imunologia , Análise de Sobrevida , Triazóis/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-31685475

RESUMO

Galactomannan (GM) detection in biological samples has been shown to predict therapeutic response by azoles and polyenes. In a murine invasive pulmonary aspergillosis model, fosmanogepix or posaconazole treatment resulted in an ∼6- to 7-log reduction in conidial equivalents (CE)/g lung tissue after 96 h versus placebo. Changes in GM levels in BAL fluid and serum mirrored reductions in lung CE, with significant decreases seen after 96 h or 72 h for fosmanogepix or posaconazole, respectively (P < 0.02).


Assuntos
Antifúngicos/uso terapêutico , Biomarcadores/metabolismo , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/metabolismo , Mananas/metabolismo , Animais , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Galactose/análogos & derivados , Hospedeiro Imunocomprometido , Pulmão/microbiologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Triazóis/uso terapêutico
19.
Bioorg Med Chem Lett ; 29(23): 126713, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668974

RESUMO

Fosmanogepix (APX001) is a first-in-class prodrug molecule that is currently in Phase 2 clinical trials for invasive fungal infections. The active moiety manogepix (APX001A) inhibits the novel fungal protein Gwt1. Gwt1 catalyzes an early step in the GPI anchor biosynthesis pathway. Here we describe the synthesis and evaluation of 292 new and 24 previously described analogs that were synthesized using a series of advanced intermediates to allow for rapid analoging. Several compounds demonstrated significantly (8- to 32-fold) improved antifungal activity against both Cryptococcus neoformans and C. gattii as compared to manogepix. Further in vitro characterization identified three analogs with a similar preliminary safety and in vitro profile to manogepix and superior activity against Cryptococcus spp.


Assuntos
Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Cryptococcus/efeitos dos fármacos , Isoxazóis/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Aminopiridinas/síntese química , Aminopiridinas/química , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Proteínas Fúngicas , Isoxazóis/síntese química , Isoxazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
20.
Artigo em Inglês | MEDLINE | ID: mdl-31611349

RESUMO

Manogepix (MGX) targets the conserved fungal Gwt1 enzyme required for acylation of inositol early in the glycosylphosphatidylinositol biosynthesis pathway. The prodrug fosmanogepix is currently in clinical development for the treatment of invasive fungal infections. We determined that the median frequencies of spontaneous mutations conferring reduced susceptibility to MGX in Candida albicans, C. glabrata, and C. parapsilosis ranged from 3 × 10-8 to <1.85 × 10-8 Serial passage on agar identified mutants of C. albicans and C. parapsilosis with reduced susceptibility to MGX; however, this methodology did not result in C. glabrata mutants with reduced susceptibility. Similarly, serial passage in broth resulted in ≤2-fold changes in population MIC values for C. tropicalis, C. auris, and C. glabrata A spontaneous V163A mutation in the Gwt1 protein of C. glabrata and a corresponding C. albicans heterozygous V162A mutant were obtained. A C. glabrata V163A Gwt1 mutant generated using CRISPR, along with V162A and V168A mutants expressed in C. albicans and Saccharomyces cerevisiae Gwt1, respectively, all demonstrated reduced susceptibility to MGX versus control strains, suggesting the importance of this valine residue to MGX binding across different species. Cross-resistance to the three major classes of antifungals was evaluated, but no changes in susceptibility to amphotericin B or caspofungin were observed in any mutant. No change was observed in fluconazole susceptibility, with the exception of a single non-Gwt1 mutant, where a 4-fold increase in the fluconazole MIC was observed. MGX demonstrated a relatively low potential for resistance development, consistent with other approved antifungal agents and those in clinical development.


Assuntos
Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Isoxazóis/farmacologia , Aciltransferases/química , Aciltransferases/genética , Sequência de Aminoácidos , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Candida/genética , Candida/metabolismo , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Glicosilfosfatidilinositóis/biossíntese , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Mutação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA