Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.892
Filtrar
1.
BMC Pulm Med ; 24(1): 342, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010027

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive disease of vascular remodeling characterized by persistent pulmonary arterial pressure elevation, which can lead to right heart failure and premature death. Given the complex pathogenesis and poor prognosis of PAH, the identification and investigation of biomarkers become increasingly critical for advancing further understanding of the disease. METHODS: PAH-related datasets, GSE49114, GSE180169 and GSE154959, were downloaded from the publicly available GEO database. By performing WGCNA on the GSE49114 dataset, a total of 906 PAH-related key module genes were screened out. By carrying out differential analysis on the GSE180169 dataset, a total of 576 differentially expressed genes were identified. Additionally, the GSE154959 single-cell sequencing dataset was also subjected to differential analysis, leading to the identification of 34 DEGs within endothelial cells. By taking intersection of the above three groups of DEGs, five PAH-related hub genes were screened out, namely Plvap, Cyp4b1, Foxf1, H2-Ab1, and H2-Eb1, among which H2-Ab1 was selected for subsequent experiments. RESULTS: A SuHx mouse model was prepared using the SU5416/hypoxia method, and the successful construction of the model was evaluated through Hematoxylin-Eosin staining, hemodynamic detection, fulton index, and Western Blot (WB). The results of WB and qRT-PCR demonstrated a significant upregulation of H2-Ab1 expression in SuHx mice. Consistent with the results of bioinformatics analysis, a time-dependent increase was observed in H2-Ab1 expression in hypoxia-treated mouse pulmonary artery endothelial cells (PAECs). To investigate whether H2-Ab1 affects the development and progression of PAH, we knocked down H2-Ab1 expression in PAECs, and found that its knockdown inhibited the viability, adhesion, migration, and angiogenesis, while concurrently promoted the apoptosis of PAECs. CONCLUSION: H2-Ab1 could regulate the proliferation, apoptosis, adhesion, migration, and angiogenesis of PAECs.


Assuntos
Biologia Computacional , Modelos Animais de Doenças , Hipertensão Arterial Pulmonar , Remodelação Vascular , Animais , Camundongos , Remodelação Vascular/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Células Endoteliais/metabolismo , Proliferação de Células/genética , Artéria Pulmonar/patologia , Humanos , Indóis , Pirróis
2.
Arch Insect Biochem Physiol ; 116(3): e22136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016052

RESUMO

H2A.Z, the most evolutionarily conserved variant of histone H2A, plays a pivotal role in chromatin remodeling and contributes significantly to gene transcription and genome stability. However, the role of H2A.Z in the silkworm (Bombyx mori) remains unclear. In this study, we cloned the BmH2A.Z from B. mori. The open reading frame of BmH2A.Z is 390 bp, encoding 129 amino acids, with a confirmed molecular weight of 13.4 kDa through prokaryotic expression analysis. Sequence analysis revealed that BmH2A.Z has a conserved H2A.Z domain and is closely related to the systemic evolution of other known H2A.Zs. The expression profile of BmH2A.Z at various developmental stages of the B. mori exhibited the highest expression level in the 1st instar, followed by the grain stage and the 2nd instar, and the lowest expression level in the moth. The highest transcript level of BmH2A.Z was observed in the head, with relatively lower levels detected in the blood than in the other tissues under consideration. In addition, the upregulation of BmH2A.Z resulted in the amplified expression of B. mori nucleopolyhedrovirus (BmNPV) genes, thus facilitating the proliferation of BmNPV. This study establishes a foundation for investigating the role of BmH2A.Z in B. mori and its participation in virus-host interactions.


Assuntos
Sequência de Aminoácidos , Bombyx , Clonagem Molecular , Histonas , Proteínas de Insetos , Animais , Bombyx/genética , Bombyx/metabolismo , Bombyx/virologia , Histonas/metabolismo , Histonas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Filogenia , Nucleopoliedrovírus/genética , Alinhamento de Sequência
3.
Case Rep Nephrol Dial ; 14(1): 97-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015121

RESUMO

Introduction: Hemolytic uremic syndrome (HUS) is characterized by progressive kidney injury accompanied by thrombotic microangiopathy, which is clinically defined as microangiopathic hemolytic anemia with thrombocytopenia and organ injury. Shiga toxin-producing Escherichia coli (STEC)-HUS is caused by infection with pathogenic E. coli strains, typically O157, O26, and O111. However, the prevalence of other types of pathogenic E. coli has been increasing, and these pathogens sometimes cause atypical clinical manifestations of STEC-HUS. Case Presentation: We report the case of a 3-year-old girl diagnosed with STEC-HUS associated with a rare O80:H2 stx2 serotype, characterized by an atypical clinical course. She presented with severe hemolytic anemia and mild renal dysfunction but did not have enterohemorrhagic diarrhea. The first culture test of her stool sample collected using a swab upon admission yielded no signs of STEC, leading to an initial diagnosis of atypical HUS; thus, eculizumab was administered adding to red blood cell transfusion and recombinant thrombomodulin alfa and haptoglobin. However, a subsequent culture test of her second stool sample revealed the presence of O80:H2 stx2, confirming the diagnosis of STEC-HUS. Subsequently, the patient's condition improved, and her serum creatinine level gradually normalized over the course of 3 months. Conclusion: Diligently diagnosis is crucial in cases lacking typical STEC-HUS symptoms. We advocate for repeated stool culture testing to ensure accurate identification and timely management of such cases.

4.
Biomed Res Int ; 2024: 6231095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015603

RESUMO

Background: Studies have concentrated on the therapeutic potential of thymoquinone (TQ), a natural polyphenol, in diverse malignancies, such as colorectal cancer. Nevertheless, the precise mechanisms of TQ-mediated anticancer properties are not yet fully elucidated. Objective: The present study has been designed to scrutinize the impact of TQ on 5-fluorouracil (5-FU)-mediated apoptosis in SW-480 cells. Materials and Methods: SW-480 cells were treated with TQ, 5-FU, and a combination of TQ + 5-FU. MTT assay was employed to assess cell viability. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to evaluate apoptotic markers comprising Bcl-2, Bax, and caspase-9 expression levels. The γ-H2AX protein expression was assessed by western blotting, and Annexin V flow cytometry was implemented to determine the apoptosis rate. Results: 5-FU significantly reversed the cell proliferation in a dose-dependent circumstance. The concurrent administration of TQ and 5-FU led to a substantial inhibition of cell growth in comparison to single treatments (p < 0.05). TQ also facilitated apoptosis via upregulating Bax and caspase-9 proapoptotic markers and suppressing antiapoptotic mediators, like Bcl-2. In addition, TQ augmented 5-FU-induced apoptosis in SW-480 cells. 5-FU, combined with TQ, increased the protein expression of γ-H2AX in SW-480 cells compared with groups treated with TQ and 5-FU alone. Conclusion: The present study's findings unveil the significance of TQ as a potential therapeutic substance in colorectal cancer, particularly through enhancing 5-FU-induced apoptosis.


Assuntos
Apoptose , Benzoquinonas , Proliferação de Células , Neoplasias do Colo , Fluoruracila , Humanos , Fluoruracila/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proliferação de Células/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Caspase 9/metabolismo , Caspase 9/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo
5.
J Biol Chem ; : 107531, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971312

RESUMO

TOR protein kinases serve as the catalytic subunit of the TORC1 and TORC2 complexes, which regulate cellular growth, proliferation and survival. In the fission yeast, Schizosaccharomyces pombe, cells lacking TORC2 or its downstream kinase Gad8 (AKT or SGK1 in human cells) exhibit sensitivity to a wide range of stress conditions, including DNA damage stress. One of the first responses to DNA damage is the phosphorylation of C-terminal serine residues within histone H2AX in human cells (γH2AX), or histone H2A in yeast cells (γH2A). The kinases responsible for γH2A in S. pombe are the two DNA damage checkpoint kinases Rad3 and Tel1 (ATR and ATM, respectively, in human cells). Here we report that TORC2-Gad8 signaling is required for accumulation of γH2A in response to DNA damage and during quiescence. Using the TOR specific inhibitor, Torin1, we demonstrate that the effect of TORC2 on γH2A in response to DNA damage is immediate, rather than adaptive. The lack of γH2A is restored by deletion mutations of transcription and chromatin modification factors, including loss of components of Paf1C, SAGA, Mediator and the bromo-domain proteins Bdf1/Bdf2. Thus, we suggest that TORC2-Gad8 may affect the accumulation of γH2A by regulating chromatin structure and function.

6.
Plant Signal Behav ; 19(1): 2375673, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38972043

RESUMO

OBJECTIVE: This study aimed to investigate the regulatory effects of exogenous hydrogen sulfide (H2S) on seed germination, seedling growth, and reactive oxygen species (ROS) homeostasis in alfalfa under chromium (Cr) ion (III) stress. METHODS: The effects of 0-4 mM Cr(III) on the germination and seedling growth of alfalfa were first assessed. Subsequently, following seed NaHS immersion, the influence of H2S on alfalfa seed germination and seedling growth under 2 mM Cr(III) stress was investigated, and the substance contents and enzyme activities associated with ROS metabolism were quantified. RESULTS: Compared to the control group, alfalfa plant germination was delayed under 2 mM Cr(III) stress for up to 48 h (p < 0.05). At 120 h, the total seedling length was approximately halved, and the root length was roughly one-third of the control. Treatment with 0.02-0.1 mM NaHS alleviated the delay in germination and root growth inhibition caused by 2 mM Cr(III) stress, resulting in an increased ratio of root length to hypocotyl length from 0.57 to 1 above. Additionally, immersion in 0.05 mM NaHS reduced hydrogen peroxide (H2O2) and oxygen-free radicals (O2· -) levels (p < 0.05), boosted glutathione (GSH) levels (p < 0.05), and notably enhanced catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities (p < 0.05) compared to the 2 mM Cr(III) stress treatment group. CONCLUSION: Seed immersion in NaHS mitigated the delay in germination and inhibition of root elongation under 2 mM Cr(III) stress. This effect is likely attributed to the regulation of intracellular ROS homeostasis and redox balance through enzymatic and non-enzymatic systems; thus, providing a potential mechanism for combating oxidative stress.


Assuntos
Cromo , Germinação , Medicago sativa , Espécies Reativas de Oxigênio , Sementes , Sulfetos , Medicago sativa/efeitos dos fármacos , Medicago sativa/metabolismo , Medicago sativa/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Cromo/farmacologia , Germinação/efeitos dos fármacos , Sulfetos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
7.
Ann Work Expo Health ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981129

RESUMO

This study evaluates the effectiveness of self-assessed exposure (SAE) data collection for characterization of hydrogen sulfide (H2S) risks in water and wastewater management, challenging the adequacy of traditional random or campaign sampling strategies. We compared 3 datasets derived from distinct strategies: expert data with activity metadata (A), SAE without metadata (B), and SAE with logbook metadata (C). The findings reveal that standard practices of random sampling (dataset A) fail to capture the sporadic nature of H2S exposure. Instead, SAE methods enhanced by logbook metadata and supported by reliable detection and calibration infrastructure (datasets B and C) are more effective. When assessing risk, particularly peak exposure risks, it is crucial to adopt measures that capture exposure variability, such as the range and standard deviations. This finer assessment is vital where high H2S peaks occur in confined spaces. Risk assessment should incorporate indices that account for peak exposure, utilizing variability measures like range and standard or geometric standard deviation to reflect the actual risk more accurately. For large datasets, a histogram is just as useful as statistical measures. This approach has revealed that not only wastewater workers but also water distribution network workers, can face unexpectedly high H2S levels when accessing confined underground spaces. Our research underscores the need for continuous monitoring with personal electrochemical gas detector alarm systems, particularly in environments with variable and potentially hazardous exposure levels.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124673, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38981288

RESUMO

The ion association of salts aqueous solutions have long captivated the attention of researchers within the field of physical chemistry. In this paper, we have performed a comprehensive analysis of ion interactions in sodium sulfate (Na2SO4) aqueous solutions using a combination of high-resolution techniques, including excess (ERS) and two-dimensional correlation (2DCRS) Raman spectroscopy in conjunction with molecular dynamics (MD) calculations. The Raman spectrum shows that two inflection points in the Raman shift of the O-H vibration are observed with the increase in Na2SO4 concentration. Simultaneously, a new peak of the SO42- vibration appears at first inflection point, representing the formation of ion association. Further analysis based on ERS and 2CRS reveals that these two inflection points correspond respectively to the formation of ion pairs (CIPs) and small ion clusters. Importantly, MD simulations confirm the above experimental results. Our study provides evidence for ion association and clustering in aqueous in salt ion aqueous solutions.

9.
ACS Sens ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984447

RESUMO

A phosphorus-doped carbon nanotube (CNT) aerogel as the support material was loaded with Pt nanoparticles in fuel cell-type gas sensors for ultrasensitive H2 detection. The high surface area of the CNT scaffold is favorable to providing abundant active sites, and the high electrical conductivity facilitates the transport of carriers generated by electrochemical reactions. In addition, the CNT aerogel was doped with phosphorus (P) to further enhance the conductivity and electrochemical catalytic activity. As a result, the fuel cell-type gas sensor using the Pt/CNT aerogel doped with the optimal P content as the sensing material shows considerable performance for H2 detection at room temperature. The sensor exhibits an ultrahigh response of -921.9 µA to 15,000 ppm of H2. The sensitivity is -0.063 µA/ppm, which is 21 times higher than that of the conventional Pt/CF counterpart. The sensor also exhibits excellent repeatability and humidity resistance, as well as fast response/recovery; the response/recovery times are 31 and 4 s to 3000 ppm of H2, respectively. The modulation of the structure and catalytic properties of the support material is responsible for the improvement of the sensor performance, thus providing a feasible solution for optimizing the performance of fuel cell-type gas sensors.

10.
Clin Exp Nephrol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002031

RESUMO

The Wilms tumor 1 (WT1) gene was first identified in 1990 as a strong candidate for conferring a predisposition to Wilms tumor. The WT1 protein has four zinc finger structures (DNA binding domain) at the C-terminus, which bind to transcriptional regulatory sequences on DNA, and acts as a transcription factor. WT1 is expressed during kidney development and regulates differentiation, and is also expressed in glomerular epithelial cells after birth to maintain the structure of podocytes. WT1-related disorders are a group of conditions associated with an aberrant or absent copy of the WT1 gene. This group of conditions encompasses a wide phenotypic spectrum that includes Denys-Drash syndrome (DDS), Frasier syndrome (FS), Wilms-aniridia-genitourinary-mental retardation syndrome, and isolated manifestations of nephropathy or Wilms tumor. The genotype-phenotype correlation is becoming clearer: patients with missense variants in DNA binding sites including C2H2 sites manifest DDS and develop early-onset and rapidly developing end-stage kidney disease. A deeper understanding of the genotype-phenotype correlation has also been obtained in DDS, but no such correlation has been observed in FS. The incidence of Wilms tumor is higher in patients with DDS and exon-truncating variants than in those with non-truncating variants. Here, we briefly describe the genetic background of this highly complicated WT1-related disorders.

11.
J Colloid Interface Sci ; 675: 772-782, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39002228

RESUMO

ZnxCd1-xS photocatalysts have been widely investigated due to their diverse morphologies, suitable band gaps/band edge positions, and high electronic mobility. However, the sluggish charge separation and severe charge recombination impede the application of ZnxCd1-xS for hydrogen evolution reaction (HER). Herein, doping of phosphorus (P) atoms into Zn0.3Cd0.7S has been implemented to elevate S vacancies concentration as well as tune its Fermi level to be located near the impurity level of S vacancies, prolonging the lifetime of photogenerated electrons. Moreover, P doping induces a hybridized state in the bandgap, leading to an imbalanced charge distribution and a localized built-in electric field for effective separation of photogenerated charge carriers. Further construction of intimate heterojunctions between P-Zn0.3Cd0.7S and MoS2 accelerates surface redox reaction. Benefiting from the above merits, 1 % MoS2/P-Zn0.3Cd0.7S exhibits a high hydrogen production rate of 30.65 mmol·g-1·h-1 with AQE of 22.22 % under monochromatic light at 370 nm, exceeding most ZnxCd1-xS based photocatalysts reported so far. This work opens avenues to fabricate examplary photocatalysts for solar energy conversion and beyond.

12.
J Colloid Interface Sci ; 675: 783-791, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39002229

RESUMO

Currently, carbon-based porous materials for hydrogen (H2) storage and carbon dioxide (CO2) capture are mostly applied at higher pressures (30-300 bar). However, applications for H2 storage and CO2 capture under ambient pressure conditions are significant for the development of portable, household, and miniaturized H2 energy technologies. This demands a higher standard for the interface microenvironment of adsorbents. Derived from polyurethane foams (PUFs) solid waste, the hierarchical porous foam carbon with interpenetrating-type pore structures exhibits high specific surface area (SBET = 1753 m2/g), abundant oxygen and nitrogen functional groups, and a hierarchical nanopore structure (VUltra = 0.232 cm3/g, VMicro = 0.628 cm3/g and VMeso = 0.186 cm3/g) through the mild-homogeneous sonication-assisted activation process. Under the limited adsorption of pore interface microenvironment composed by hierarchical nanopore structure and dipole-induced interaction (H(Ⅱ)-H(Ⅰ)···N/O and O(Ⅱ) = C(Ⅰ) = O(Ⅱ)···N/O), it exhibits an excellent H2 storage density (2.92 wt% at 77 K, 1 bar) and CO2 capture capacity (5.28 mmol/g at 298 K, 1 bar). This research approach can serve as a reference for the dual-functional design of porous foam carbon, and promote the development of adsorption materials for CO2 capture and energy gas storage under ambient conditions.

13.
Biomed Pharmacother ; 177: 117110, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002439

RESUMO

Photodynamic therapy (PDT), employing photosensitizers to induce formation of reactive oxygen species (ROS) for tumor elimination, is emerging as a promising treatment modality in oncology due to its unique benefits. However, the PDT application in ovarian cancer, the most prevalent and lethal type of gynecological malignancy with a severe hypoxic microenvironment, remains unknown. This study revealed that photosensitizer TMPyP4 exhibited enhanced efficacy under H2O2 stimulation, with minimal change in cytotoxicity compared to TMPyP4 alone. The results showed that H2O2 increased ROS production induced by TMPyP4, leading to exacerbated mitochondrial dysfunction and DNA damage, ultimately inhibiting proliferation and inducing apoptosis in ovarian cancer cells. Mechanistically, H2O2 primarily enhanced the therapeutic efficacy of PDT with TMPyP4 against ovarian cancer cells by degrading HIF-1α, which subsequently modulated the HIF-1 signaling pathway, thereby alleviating the hypoxic environment in ovarian cancer cells. Our findings underscore the therapeutic potential of targeting HIF-1α within the hypoxic microenvironment for PDT in ovarian cancer and propose a novel integrated strategy for PDT treatment of this malignancy in vitro.

14.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000320

RESUMO

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica
15.
Plants (Basel) ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999603

RESUMO

Both melatonin and hydrogen sulfide (H2S) mitigate chromium (Cr) toxicity in plants, but the specific interaction between melatonin and H2S in Cr detoxification remains unclear. In this study, the interaction between melatonin and H2S in Cr detoxification was elucidated by measuring cell wall polysaccharide metabolism and antioxidant enzyme activity in maize. The findings revealed that exposure to Cr stress (100 µM K2Cr2O7) resulted in the upregulation of L-/D-cysteine desulfhydrase (LCD/DCD) gene expression, leading to a 77.8% and 27.3% increase in endogenous H2S levels in maize leaves and roots, respectively. Similarly, the endogenous melatonin system is activated in response to Cr stress. We found that melatonin had a significant impact on the relative expression of LCD/DCD, leading to a 103.3% and 116.7% increase in endogenous H2S levels in maize leaves and roots, respectively. In contrast, NaHS had minimal effects on the relative mRNA expression of serotonin-Nacetyltransferase (SNAT) and endogenous melatonin levels. The production of H2S induced by melatonin is accompanied by an increase in Cr tolerance, as evidenced by elevated gene expression, elevated cell wall polysaccharide content, increased pectin methylesterase activity, and improved antioxidant enzyme activity. The scavenging of H2S decreases the melatonin-induced Cr tolerance, while the inhibitor of melatonin synthesis, p-chlorophenylalanine (p-CPA), has minimal impact on H2S-induced Cr tolerance. In conclusion, our findings suggest that H2S serves as a downstream signaling molecule involved in melatonin-induced Cr tolerance in maize.

16.
Nutrients ; 16(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999752

RESUMO

Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.


Assuntos
Cisteína , Suplementos Nutricionais , Glutationa , Regulação para Cima , Deficiência de Vitamina D , Vitamina D , Humanos , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/genética , Vitamina D/sangue , Vitamina D/administração & dosagem , Vitamina D/análogos & derivados , Glutationa/metabolismo , Glutationa/sangue , Animais , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
17.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000122

RESUMO

Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest, including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic pathways, resulting in improved treatment outcomes. This review gives the reader some pills of successful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular, metabolic, and neurodegenerative disorders.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Humanos , Animais , Ligantes , Descoberta de Drogas/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo
18.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000155

RESUMO

Transition metal oxides are a great alternative to less expensive hydrogen evolution reaction (HER) catalysts. However, the lack of conductivity of these materials requires a conductor material to support them and improve the activity toward HER. On the other hand, carbon paste electrodes result in a versatile and cheap electrode with good activity and conductivity in electrocatalytic hydrogen production, especially when the carbonaceous material is agglomerated with ionic liquids. In the present work, an electrode composed of multi-walled carbon nanotubes (MWCNTs) and cobalt ferrite oxide (CoFe2O4) was prepared. These compounds were included on an electrode agglomerated with the ionic liquid N-octylpyridinium hexafluorophosphate (IL) to obtain the modified CoFe2O4/MWCNTs/IL nanocomposite electrode. To evaluate the behavior of each metal of the bimetallic oxide, this compound was compared to the behavior of MWCNTs/IL where a single monometallic iron or cobalt oxides were included (i.e., α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL). The synthesis of the oxides has been characterized by X-ray diffraction (XRD), RAMAN spectroscopy, and field emission scanning electronic microscopy (FE-SEM), corroborating the nanometric character and the structure of the compounds. The CoFe2O4/MWCNTs/IL nanocomposite system presents excellent electrocatalytic activity toward HER with an onset potential of -270 mV vs. RHE, evidencing an increase in activity compared to monometallic oxides and exhibiting onset potentials of -530 mV and -540 mV for α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL, respectively. Finally, the system studied presents excellent stability during the 5 h of electrolysis, producing 132 µmol cm-2 h-1 of hydrogen gas.


Assuntos
Cobalto , Compostos Férricos , Hidrogênio , Líquidos Iônicos , Nanocompostos , Nanotubos de Carbono , Óxidos , Cobalto/química , Nanotubos de Carbono/química , Líquidos Iônicos/química , Nanocompostos/química , Catálise , Hidrogênio/química , Compostos Férricos/química , Óxidos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Difração de Raios X , Análise Espectral Raman
19.
J Colloid Interface Sci ; 674: 702-712, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38950469

RESUMO

The diffusion and adsorption properties of the O2/H2O corpuscles at active sites play a crucial role in the fast photo-electrocatalytic reaction of hydrogen peroxide (H2O2) production. Herein, SnS2 nanosheets with abundant interfacial boundaries and large specific areas are encapsulated into hollow mesoporous carbon spheres (CSs) with flexibility, producing a yolk-shell SnS2@CSs Z-scheme photocatalyst. The nanoconfined microenvironment of SnS2@CSs could enrich O2/H2O in catalyst cavities, which allows sufficient internal O2 transfer, improving the surface chemistry of catalytic O2 to O2- conversion and increasing reaction kinetics. By shaping the mixture of SnS2@CSs and polytetrafluoroethylene (PTFE) on carbon felt (CF) using the vacuum filtration method, the natural air-breathing gas diffusion photoelectrode (AGPE) was prepared, and it can achieve an accumulated concentration of H2O2 about 12 mM after a 10 h stability test from pure water at natural pH without using electrolyte and sacrificial agents. The H2O2 product is upgraded through one downstream route of conversion of H2O2 to sodium perborate. The improved H2O2 production performance could be ascribed to the combination of the confinement effect of SnS2@CSs and the rich triple phase interfaces with the continuous hydrophobic layer and hydrophilic layer to synergistically modulate the photoelectron catalytic microenvironment, which enhanced the transfer of O2 mass and offered a stronger affinity to oxygen bubbles. The strategy of combining the confined material with the air-breathing gas diffusion electrode equips a wide practical range of applications for the synthesis of high-yield hydrogen peroxide.

20.
Int J Stem Cells ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952059

RESUMO

Histone H2B monoubiquitination (H2Bub1) is a dynamic posttranslational modification which are linked to DNA damage and plays a key role in a wide variety of regulatory transcriptional programs. Cancer cells exhibit a variety of epigenetic changes, particularly any aberrant H2Bub1 has frequently been associated with the development of tumors. Nevertheless, our understanding of the mechanisms governing the histone H2B deubiquitination and their associated functions during stem cell differentiation remain only partially understood. In this study, we wished to investigate the role of deubiquitinating enzymes (DUBs) on H2Bub1 regulation during stem cell differentiation. In a search for potential DUBs for H2B monoubiquitination, we identified Usp7, a ubiquitin-specific protease that acts as a negative regulator of H2B ubiquitination during the neuronal differentiation of mouse embryonic carcinoma cells. Loss of function of the Usp7 gene by a CRISPR/Cas9 system during retinoic acid-mediated cell differentiation contributes to the increase in H2Bub1. Furthermore, knockout of the Usp7 gene particularly elevated the expression of neuronal differentiation related genes including astryocyte-specific markers and oligodendrocyte-specific markers. In particular, glial lineage cell-specific transcription factors including oligodendrocyte transcription factor 2, glial fibrillary acidic protein, and SRY-box transcription factor 10 was significantly upregulated during neuronal differentiation. Thus, our findings suggest a novel role of Usp7 in gliogenesis in mouse embryonic carcinoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA