RESUMO
Excessive tyrosinase expression leads to pigmented diseases in humans and browning in plants, necessitating effective tyrosinase inhibitors. This study investigated the inhibitory effect and mechanism of 7-hydroxycoumarin-3-carboxylic acid (7-HC-3-CA) on tyrosinase. Using UV-visible absorption spectroscopy, we found that 7-HC-3-CA effectively inhibited tyrosinase activity, with an IC50 value of 364 ± 1.3 µM. Enzyme kinetics, fluorescence methods and molecular simulation techniques revealed that 7-HC-3-CA acted as a reversible and competitive inhibitor, forming a stable complex with tyrosinase through hydrophobic interactions and hydrogen bonding. This altered the microenvironment of Tyr and Trp residues, causing the structural stretching and conformational changes that diminish catalytic activity. Preservation experiments demonstrated that 0.5 mM 7-HC-3-CA significantly reduced mass loss and decreased browning of fresh-sliced apples. It also lowered polyphenol oxidase activity from 0.22 to 0.18 and delayed phenolic oxidation, enhancing total phenolic content from 0.34 to 0.54, thereby controlling browning and extending storage life. Cell assays indicated that 0.5 mM 7-HC-3-CA had no significant impact on cell proliferation, with viability over 80 %. Acute toxicity tests proved that 0.5 mM of 7-HC-3-CA is completely non-lethal to KM mice. In conclusion, this study confirmed 7-HC-3-CA was a viable and safe antibrowning agent and revealed its potential application in the field of food preservation.
RESUMO
Deutenzalutamide is a new molecular entity androgen receptor antagonist. The primary aim of this study was to develop a population pharmacokinetic model of deutenzalutamide and evaluate effects of intrinsic and extrinsic factors on pharmacokinetics. A nonlinear mixed-effects modeling approach was performed to develop the population pharmacokinetic of deutenzalutamide using data from 1 Phase I trial of deutenzalutamide. Goodness-of-fit plots, prediction-corrected visual predictive check, and bootstrap analysis were carried out to evaluate the final model. Simulation for the developed model was used to evaluate the covariate effects on the pharmacokinetics of deutenzalutamide. A 2-compartment model with first-order absorption and elimination from the central compartment was established for deutenzalutamide. The final covariate included body weight on peripheral compartment volume. This is the first research developing the population pharmacokinetic model of deutenzalutamide in patients with metastatic castration-resistant prostate cancer, and it is expected to support the future clinical administration of deutenzalutamide.
RESUMO
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
RESUMO
IL-15 is a homeostatic cytokine for human T and NK cells. However, whether other cytokines influence the effect of IL-15 is not known. We studied the impact that IL-10, TGF-ß, IL-17A, and IFN-γ have on the IL-15-induced proliferation of human T cells and the expression of HLA class I (HLA-I) molecules. Peripheral blood lymphocytes (PBLs) were labeled with CFSE and stimulated for 12 days with IL-15 in the absence or presence of the other cytokines. The proportion of proliferating T cells and the expression of cell surface HLA-I molecules were analyzed using flow cytometry. The IL-15-induced proliferation of T cells was paralleled by an increase in the expression of HC-10-reactive HLA-I molecules, namely on T cells that underwent ≥5-6 cycles of cell division. It is noteworthy that the IL-15-induced proliferation of T cells was potentiated by IL-10 and TGF-ß but not by IL-17 or IFN-γ and was associated with a decrease in the expression of HC-10-reactive molecules. The cytokines IL-10 and TGF-ß potentiate the proliferative capacity that IL-15 has on human T cells in vitro, an effect that is associated with a reduction in the amount of HC-10 reactive HLA class I molecules induced by IL-15.
Assuntos
Proliferação de Células , Antígenos de Histocompatibilidade Classe I , Interferon gama , Interleucina-10 , Interleucina-15 , Interleucina-17 , Linfócitos T , Fator de Crescimento Transformador beta , Humanos , Proliferação de Células/efeitos dos fármacos , Interferon gama/farmacologia , Interferon gama/metabolismo , Interleucina-17/farmacologia , Interleucina-17/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Interleucina-10/metabolismo , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/citologia , Células Cultivadas , Ativação Linfocitária/efeitos dos fármacosRESUMO
The derivation of chromium (Cr) ecological risk thresholds in soils remains limited, despite their importance as measurement standards and indicators for enacting soil protection policies. In this study, toxicity of Cr in soil to different species was tested based on Log-Logistic dose-effect relationship. On this basis, combined with Cr toxicity measurement data in literature, the ecological risk threshold HC5 for protecting 95% species safety in soils with different properties was obtained by fitting species sensitivity distribution curve (SSD). This research collected various Cr toxicological data from Chinese cropland soils, based on 31 different endpoints covering soil fauna, functional indicators of microorganisms, terrestrial plants, etc., sourced from both our laboratory and existing literature. We applied the SSD method to estimate the hazardous concentration of Cr for HC5 and ultimately established a predictive model according to HC5 and different soil properties. As a result, the EC10 (an effective concentration of Cr resulting in 10% suppression of terminal biological activity) based on 7 different soils and 4 endpoints ranged from 16.8 to 148.0 mg kg-1, and the hormesis of Cr induction reached up to 109%. Overall, the toxicity (EC10) to microorganisms was much lower, while it was higher for graminoids. All the toxicity data were corrected through an aging factor with up to 540 days of equilibration before fitting the SSD curves. After that, a prediction model considering HC5 values and soil properties was established as LogHC5 = 3.003LogpH +0.651LogOC +0.013LogCEC - 0.476. The model was well-verified in field experiments, as the actual and predicted values fell within a 2-fold error range. This approach offers a rigorous scientific foundation for determining the Cr ecological risk threshold and could be important for the conservation of ecological species in soils.
RESUMO
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Assuntos
Neoplasias da Mama , Obesidade , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Feminino , Obesidade/complicações , Fatores de Risco , Índice de Massa Corporal , PrognósticoRESUMO
A complex extracted from the amniotic membrane in humans reduces post-surgical pain in mice by directly inhibiting pain-sensing neurons.
Assuntos
Analgésicos Opioides , Dor Pós-Operatória , Animais , Camundongos , Dor Pós-Operatória/tratamento farmacológico , Humanos , Analgésicos Opioides/farmacologia , Âmnio , Neurônios/fisiologia , Neurônios/efeitos dos fármacosRESUMO
A novel approach for investigating the formation of solid electrolyte interphase (SEI) in Na-ion batteries (NIB) through the coupling of in situ liquid electrochemical transmission electron microscopy (ec-TEM) and gas-chromatography mass-spectrometry (GC/MS) is proposed. To optimize this coupling, experiments are conducted on the sodiation of hard carbon materials (HC) using two setups: in situ ec-TEM holder and ex situ setup. Electrolyte (NP30) is intentionally degraded using cyclic voltammetry (CV), and the recovered liquid product is analyzed using GC/MS. Solid product (µ-chip) is analyzed using TEM techniques in a post-mortem analysis. The ex situ experiments served as a reference to for insertion of Na+ ions in the HC, SEI size (389 nm), SEI composition (P, Na, F, and O), and Na plating. The in situ TEM analysis reveals a cyclability limitation, this issue appears to be caused by the plating of Na in the form of a "foam" structure, resulting from the gas release during the reaction of Na with DMC/EC electrolyte. The foam structure, subsequently transformes into a second SEI, is electrochemically inactive and reduces the cyclability of the battery. Overall, the results demonstrate the powerful synergy achieved by coupling in situ ec-TEM and GC/MS techniques.
RESUMO
East Asian Passiflora virus (EAPV) causes passionfruit woodiness disease, a major threat limiting passionfruit production in eastern Asia, including Taiwan and Vietnam. In this study, an infectious cDNA clone of a Taiwanese severe isolate EAPV-TW was tagged with a green fluorescent protein (GFP) reporter to monitor the virus in plants. Nicotiana benthamiana and yellow passionfruit plants inoculated with the construct showed typical symptoms of EAPV-TW. Based on our previous studies on pathogenicity determinants of potyviral HC-Pros, a deletion of six amino acids (d6) alone and its association with a point mutation (F8I, simplified as I8) were conducted in the N-terminal region of the HC-Pro gene of EAPV-TW to generate mutants of EAPV-d6 and EAPV-d6I8, respectively. The mutant EAPV-d6I8 caused infection without conspicuous symptoms in N. benthamiana and yellow passionfruit plants, while EAPV-d6 still induced slight leaf mottling. EAPV-d6I8 was stable after six passages under greenhouse conditions and displayed a zigzag pattern of virus accumulation, typical of a beneficial protective virus. The cross-protection effectiveness of EAPV-d6I8 was evaluated in both N. benthamiana and yellow passionfruit plants under greenhouse conditions. EAPV-d6I8 conferred complete cross-protection (100%) against the wild-type EAPV-TW-GFP in both N. benthamiana and yellow passionfruit plants, as verified by no severe symptoms, no fluorescent signals, and PCR-negative status for GFP. Furthermore, EAPV-d6I8 also provided complete protection against Vietnam's severe strain EAPV-GL1 in yellow passionfruit plants. Our results indicate that the attenuated mutant EAPV-d6I8 has great potential to control EAPV in Taiwan and Vietnam via cross-protection.
Assuntos
Mutação , Doenças das Plantas , Potyvirus , Proteínas Virais , Proteção Cruzada , Cisteína Endopeptidases , Nicotiana/virologia , Nicotiana/genética , Passiflora/virologia , Passiflora/genética , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Potyvirus/genética , Deleção de Sequência , Taiwan , Vietnã , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
A lack of chronic rare earth element (REE) toxicity data for marine organisms has impeded the establishment of numerical REE water quality benchmarks (e.g., guidelines) to protect marine life and assess ecological risk. This study determined the chronic no (significant) effect concentrations (N(S)ECs) and median-effect concentrations (EC50s) of eight key REEs (yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy) and lutetium (Lu)) for 30 coastal marine organisms (encompassing 22 phyla and five trophic levels from temperate and tropical habitats). Organisms with calcifying life stages were most vulnerable to REEs, which competitively inhibit calcium uptake. The most sensitive organism was a sea urchin, with N(S)ECs ranging from 0.64 µg/L for Y to 1.9 µg/L for La and Pr, and EC50s ranging from 4.3 µg/L for Y to 14.4 µg/L for Pr. Conversely, the least sensitive organism was a cyanobacterium, with N(S)ECs ranging from 121 µg/L for Y to 469 µg/L for Pr, and EC50s ranging from 889 µg/L for Y to 3000 µg/L for Pr. Median sensitivity varied 215-fold across all organisms. The two-fold difference in median toxicity (µmol/L EC50) among REEs (Y â¼ Gd > Lu â¼ Nd â¼ Dy â¼ Ce > La â¼ Pr) was attributed to offset differences in binding affinity (log K) to cell surface receptors and the percentage of free metal ion (REE3+) in the test waters. The toxicity (EC50) of the remaining REEs (samarium, europium, terbium, holmium, thulium and ytterbium) was predicted using a combination of physicochemical data and measured EC50s for the eight tested REEs, with good agreement between predicted and measured EC50s for selected organisms. Numerical REE water quality guidelines to protect marine life were established using species sensitivity distributions (e.g., for 95 % species protection, values ranged from 1.1 µg/L for Y to 3.0 µg/L for La, Pr or Lu).
Assuntos
Organismos Aquáticos , Metais Terras Raras , Poluentes Químicos da Água , Animais , Metais Terras Raras/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Qualidade da Água/normasRESUMO
Background: Chronic back pain is a frequent and disabling health problem. There is evidence that ignorance and erroneous beliefs about chronic low back pain among health professionals interfere in the treatment of people who suffer from it. The Health Care Providers' Pain and Impairment Relationship Scale (HC-PAIRS) has been one of the most used scale to assess these misbeliefs, but no studies have been reported in Latin America. Method: We studied the factorial structure of the HC-PAIRS in health personnel and health sciences university students in two Latin American countries: Colombia (n = 930) and Chile (n = 190). Spain's data was taken of the original study of the Spanish version of the HC-PAIRS (171 Physiotherapy students). Additionally, the measurement invariance of this scale among Chile, Colombia and Spain was evaluated by calculating three nested models: configural, metric and scalar. We used a Confirmatory Factor Analysis (CFA) in both Latin American samples, with Maximum Likelihood Robust (MLR) estimation to estimate the parameters. For the final model in each sample, reliability was assessed with the Composite Reliability (CR) index, and to obtain the proportion of variance explained by the scale the Average Variance Extracted (AVE) was calculated. Results: The one-factor solution shows an acceptable fit in both countries after deleting items 1, 6, and 14. For the resulting scale, the CR value is adequate, but the AVE is low. There is scalar invariance between Chile and Colombia, but not between these two countries and Spain. Conclusions: HC-PAIRS is useful for detecting misconceptions about the relationship between chronic low back pain that would cause health personnel to give wrong recommendations to patients. However, it has psychometric weaknesses, and it is advisable to obtain other evidence of validity.
RESUMO
BACKGROUND: Transferrin receptor 1 (TfR1), glucose transporter 1 (GLUT1), and CD98hc are candidates for targeted therapy at the blood-brain barrier (BBB). Our objective was to challenge the expression of TfR1, GLUT1, and CD98hc in brain capillaries using the histone deacetylase inhibitor (HDACi) valproic acid (VPA). METHODS: Primary mouse brain capillary endothelial cells (BCECs) and brain capillaries isolated from mice injected intraperitoneally with VPA were examined using RT-qPCR and ELISA. Targeting to the BBB was performed by injecting monoclonal anti-TfR1 (Ri7217)-conjugated gold nanoparticles measured using ICP-MS. RESULTS: In BCECs co-cultured with glial cells, Tfrc mRNA expression was significantly higher after 6 h VPA, returning to baseline after 24 h. In vivo Glut1 mRNA expression was significantly higher in males, but not females, receiving VPA, whereas Cd98hc mRNA expression was unaffected by VPA. TfR1 increased significantly in vivo after VPA, whereas GLUT1 and CD98hc were unchanged. The uptake of anti-TfR1-conjugated nanoparticles was unaltered by VPA despite upregulated TfR expression. CONCLUSIONS: VPA upregulates TfR1 in brain endothelium in vivo and in vitro. VPA does not increase GLUT1 and CD98hc proteins. The increase in TfR1 does not result in higher anti-TfR1 antibody targetability, suggesting targeting sufficiently occurs with available transferrin receptors without further contribution from accessory VPA-induced TfR1.
Assuntos
Barreira Hematoencefálica , Células Endoteliais , Transportador de Glucose Tipo 1 , Receptores da Transferrina , Regulação para Cima , Ácido Valproico , Animais , Ácido Valproico/farmacologia , Receptores da Transferrina/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Masculino , Regulação para Cima/efeitos dos fármacos , Feminino , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Proteína-1 Reguladora de Fusão/metabolismo , Proteína-1 Reguladora de Fusão/genética , Camundongos Endogâmicos C57BLRESUMO
The minimum bactericidal concentration (MBC) of antibiotics is an important parameter for the potency of a drug in eradicating a bacterium as well as an important measure of the potential of a drug candidate in research and development. We have established a fluorescence-based microscopy method for the determination of MBCs against the non-tuberculous mycobacterium Mycobacterium abscessus (Mycobacteroides abscessus) to simplify and accelerate the performance of MBC determination compared to counting colony forming units on agar. Bacteria are labelled with the trehalose-coupled dye 3HC-2-Tre and analysed in a 96-well plate. The results of the new method are consistent with MBC determination by plating on agar. The method was used to evaluate the bactericidality of the antibiotics rifabutin, moxifloxacin, amikacin, clarithromycin and bedaquiline. Bactericidal effects against M. abscessus were observed, which are consistent with literature data.
Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Mycobacterium abscessus , Mycobacterium abscessus/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Microscopia de Fluorescência/métodos , Amicacina/farmacologia , Rifabutina/farmacologia , Diarilquinolinas/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Claritromicina/farmacologia , Moxifloxacina/farmacologiaRESUMO
Background: Depression is a global health concern with significant consequences, especially for women. Hormonal changes and gender disparities contribute to its prevalence. Hormonal contraceptives are widely used among women of reproductive age, but some users report mood-related side effects. Purpose: This study aims to investigate the relationship between hormonal contraceptive use and depression among women in Mogadishu, Somalia. Methods: An analytical cross-sectional study was conducted at two hospitals in Mogadishu, targeting married women aged 15-49 using hormonal contraceptives. A sample size of 227 participants was determined, and data was collected using semi-structured questionnaires, including the Patient Health Questionnaire-9 (PHQ-9) to assess depression. The data were analyzed using SPSS version 25, including multivariate logistic regression. Results: The prevalence of depression among participants was 33.5%, with significant associations observed between depression and occupation, income level, type of hormonal contraceptive used, and duration of contraceptive use. Housewives, individuals with lower income, users of oral pills and implant methods, as well as those with shorter durations of contraceptive use, constituted the high-risk groups for depression. Conclusion: Depression poses a concern among women using hormonal contraceptives in Mogadishu, Somalia. Healthcare providers should educate women about potential side effects and consider individualized contraceptive recommendations. Mental health support initiatives and awareness campaigns should be introduced. Future research is recommended to further understand and address depression in this context.
RESUMO
BACKGROUND: Chronic kidney disease (CKD) and hypertension are chronic diseases affecting a large portion of the population frequently coexistent and interdependent. The inability to produce/use adequate renal dopamine may contribute to the development of hypertension and renal dysfunction. The heterodimeric amino acid transporter LAT2/4F2hc (SLC7A8/SLC3A2 genes) promotes the uptake of L-DOPA, the natural precursor of dopamine. We examined the plausibility that SLC7A8/SLC3A2 gene polymorphisms may contribute to hypertensive CKD by affecting the L-DOPA uptake. METHODS: 421 subjects (203 men and 218 women, mean age of 78.9 ± 9.6 years) were recruited and divided in four groups according to presence/absence of CKD, defined as reduced estimated glomerular filtration rate (eGFR < 60 ml/min/m2) calculated using the creatinine-based Berlin Initiative Study-1 (BIS1) equation, and to presence/absence of hypertension (systolic blood pressure ≥ 140 and/or diastolic blood pressure ≥ 90 mmHg). Subjects were analysed for selected SNPs spanning the SLC7A8 and SLC3A2 loci by Sequenom MassARRAY iPLEX platform. RESULTS: The most significant SNP at the SLC3A2 (4F2hc) locus was rs2282477-T/C, with carriers of the C-allele having a lower chance to develop hypertension among CKD affected individuals [OR = 0.33 (CI 0.14-0.82); p = 0.016]. A similar association with hypertensive CKD was found for the SLC7A8 (LAT2) rs3783436-T/C, whose C-allele resulted associated with decreased risk of hypertension among subjects affected by CKD [OR = 0.56 (95% CI 0.35-0.90; p = 0.017]. The two variants were predicted to be potentially functional. CONCLUSIONS: The association between SLC3A2 and SLC7A8 variants to hypertension development in patients with renal failure could be linked to changes in L-DOPA uptake and consequently dopamine synthesis. Although the associations do not survive correction for Bonferroni multiple testing, and additional research is needed, our study opens new avenues for future basic and translational research in the field of hypertensive CKD.
Assuntos
Sistema y+ de Transporte de Aminoácidos , Hipertensão , Insuficiência Renal Crônica , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Predisposição Genética para Doença , Hipertensão/genética , Hipertensão/complicações , Levodopa/uso terapêutico , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Fatores de Risco , Sistema y+ de Transporte de Aminoácidos/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/genéticaRESUMO
Plastic pollution is worsening the living conditions on Earth, primarily due to the toxicity and stability of non-biodegradable plastics (NBPs). Photocatalytic cracking of NBPs is emerging as a promising way to cleave inert C-C bonds and abstract the carbon atoms from these wastes into valuable chemicals and fuels. However, controlling these processes is a huge challenge, ascribed to the complicated reactions of various NBPs. Herein, we summarize recent advances in the CO2 and carbon-radical-mediated photocatalytic cracking of NBPs, with an emphasis on the pivotal intermediates. The CO2-mediated cracking proceeded with indiscriminate C-H/C-C bond cleavage of NBPs and tandem photoreduction of CO2, while carbon-radical-mediated cracking was realized by the prior activation of C-H bonds for selective C-C bond cleavage of NBPs. Catalytic generation and conversion of different intermediates greatly depend on the kinds of active species and the structure of photocatalysts under irradiation. Meanwhile, the fate of a specific intermediate is compared with small molecule activation to reveal the key problems in the cracking of NBPs. Finally, the challenges and potential directions are discussed to improve the overall efficiency in the photocatalytic cracking of NBPs.
RESUMO
Given the increasing concern over Cd contamination of agricultural soils in China, reducing the availability of the toxic metal has become an important remedial strategy. However, the lack of a unified evaluation framework complicates the assessment of remediation efficiency of different practices. Here, we evaluated the general extraction method (GEM) of available Cd in nine typical soil types by comparing extraction agents, including CaCl2, EDTA, Mehlich-â ¢, HCl and DTPA. The safe grain concentration of different agricultural products from National Food Safety Standards Limits of Contaminants in Food (GB 2762-2022) was then applied to understand soil limited available Cd concentration based on dose-response curves. We also derived environmental risk threshold (HC5) values for Cd remediation in agricultural soils by constructing species sensitivity distribution (SSD) curves. The results showed that Mehlich-â ¢ best predicted Cd accumulation in crops (with 76.5% of explanation of grain Cd) and was selected as the GEM of soil available Cd for subsequent analyses. The regression coefficient (R2) of dose-response curves fitting between Cd absorption in crop tissues and soil available Cd extracted by GEM based on 30 different crop species varied from 51.0% to 79.5%, and the derived limit concentration of soil available Cd based on standard GB 2762-2022 was 0.18-0.76 mgâ§kg-1. An HC5 of 0.19 mgâ§kg-1 was then calculated, meaning that a concentration of available Cd in agricultural soil below 0.19 mgâ§kg-1 ensures that 95% of agricultural products meet the quality and safety requirements of standard GB 2762-2022. The prediction model was well verified in the field test, indicating that can correctly estimate the soil available Cd based on the content of Cd in plant. This study provides a robust scientific framework for deriving the risk threshold for Cd remediation in agricultural soils and could be quite useful for establishing soil remediation standards.
Assuntos
Cádmio , Recuperação e Remediação Ambiental , Poluentes do Solo , Solo , Agricultura , Cádmio/análise , China , Produtos Agrícolas , Recuperação e Remediação Ambiental/métodos , Solo/química , Poluentes do Solo/análiseRESUMO
Connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells are of paramount importance for intercellular communication. In physiological conditions, HCs can form gap junction (GJ) channels, providing a direct diffusive path between neighbouring cells. In addition, unpaired HCs provide conduits for the exchange of solutes between the cytoplasm and the extracellular milieu, including messenger molecules involved in paracrine signalling. The synergistic action of membrane potential and Ca2+ ions controls the gating of the large and relatively unselective pore of connexin HCs. The four orders of magnitude difference in gating sensitivity to the extracellular ([Ca2+]e) and the cytosolic ([Ca2+]c) Ca2+ concentrations suggests that at least two different Ca2+ sensors may exist. While [Ca2+]e acts as a spatial modulator of the HC opening, which is most likely dependent on the cell layer, compartment, and organ, [Ca2+]c triggers HC opening and the release of extracellular bursts of messenger molecules. Such molecules include ATP, cAMP, glutamate, NAD+, glutathione, D-serine, and prostaglandins. Lost or abnormal HC regulation by Ca2+ has been associated with several diseases, including deafness, keratitis ichthyosis, palmoplantar keratoderma, Charcot-Marie-Tooth neuropathy, oculodentodigital dysplasia, and congenital cataracts. The fact that both an increased and a decreased Ca2+ sensitivity has been linked to pathological conditions suggests that Ca2+ in healthy cells finely tunes the normal HC function. Overall, further investigation is needed to clarify the structural and chemical modifications of connexin HCs during [Ca2+]e and [Ca2+]c variations. A molecular model that accounts for changes in both Ca2+ and the transmembrane voltage will undoubtedly enhance our interpretation of the experimental results and pave the way for developing therapeutic compounds targeting specific HC dysfunctions.
Assuntos
Cálcio , Conexinas , Junções Comunicantes , Conexinas/metabolismo , Conexinas/genética , Humanos , Cálcio/metabolismo , Animais , Junções Comunicantes/metabolismo , Sinalização do CálcioRESUMO
BACKGROUND: Telosma mosaic virus (TelMV, Potyvirus, Potyviridae) is an emerging viral pathogen that threatens passion fruit plantations worldwide. However, an efficient strategy for controlling such a virus is not yet available. Cross protection is a phenomenon in which pre-infection of a plant with one mild strain prevents or delays subsequent infection by the same or closely related virus. HC-Pro is the potyviral encoded multifunctional protein involved in several steps of viral infection, including multiplication, movement, transmission and RNA silencing suppression. In this study, we tested whether it is possible to generate attenuated viral strains capable of conferring protection against severe TelMV infection by manipulating the HC-Pro gene. RESULTS: By introducing point mutation into the conserved motif FRNK of HC-Pro that is essential for RNA silencing suppression, we have successfully obtained three attenuated mutants of TelMV (R181K, R181D, and R181E, respectively). These attenuated TelMV mutants could systemically infect passion fruit plants without noticeable symptoms. Pre-inoculation of one of these attenuated mutants confers efficient protection against subsequent infection by severe TelMV strain. Moreover, we demonstrated that the HC-Pros harbored by the attenuated mutants exhibit reduced RNA silencing suppression activity in Nicotiana benthamiana leaves. CONCLUSION: The attenuated TelMV mutants developed in this study that are suitable for cross protection offer a practical, powerful tool to fight against TelMV for sustainable passion fruit production. © 2024 Society of Chemical Industry.
Assuntos
Passiflora , Doenças das Plantas , Proteínas Virais , Passiflora/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Arginina , Motivos de Aminoácidos , Potyviridae/genética , Potyviridae/fisiologia , Potyvirus/genética , Potyvirus/fisiologia , Nicotiana/virologia , Cisteína EndopeptidasesRESUMO
BACKGROUND: Mammary gland development is a critical process in mammals, crucial for their reproductive success and offspring nourishment. However, the functional roles of key candidate genes associated with teat number, including ABCD4, VRTN, PROX2, and DLST, in this developmental process remain elusive. To address this gap in knowledge, we conducted an in-depth investigation into the dynamic expression patterns, functional implications, and regulatory networks of these candidate genes during mouse mammary gland development. RESULTS: In this study, the spatial and temporal patterns of key genes were characterized in mammary gland development. Using time-series single-cell data, we uncovered differences in the expression of A bcd4, Vrtn, Prox2, and Dlst in cell population of the mammary gland during embryonic and adult stages, while Vrtn was not detected in any cells. We found that only overexpression and knockdown of Abcd4 could inhibit proliferation and promote apoptosis of HC11 mammary epithelial cells, whereas Prox2 and Dlst had no significant effect on these cells. Using RNA-seq and qPCR, further analysis revealed that Abcd4 can induce widespread changes in the expression levels of genes involved in mammary gland development, such as Igfbp3, Ccl5, Tlr2, and Prlr, which were primarily associated with the MAPK, JAK-STAT, and PI3K-AKT pathways by functional enrichment. CONCLUSIONS: These findings revealed ABCD4 as a candidate gene pivotal for regulating mammary gland development and lactation during pregnancy by influencing PRLR expression.