Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065682

RESUMO

Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3ß pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.

2.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062806

RESUMO

Histone arginine residue methylation is crucial for individual development and gene regulation. However, the dynamics of histone arginine methylation in response to cellular stress remains largely unexplored. In addition, the interplay and regulatory mechanisms between this and other histone modifications are important scientific questions that require further investigation. This study aimed to investigate the changes in histone arginine methylation in response to DNA damage. We report a global decrease in histone H3R26 symmetric dimethylation (H3R26me2s) and hypoacetylation at the H3K27 site in response to DNA damage. Notably, H3R26me2s exhibits a distribution pattern similar to that of H3K27ac across the genome, both of which are antagonistic to H3K27me3. Additionally, histone deacetylase 1 (HDAC1) may be recruited to the H3R26me2s demethylation region to mediate H3K27 deacetylation. These findings suggest crosstalk between H3R26me2s and H3K27ac in regulating gene expression.


Assuntos
Arginina , Histona Desacetilase 1 , Histonas , Histonas/metabolismo , Arginina/metabolismo , Metilação , Humanos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Dano ao DNA , Acetilação , Processamento de Proteína Pós-Traducional , Estresse Fisiológico/genética
3.
Adv Sci (Weinh) ; 11(23): e2310120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647423

RESUMO

G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.


Assuntos
Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Humanos , Microscopia Crioeletrônica/métodos , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Histamina/metabolismo , Histamina/química , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/química , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/química , Receptores Histamínicos H3/genética , Transdução de Sinais
4.
Biochem Pharmacol ; : 115988, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38159685

RESUMO

The histamine H3 receptor (H3R) is a neurotransmitter receptor that is primarily found in the brain, where it controls the release and synthesis of histamine, as well as the release of other neurotransmitters (e.g. dopamine, serotonin). Notably, 20 H3R isoforms are differentially expressed in the human brain as a consequence of alternative gene splicing. The hH3R-445, -415, -365 and -329 isoforms contain the prototypical GPCR (7TM) structure, yet exhibit deletions in the third intracellular loop, a structural domain that is pivotal for G protein-coupling, signaling and regulation. To date, the physiological relevance underlying the individual and combinatorial function of hH3R isoforms remains poorly understood. Nevertheless, given their significant implication in physiological processes (e.g. cognition, homeostasis) and neurological disorders (e.g. Alzheimer's and Parkinson's disease, schizophrenia), widespread targeting of hH3R isoforms by drugs may lead to on-target side effects in brain regions that are unaffected by disease. To this end, isoform- and/or pathway-selective targeting of hH3R isoforms by biased agonists could be of therapeutic relevance for the development of region- and disease-specific drugs. Hence, we have evaluated ligand biased signaling at the hH3R-445, -415, -365 and -329 isoforms across various Gαi/o-mediated (i.e. [35S]GTPγS accumulation, cAMP inhibition, pERK1/2 activation, pAKT T308/S473 activation) and non Gαi/o-mediated (i.e. ß-arrestin2 recruitment) endpoints that are relevant to neurological diseases. Our findings indicate that H3R agonists display significantly altered patterns in their degree of ligand bias, in a pathway- and isoform-dependent manner, underlining the significance to investigate GPCRs with multiple isoforms to improve development of selective drugs. SUBJECT CATEGORY: Neuropharmacology.

5.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110645

RESUMO

H3R is becoming an attractive and promising target for epilepsy treatment as well as the discovery of antiepileptics. In this work, a series of 6-aminoalkoxy-3,4-dihydroquinolin-2(1H)-ones was prepared to screen their H3R antagonistic activities and antiseizure effects. The majority of the target compounds displayed a potent H3R antagonistic activity. Among them, compounds 2a, 2c, 2h, and 4a showed submicromolar H3R antagonistic activity with an IC50 of 0.52, 0.47, 0.12, and 0.37 µM, respectively. The maximal electroshock seizure (MES) model screened out three compounds (2h, 4a, and 4b) with antiseizure activity. Meanwhile, the pentylenetetrazole (PTZ)-induced seizure test gave a result that no compound can resist the seizures induced by PTZ. Additionally, the anti-MES action of compound 4a fully vanished when it was administrated combined with an H3R agonist (RAMH). These results showed that the antiseizure role of compound 4a might be achieved by antagonizing the H3R receptor. The molecular docking of 2h, 4a, and PIT with the H3R protein predicted their possible binding patterns and gave a presentation that 2h, 4a, and PIT had a similar binding model with H3R.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Ratos , Animais , Humanos , Histamina , Ratos Wistar , Simulação de Acoplamento Molecular , Antagonistas dos Receptores Histamínicos H3/química , Receptores Histamínicos H3/metabolismo , Relação Dose-Resposta a Droga , Anticonvulsivantes/química , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Pentilenotetrazol/efeitos adversos
6.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068253

RESUMO

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores Histamínicos
7.
J Biol Chem ; 299(4): 104583, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871761

RESUMO

The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a ß-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.


Assuntos
Receptores de Dopamina D2 , Receptores Histamínicos H3 , Transdução de Sinais , Animais , Camundongos , Corpo Estriado/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/metabolismo , Transdução de Sinais/fisiologia
8.
Bioorg Med Chem ; 78: 117132, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542960

RESUMO

Multitargeting ligands on enzymes and receptors may generate a profile for a potential treatment of cognitive impairment. Considering this, a set of 21 substituted aryl-alkyl-piperazines were designed, prepared and tested for their binding affinities at histamine H3 and dopamine D3 receptors (H3R and D3R, respectively) as well as acetyl- and butyrylcholinesterases (AChE/BChE) as potentially synergistic profile. Initial screening of the compounds at H3R and D3R was done at 1 or 10 µM and 100 µM at AChE and BChE assays. The most promising compounds were then evaluated in full concentration-response curves to estimate the Ki and IC50 values. Results showed that several compounds were ligands at H3R (n = 10), D3R (n = 6), AChE (n = 3), and BChE (n = 9). Compounds LINS05006 (Ki H3R 2.8 µM; D3R 0.7 µM; IC50 BChE 26.3 µM) and LINS05015 (Ki H3R 1.1 µM; D3R 3.1 µM; IC50 AChE 97.8 µM; BChE 43.7 µM) are highlighted since presented affinity in three different. These results suggest that methylpiperazine moiety led to balanced activity at all three classes of targets, and longer linker provided the best affinities. These compounds presented high ligand efficiency values (LE > 0.3) and may have adequate pharmacokinetic profile as suggested by calculated physicochemical properties.


Assuntos
Disfunção Cognitiva , Receptores Histamínicos H3 , Humanos , Histamina , Dopamina , Ligantes , Butirilcolinesterase/metabolismo , Receptores Histamínicos H3/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Inibidores da Colinesterase/química , Relação Estrutura-Atividade
9.
Mol Neurobiol ; 60(1): 183-202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36245064

RESUMO

The dorsolateral striatum (DLS) is the critical neural substrate that plays a role in motor control and motor learning. Our past study revealed a direct histaminergic projection from the tuberomammillary nucleus (TMN) of the hypothalamus to the rat striatum. However, the afferent of histaminergic fibers in the mouse DLS, the effect of histamine on DLS neurons, and the underlying receptor and ionic mechanisms remain unclear. Here, we demonstrated a direct histaminergic innervation from the TMN in the mouse DLS, and histamine excited both the direct-pathway spiny projection neurons (d-SPNs) and the indirect-pathway spiny projection neurons (i-SPNs) of DLS via activation of postsynaptic H1R and H2R, albeit activation of presynaptic H3R suppressed neuronal activity by inhibiting glutamatergic synaptic transmission on d-SPNs and i-SPNs in DLS. Moreover, sodium-calcium exchanger 3 (NCX3), potassium-leak channels linked to H1R, and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) coupled to H2R co-mediated the excitatory effect induced by histamine on d-SPNs and i-SPNs in DLS. These results demonstrated the pre- and postsynaptic receptors and their downstream multiple ionic mechanisms underlying the inhibitory and excitatory effects of histamine on d-SPNs and i-SPNs in DLS, suggesting a potential modulatory effect of the central histaminergic system on the DLS as well as its related motor control and motor learning.


Assuntos
Histamina , Neurônios , Animais , Camundongos , Corpo Estriado/metabolismo , Histamina/farmacologia , Neurônios/metabolismo , Canais de Potássio , Receptores Histamínicos H1/metabolismo , Transmissão Sináptica
10.
Front Immunol ; 14: 1292049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259494

RESUMO

Background: Induced regulatory T cells (iTregs) are a heterogeneous population of immunosuppressive T cells with therapeutic potential. Treg cells show a range of plasticity and can acquire T effector-like capacities, as is the case for T helper 1 (Th1)-like iTregs. Thus, it is important to distinguish between functional plasticity and lineage instability. Aplastic anemia (AA) is an autoimmune disorder characterized by immune-mediated destruction of hematopoietic stem and progenitor cells in the bone marrow (BM). Th1-like 1 iTregs can be potent suppressors of aberrant Th1-mediated immune responses such as those that drive AA disease progression. Here we investigated the function of the epigenetic enzyme, protein arginine methyltransferase 5 (PRMT5), its regulation of the iTreg-destabilizing deacetylase, sirtuin 1 (Sirt1) in suppressive Th1-like iTregs, and the potential for administering Th1-like iTregs as a cell-based therapy for AA. Methods: We generated Th1-like iTregs by culturing iTregs with IL-12, then assessed their suppressive capacity, expression of iTreg suppression markers, and enzymatic activity of PRMT5 using histone symmetric arginine di-methylation (H3R2me2s) as a read out. We used ChIP sequencing on Th1 cells, iTregs, and Th1-like iTregs to identify H3R2me2s-bound genes unique to Th1-like iTregs, then validated targets using CHiP-qPCR. We knocked down PRMT5 to validate its contribution to Th1-like iTreg lineage commitment. Finally we tested the therapeutic potential of Th1-like iTregs using a Th1-mediated mouse model of AA. Results: Exposing iTregs to the Th1 cytokine, interleukin-12 (IL-12), during early events of differentiation conveyed increased suppressive function. We observed increased PRMT5 enzymatic activity, as measured by H3R2me2s, in Th1-like iTregs, which was downregulated in iTregs. Using ChIP-sequencing we discovered that H3R2me2s is abundantly bound to the Sirt1 promoter region in Th1-like iTregs to negatively regulate its expression. Furthermore, administering Th1-like iTregs to AA mice provided a survival benefit. Conclusions: Knocking down PRMT5 in Th1-like iTregs concomitantly reduced their suppressive capacity, supporting the notion that PRMT5 is important for the superior suppressive capacity and stability of Th1-like iTregs. Conclusively, therapeutic administration of Th1-like iTregs in a mouse model of AA significantly extended their survival and they may have therapeutic potential.


Assuntos
Anemia Aplástica , Epigênese Genética , Interleucina-12 , Proteína-Arginina N-Metiltransferases , Animais , Camundongos , Diferenciação Celular/genética , Citocinas , Modelos Animais de Doenças , Interleucina-12/farmacologia , Sirtuína 1 , Proteína-Arginina N-Metiltransferases/genética
11.
J Agric Food Chem ; 70(37): 11678-11688, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36095239

RESUMO

Bifidobacteria are important mediators of immune system development within the gastrointestinal system and immunological homeostasis. The present study explored the anti-colitic activity of Bifidobacterium bifidum H3-R2 in a murine dextran sulfate sodium (DSS)-induced model of ulcerative colitis (UC). Moreover, this study offers novel insight regarding the molecular basis for the probiotic properties of B. bifidum H3-R2 by analyzing the underlying mechanisms whereby B. bifidum H3-R2-derived proteins affect the intestinal barrier. B. bifidum H3-R2 administration was sufficient to alleviate clinical manifestations consistent with DSS-induced colitis, restoring aberrant inflammatory cytokine production, enhancing tight junction protein expression, and positively impacting overall intestinal microecological homeostasis in these animals. Moreover, the bifidobacteria-derived GroEL and transaldolase (TAL) proteins were found to regulate tight junction protein expression via the NF-κB, myosin light chain kinase (MLCK), RhoA/Rho-associated protein kinase (ROCK), and mitogen-activated protein kinase (MAPK) signaling pathways, preventing the lipopolysaccharide (LPS)-mediated disruption of the intestinal epithelial cell barrier.


Assuntos
Bifidobacterium bifidum , Colite Ulcerativa , Colite , Animais , Bifidobacterium/metabolismo , Bifidobacterium bifidum/genética , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transaldolase/metabolismo
12.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015079

RESUMO

Altered regulation of neurotransmitters may lead to many pathophysiological changes in brain disorders including autism spectrum disorder (ASD). Given the fact that there are no FDA-approved effective treatments for the social deficits in ASD, the present study determined the effects of chronic systemic treatment of the novel multiple-active H3R/D2R/D3R receptor antagonist ST-2223 on ASD-related social deficits in a male Black and Tan Brachyury (BTBR) mice. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly and dose-dependently mitigated social deficits and disturbed anxiety levels of BTBR mice (p < 0.05) in comparison to the effects of aripiprazole (1 mg/kg, i.p.). Moreover, levels of monoaminergic neurotransmitters quantified by LC-MS/MS in four brain regions including the prefrontal cortex, cerebellum, striatum, and hippocampus unveiled significant elevation of histamine (HA) in the cerebellum and striatum; dopamine (DA) in the prefrontal cortex and striatum; as well as acetylcholine (ACh) in the prefrontal cortex, striatum, and hippocampus following ST-2223 (5 mg/kg) administration (all p < 0.05). These in vivo findings demonstrate the mitigating effects of a multiple-active H3R/D2R/D3R antagonist on social deficits of assessed BTBR mice, signifying its pharmacological potential to rescue core ASD-related behaviors and altered monoaminergic neurotransmitters. Further studies on neurochemical alterations in ASD are crucial to elucidate the early neurodevelopmental variations behind the core symptoms and heterogeneity of ASD, leading to new approaches for the future therapeutic management of ASD.

13.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897787

RESUMO

Conformational biosensors to monitor the activation state of G protein-coupled receptors are a useful addition to the molecular pharmacology assay toolbox to characterize ligand efficacy at the level of receptor proteins instead of downstream signaling. We recently reported the initial characterization of a NanoBRET-based conformational histamine H3 receptor (H3R) biosensor that allowed the detection of both (partial) agonism and inverse agonism on living cells in a microplate reader assay format upon stimulation with H3R ligands. In the current study, we have further characterized this H3R biosensor on intact cells by monitoring the effect of consecutive ligand injections in time and evaluating its compatibility with photopharmacological ligands that contain a light-sensitive azobenzene moiety for photo-switching. In addition, we have validated the H3R biosensor in membrane preparations and found that observed potency values better correlated with binding affinity values that were measured in radioligand competition binding assays on membranes. Hence, the H3R conformational biosensor in membranes might be a ready-to-use, high-throughput alternative for radioligand binding assays that in addition can also detect ligand efficacies with comparable values as the intact cell assay.


Assuntos
Técnicas Biossensoriais , Receptores Histamínicos H3 , Membrana Celular/metabolismo , Ligantes , Receptores Histamínicos , Receptores Histamínicos H3/metabolismo
14.
Front Pharmacol ; 13: 861094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721194

RESUMO

A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.

15.
Pharmaceuticals (Basel) ; 15(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35631399

RESUMO

Continuing with our program to obtain new histamine H3 receptor (H3R) ligands, in this work we present the synthesis, H3R affinity and in silico studies of a series of eight new synthetically accessible purine derivatives. These compounds are designed from the isosteric replacement of the scaffold presented in our previous ligand, pyrrolo[2,3-d]pyrimidine ring, by a purine core. This design also considers maintaining the fragment of bipiperidine at C-4 and aromatic rings with electron-withdrawing groups at N-9, as these fragments are part of the proposed pharmacophore. The in vitro screening results show that two purine derivatives, 3d and 3h, elicit high affinities to the H3R (Ki values of 2.91 and 5.51 nM, respectively). Both compounds are more potent than the reference drug pitolisant (Ki 6.09 nM) and show low toxicity with in vitro models (IC50 > 30 µM on HEK-293, SH-SY5Y and HepG2 cell lines). Subsequently, binding modes of these ligands are obtained using a model of H3R by docking and molecular dynamics studies, thus determining the importance of the purine ring in enhancing affinity due to the hydrogen bonding of Tyr374 to the N-7 of this heterocycle. Finally, in silico ADME properties are predicted, which indicate a promising future for these molecules in terms of their physical−chemical properties, absorption, oral bioavailability and penetration in the CNS.

16.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216402

RESUMO

Several of the drugs currently available for the treatment of premature ejaculation (PE) (e.g., local anesthetics or antidepressants) are associated with numerous safety concerns and exhibit weak efficacy. To date, no therapeutics for PE have been approved in the United States, highlighting the need to develop novel agents with sufficient efficacy and fewer side effects. In this study, we focused on the histamine H3 receptor (H3R) as a potential target for the treatment of PE and evaluated the effects of imetit (an H3R/H4R agonist), ciproxifan (an H3R antagonist), and JNJ-7777120 (an H4R antagonist) in vivo. Our in vivo electrophysiological experiments revealed that imetit reduced mechanical stimuli-evoked neuronal firing in anesthetized rats. This effect was inhibited by ciproxifan but not by JNJ-7777120. Subsequently, we evaluated the effect of imetit using a copulatory behavior test to assess ejaculation latency (EL) in rats. Imetit prolonged EL, although this effect was inhibited by ciproxifan. These findings indicate that H3R stimulation suppresses mechanical stimuli-evoked neuronal firing in the spinal-penile neurotransmission system, thereby resulting in prolonged EL. To our knowledge, this is the first report to describe the relationship between H3R and PE. Thus, H3R agonists may represent a novel treatment option for PE.


Assuntos
Agonistas dos Receptores Histamínicos/farmacologia , Histamina/metabolismo , Ejaculação Precoce/tratamento farmacológico , Ejaculação Precoce/metabolismo , Receptores Histamínicos H3/metabolismo , Animais , Imidazóis/farmacologia , Masculino , Piperidinas/farmacologia , Ratos , Ratos Wistar , Tioureia/análogos & derivados , Tioureia/farmacologia
17.
Br J Pharmacol ; 179(1): 141-158, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599829

RESUMO

BACKGROUND AND PURPOSE: There is emerging evidence for a critical role for epigenetic modifiers in the development of inflammatory bowel disease (IBD). Protein arginine methyltransferase 2 (PRMT2) is responsible for the methylation of arginine residues on histones and targets transcription factors involved in many cellular processes, including gene transcription, mRNA splicing, cell proliferation, and cell differentiation. In this study, the role and underlying mechanisms of PRMT2 in colitis were studied. EXPERIMENTAL APPROACH: A mouse dextran sulfate sodium (DSS)-induced experimental colitis model was used to study PRMT2 in colitis. Lentivirus-induced PRMT2 silencing or overexpression in vivo was applied to address the role of PRMT2 in colitis. Detailed western blot and expression analysis were done to understand epigenetic changes induced by PRMT2 in colitis. KEY RESULTS: PRMT2 is highly expressed in inflammatory bowel disease patients, in inflamed murine colon and in TNF-α stimulated murine gut epithelial cells. PRMT2 overexpression aggravates, while knockdown alleviates DSS-induced colitis, suggesting that PRMT2 is a pivotal mediator of colitis in mice. Mechanistically, PRMT2 mediates colitis by increasing repressive histone mark H3R8 asymmetric methylation (H3R8me2a) at the promoter region of the suppressor of cytokine signalling 3 promoter (SOCS3). Resultant inhibition of SOCS3 expression and inhibition of SOCS3-mediated degradation of TNF receptor associated factor 5 (TRAF5) via ubiquitination led to elevated TRAF5 expression and TRAF5-mediated downstream NF-κB/MAPK activation. CONCLUSION AND IMPLICATIONS: Our study demonstrates that PRMT2 acts as a transcriptional co-activator for proinflammatory genes during colitis. Hence, targeting PRMT2 may provide a novel therapeutic approach for colitis.


Assuntos
Colite , Histonas , Animais , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/farmacologia , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
18.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638980

RESUMO

G-protein-coupled receptors (GPCRs) are dimeric proteins, but the functional consequences of the process are still debated. Active GPCR conformations are promoted either by agonists or constitutive activity. Inverse agonists decrease constitutive activity by promoting inactive conformations. The histamine H3 receptor (H3R) is the target of choice for the study of GPCRs because it displays high constitutive activity. Here, we study the dimerization of recombinant and brain H3R and explore the effects of H3R ligands of different intrinsic efficacy on dimerization. Co-immunoprecipitations and Western blots showed that H3R dimers co-exist with monomers in transfected HEK 293 cells and in rodent brains. Bioluminescence energy transfer (BRET) analysis confirmed the existence of spontaneous H3R dimers, not only in living HEK 293 cells but also in transfected cortical neurons. In both cells, agonists and constitutive activity of the H3R decreased BRET signals, whereas inverse agonists and GTPγS, which promote inactive conformations, increased BRET signals. These findings show the existence of spontaneous H3R dimers not only in heterologous systems but also in native tissues, which are able to adopt a number of allosteric conformations, from more inactive to more active states.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos H3/metabolismo , Animais , Membrana Celular/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Dimerização , Células HEK293 , Humanos , Ligantes , Masculino , Conformação Proteica , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/agonistas , Receptores Histamínicos H3/química , Receptores Histamínicos H3/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transfecção
19.
Bioorg Chem ; 117: 105411, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34653944

RESUMO

During the past decades, histamine H3 receptors have received widespread attention in pharmaceutical research due to their involvement in pathophysiology of several diseases such as neurodegenerative disorders. In this context, blocking of these receptors is of paramount importance in progression of such diseases. In the current investigation, novel histamine H3 receptor ligands were designed by exploiting scaffold-hopping drug-design strategy. We inspected the designed molecules in terms of ADME properties, drug-likeness, as well as toxicity profiles. Additionally molecular docking and dynamics simulation studies were performed to predict binding mode and binding free energy calculations, respectively. Among the designed structures, we selected compound d2 and its demethylated derivative as examples for synthesis and affinity measurement. In vitro binding assays of the synthesized molecules demonstrated that d2 has lower binding affinity (Ki = 2.61 µM) in radioligand displacement assay to hH3R than that of demethylated form (Ki = 12.53 µM). The newly designed compounds avoid of any toxicity predictors resulted from extended in silico and experimental studies, can offer another scaffold for histamine H3R antagonists for further structure-activity relationship studies.


Assuntos
Desenho de Fármacos , Histamínicos/química , Histamínicos/farmacologia , Receptores Histamínicos H3/metabolismo , Descoberta de Drogas , Agonistas dos Receptores Histamínicos/química , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/química , Antagonistas dos Receptores Histamínicos/farmacologia , Humanos , Ligantes , Modelos Moleculares
20.
Life (Basel) ; 11(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34575100

RESUMO

Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA