Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Open Life Sci ; 19(1): 20220924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247797

RESUMO

Diabetic retinopathy (DR), a major complication of diabetes causing blindness, is characterized by retinal damage due to capillary degeneration and vascular leakage. Current treatments are not fully effective, highlighting the need for searching new therapeutic targets. Hematopoietic cell kinase (HCK), a protein involved in various diseases, has been identified as a potential biomarker in DR, but its role in disease progression requires further investigation. Here we investigated the role of HCK in DR and its potential mechanism. We found the expression of HCK increased under the stimulation of high glucose (HG) in human retinal capillary endothelial cells (HRECs). Knockdown of HCK can improve HREC cell viability and the integrity of the internal blood-retinal barrier. HCK depletion suppressed the AMPK pathway in HG-induced HRECs. In summary, HCK may be a potential target for the treatment of DR, which provides a theoretical basis for the development of new treatment strategies.

2.
Phytomedicine ; 132: 155664, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38870751

RESUMO

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is a refractory respiratory disease mainly attributed to multiple pathological factors such as oxidative stress, infectious inflammation, and idiopathic fibrosis for decades. The medicinal plant Glycyrrhiza uralensis extract (ULE) was widely used to control respiratory diseases in China. However, the regulatory mechanism of scientific evidence to support the therapeutic benefits of ULE in the management of COPD is greatly limited. PURPOSE: This study aims to discover the potential protection mechanism of ULE on COPD via a muti-targets strategy. STUDY DESIGN AND METHODS: The present study set out to determine the potential protective effects of ULE on COPD through a multi-target strategy. In vivo and in vitro models of COPD were established using cigarette smoke and lipopolysaccharide to assess the protective effects of ULE. It was evaluated by measuring inflammatory cytokines and assessing pulmonary pathological changes. HPLC was used to verify the active compounds of the potential compounds that were collected and screened using HERB, works of literature, and ADME tools. The mechanisms of ULE in the treatment of COPD were explored using transcriptomics, connectivity-map, and network pharmacology approaches. The relevant targets were further investigated using RT-PCR, western blot, and immunohistochemistry. The HCK inhibitor (iHCK-37) was used to evaluate the potential mechanism of ULE's active compounds in the prevention of COPD. RESULTS: ULE effectively protected the lungs of COPD mice from oxidative stress, inflammation, and fibrosis damage. After screening and verification using ADME properties and HPLC, 4 active compounds were identified in ULE: liquiritin (LQ), licochalcone B (LCB), licochalcone A (LCA), and echinatin (ET). Network pharmacology integrated with transcriptomics analysis showed that ULE mitigated oxidative stress, inflammation, and fibrosis in COPD by suppressing HCK. The combination of LCB and LQ was optimized for anti-inflammation, antioxidation, and anti-fibrosis activities. The iHCK-37 further validated the preventive treatment of LCB and LQ on COPD by inhibiting HCK to exert antioxidant, anti-inflammatory, and anti-fibrotic effects. The combination of LCB and LQ, in a 1:1 ratio, exerted synergistic antioxidative, anti-inflammatory, and anti-fibrotic effects in the treatment of COPD by downregulating HCK. CONCLUSION: The combination of LCB and LQ performed a significant anti-COPD effect via downregulating HCK.


Assuntos
Chalconas , Flavanonas , Glucosídeos , Glycyrrhiza uralensis , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Glycyrrhiza uralensis/química , Flavanonas/farmacologia , Animais , Chalconas/farmacologia , Glucosídeos/farmacologia , Camundongos , Masculino , Sinergismo Farmacológico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Modelos Animais de Doenças , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células RAW 264.7 , Lipopolissacarídeos , Estresse Oxidativo/efeitos dos fármacos
3.
Biomolecules ; 13(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136591

RESUMO

Cervical cancer remains a pressing global health concern, necessitating advanced therapeutic strategies. Radiotherapy, a fundamental treatment modality, has faced challenges such as targeted dose deposition and radiation exposure to healthy tissues, limiting optimal outcomes. To address these hurdles, nanomaterials, specifically gold nanoparticles (AuNPs), have emerged as a promising avenue. This study delves into the realm of cervical cancer radiotherapy through the meticulous exploration of AuNPs' impact. Utilizing ex vivo experiments involving cell lines, this research dissected intricate radiobiological interactions. Detailed scrutiny of cell survival curves, dose enhancement factors (DEFs), and apoptosis in both cancer and normal cervical cells revealed profound insights. The outcomes showcased the substantial enhancement of radiation responses in cancer cells following AuNP treatment, resulting in heightened cell death and apoptotic levels. Significantly, the most pronounced effects were observed 24 h post-irradiation, emphasizing the pivotal role of timing in AuNPs' efficacy. Importantly, AuNPs exhibited targeted precision, selectively impacting cancer cells while preserving normal cells. This study illuminates the potential of AuNPs as potent radiosensitizers in cervical cancer therapy, offering a tailored and efficient approach. Through meticulous ex vivo experimentation, this research expands our comprehension of the complex dynamics between AuNPs and cells, laying the foundation for their optimized clinical utilization.


Assuntos
Nanopartículas Metálicas , Neoplasias do Colo do Útero , Feminino , Humanos , Ouro/farmacologia , Ouro/uso terapêutico , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Linhagem Celular Tumoral , Apoptose
4.
Parasitol Res ; 122(5): 1087-1105, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913025

RESUMO

Different mechanisms of the host immune response against the primary amebic meningoencephalitis (PAM) in the mouse protection model have been described. It has been proposed that antibodies opsonize Naegleria fowleri trophozoites; subsequently, the polymorphonuclear cells (PMNs) surround the trophozoites to avoid the infection. FcγRs activate signaling pathways of adapter proteins such as Syk and Hck on PMNs to promote different effector cell functions which are induced by the Fc portion of the antibody-antigen complexes. In this work, we analyzed the activation of PMNs, epithelial cells, and nasal passage cells via the expression of Syk and Hck genes. Our results showed an increment of the FcγRIII and IgG subclasses in the nasal cavity from immunized mice as well as Syk and Hck expression was increased, whereas in the in vitro assay, we observed that when the trophozoites of N. fowleri were opsonized with IgG anti-N. fowleri and interacted with PMN, the expression of Syk and Hck was also increased. We suggest that PMNs are activated via their FcγRIII, which leads to the elimination of the trophozoites in vitro, while in the nasal cavity, the adhesion and consequently infection are avoided.


Assuntos
Amebíase , Meningoencefalite , Naegleria fowleri , Receptores de IgG , Animais , Camundongos , Amebíase/parasitologia , Infecções Protozoárias do Sistema Nervoso Central , Imunoglobulina G , Meningoencefalite/parasitologia , Camundongos Endogâmicos BALB C , Cavidade Nasal , Receptores de IgG/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36752293

RESUMO

BACKGROUND: Despite the early success of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of Waldenström macroglobulinemia (WM), these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of these drugs. OBJECTIVE: Recently, the pharmacological activity of KIN-8194 was repurposed to serve as a 'dual-target' inhibitor of BTK and Hematopoietic Cell Kinase (HCK). However, the structural dual inhibitory mechanism remains unexplored, hence the aim of this study. METHODS: Conducting predictive pharmacokinetic profiling of KIN-8194, as well as demonstrating a comparative structural mechanism of inhibition against the above-mentioned enzymes. RESULTS: Our results revealed favourable binding affinities of -20.17 kcal/mol, and -35.82 kcal/mol for KIN-8194 towards HCK and BTK, respectively. Catalytic residues Arg137/174 and Lys42/170 in BTK and Arg303 and Lys75/173/244/247 in HCK were identified as crucial mediators of the dual binding mechanism of KIN-8194, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Prediction of the pharmacokinetics and physicochemical properties of KIN-8194 further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. Structurally, KIN-8194 impacted the stability, flexibility, solvent-accessible surface area, and rigidity of BTK and HCK, characterized by various alterations observed in the bound and unbound structures, which proved enough to disrupt their biological function. CONCLUSION: These structural insights provided a baseline for the understanding of the dual inhibitory activity of KIN-8194. Establishing the cruciality of the interactions between the KIN-8194 and Arg and Lys residues could guide the structure-based design of novel dual BTK/HCK inhibitors with improved therapeutic activities.

6.
Bioorg Chem ; 129: 106205, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265354

RESUMO

Novel ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates were synthesized from one-pot, three-component Biginelli reaction of aryl aldehydes, ethyl acetoacetate and urea/ thiourea by catalytic action of silica supported Bismuth(III) triflate, a Lewis acid. All the synthesized compounds were structurally characterized by spectral (IR, 1H NMR & 13C NMR spectroscopic and Mass spectrometric) and elemental (C, H & N) analyses. The present protocol has deserved novel as, formed the products in high yields with short reaction times, involved eco-friendly methodology and reusable heterogeneous Lewis acid catalyst. The title compounds were screened for in vitro DPPH free radical scavenging antioxidant activity and identified 4i, 4j, 4h & 4f as potential antioxidants. The obtained in vitro results were correlated with molecular docking, ADMET, QSAR, Bioactivity & toxicity risk studies and molecular finger print properties and found that in silico binding affinities were identified in good correlation with in vitro antioxidant activity and studied the structure activity relationship. The molecular docking study has disclosed strong hydrogen bonding interactions of title compounds with aspartic acid (ASP197) aminoacid residue of 2HCK, a complex enzyme of haematopoietic cell kinase and quercetin. Results of toxicology study evaluated for potential risks of compounds have revealed title compounds as safer drugs. In ultimate the study has established ligand's antioxidant potentiality as they effectively binds with ASP197 amino acid of Chain A hence confirms the inhibition of growth of reactive oxygen species in vivo. In addition, the title compounds have been identified as potential blood-brain barrier penetrable entities and efficient central nervous system (CNS) active neuro-protective antioxidant agents.


Assuntos
Antioxidantes , Bismuto , Ácidos Carboxílicos , Antioxidantes/farmacologia , Antioxidantes/química , Bismuto/química , Catálise , Ácidos de Lewis , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/química , Dióxido de Silício/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Células CACO-2 , Humanos
7.
EJHaem ; 3(3): 927-929, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051045

RESUMO

The hematopoietic cell kinase (HCK) regulates BTK activation and represents a potential therapeutic target in Waldenstrom macroglobulinemia (WM). We investigated dasatinib, a potent HCK inhibitor, in patients with WM progressing on ibrutinib. Study treatment consisted of dasatinib administered at 100 mg by mouth once daily in four-week cycles for up to 24 cycles. This study was registered under ClinicalTrials.Gov ID NCT04115059. Three participants were enrolled and received at least one cycle of dasatinib. The best response was stable disease. Two patients received 5 months and one patient received 1 month of therapy. The dose of dasatinib was decreased in one participant due to volume overload. Based on the lack of responses observed, the study was terminated. Dasatinib might not be effective in patients with WM progressing on ibrutinib.

8.
Structure ; 30(11): 1508-1517.e3, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36115344

RESUMO

The Src-family kinase Fgr is expressed primarily in myeloid hematopoietic cells and contributes to myeloid leukemia. Here, we present X-ray crystal structures of Fgr bound to the ATP-site inhibitors A-419259 and TL02-59, which show promise as anti-leukemic agents. A-419259 induces a closed Fgr conformation, with the SH3 and SH2 domains engaging the SH2-kinase linker and C-terminal tail, respectively. In the Fgr:A-419259 complex, the activation loop of one monomer inserts into the active site of the other, providing a snapshot of trans-autophosphorylation. By contrast, TL02-59 binding induced SH2 domain displacement from the C-terminal tail and SH3 domain release from the linker. Solution studies using HDX MS were consistent with the crystal structures, with A-419259 reducing and TL02-59 enhancing solvent exposure of the SH3 domain. These structures demonstrate that allosteric connections between the kinase and regulatory domains of Src-family kinases are regulated by the ligand bound to the active site.


Assuntos
Leucemia Mieloide Aguda , Quinases da Família src , Humanos , Quinases da Família src/química , Proteínas Proto-Oncogênicas c-hck/química , Proteínas Proto-Oncogênicas c-hck/metabolismo , Domínios de Homologia de src , Leucemia Mieloide Aguda/tratamento farmacológico , Trifosfato de Adenosina
9.
Artigo em Inglês | MEDLINE | ID: mdl-35994994

RESUMO

The formation of inclusion bodies in bacterial hosts poses a major challenge for the large-scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive, and the yields of recombinant protein are often low. Here, we describe a novel method for the renaturation and purification of inclusion bodies. This method combines a scFv-oligopeptide chaperoning system and an on-column refolding system to help refold human muscle creatine kinase (HCK) inclusion bodies. This method could significantly increase the activity recovery of denatured HCK inclusion bodies and provides an effective method for the production of bioactive proteins from inclusion bodies.


Assuntos
Escherichia coli , Dobramento de Proteína , Creatina Quinase Forma MM/metabolismo , Escherichia coli/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Oligopeptídeos/metabolismo , Redobramento de Proteína , Proteínas Recombinantes
10.
J Cell Mol Med ; 25(18): 8789-8795, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363435

RESUMO

Osteosarcoma (OS) is a sarcoma with high rates of pulmonary metastases and mortality. The mechanisms underlying tumour generation and development in OS are not well-understood. Haematopoietic cell kinase (HCK), a vital member of the Src family of kinase proteins, plays crucial roles in cancer progression and may act as an anticancer target; however, the mechanism by which HCK enhances OS development remains unexplored. Therefore, we investigated the role of HCK in OS development in vitro and in vivo. Downregulation of HCK attenuated OS cell proliferation, migration and invasion and increased OS cell apoptosis, whereas overexpression of HCK enhanced these processes. Mechanistically, HCK expression enhanced OS tumorigenesis via the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway; HCK upregulation increased the phosphorylation of MEK and ERK and promoted epithelial-mesenchymal transition, with a reduction in E-cadherin in vitro. Furthermore, HCK downregulation decreased the tumour volume and weight in mice transplanted with OS cells. In conclusion, HCK plays a crucial role in OS tumorigenesis, progression and metastasis via the MEK/ERK pathway, suggesting that HCK is a potential target for developing treatments for OS.


Assuntos
Neoplasias Ósseas/metabolismo , Osteossarcoma/metabolismo , Proteínas Proto-Oncogênicas c-hck/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
11.
J Virol ; 95(17): e0047121, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34106001

RESUMO

Human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection causes myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+) through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14+ CD16+ cells are CD11b+ Gr1+ myeloid-derived suppressor cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely, CD4C/Nef Tg mice expressing nef in dendritic cells (DC), pDC, CD4+ T, and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC. Both Tg strains showed expansion of granulocytic and CD11b+ Gr1low/int cells with MDSC characteristics. Fetal liver cell transplantation revealed that this expansion was stroma-independent and abrogated in mixed Tg/non-Tg 50% chimera. Tg bone marrow (BM) erythroid progenitors were decreased and myeloid precursors increased, suggesting an aberrant differentiation likely driving CD11b+ Gr1+ cell expansion, apparently cell autonomously in CD4C/Nef Tg mice and likely through a bystander effect in CD11c/Nef Tg mice. Hck was activated in Tg spleen, and Nef-mediated CD11b+ Gr1+ cell expansion was abrogated in Hck/Lyn-deficient Nef Tg mice, indicating a requirement of Hck/Lyn for this Nef function. IL-17 and granulocyte colony-stimulating factor (G-CSF) were elevated in Nef Tg mice. Increased G-CSF levels were normalized in Tg mice treated with anti-IL-17 antibodies. Therefore, Nef expression in myeloid precursors causes severe BM failure, apparently cell autonomously. More cell-restricted expression of Nef in DC and pDC appears sufficient to induce BM differentiation impairment, granulopoiesis, and expansion of MDSC at the expense of erythroid maturation, with IL-17→G-CSF as one likely bystander contributor. IMPORTANCE HIV-1 and SIV infection often lead to myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+), with the latter likely involved in neuroAIDS. We found that some transgenic (Tg) mouse models of AIDS also develop accumulation of mature and immature cells of the granulocytic lineage, decreased erythroid precursors, and expansion of MDSC (equivalent to human CD14+ CD16+ cells). We identified Nef as being responsible for these phenotypes, and its expression in mouse DC appears sufficient for their development through a bystander mechanism. Nef expression in myeloid progenitors may also favor myeloid cell expansion, likely in a cell-autonomous way. Hck/Lyn is required for the Nef-mediated accumulation of myeloid cells. Finally, we identified G-CSF under the control of IL-17 as one bystander mediator of MDSC expansion. Our findings provide a framework to determine whether the Nef>Hck/Lyn>IL-17>G-CSF pathway is involved in human AIDS and whether it represents a valid therapeutic target.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Infecções por HIV/imunologia , Interleucina-17/metabolismo , Células Supressoras Mieloides/imunologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Quinases da Família src/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Feminino , Fator Estimulador de Colônias de Granulócitos/genética , Granulócitos/imunologia , Granulócitos/metabolismo , Granulócitos/patologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Interleucina-17/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/virologia , Proteínas Proto-Oncogênicas c-hck/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Quinases da Família src/genética
12.
J Exp Clin Cancer Res ; 40(1): 210, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167558

RESUMO

BACKGROUND: Leukaemia stem cells (LSCs) are responsible for the initiation, maintenance, and recurrence of acute myeloid leukaemia (AML), an aggressive haematological malignancy associated with drug resistance and relapse. Identifying therapeutic LSC targets is critical to curing AML. METHODS: Bioinformatics databases were used to identify therapeutic LSC targets. The conditional knockout mice were used to analyse the role of HCK in leukaemogenesis or normal haematopoiesis. Colony-forming assays, cell counting, and flow cytometry were used to detect the viability and function of leukaemia cells. RT-PCR, western blotting, and RNA sequencing were used to detect mRNA and protein expression. RESULT: HCK is expressed at higher levels in LSCs than in haematopoietic stem cells (HSCs), and high HCK levels are correlated with reduced survival time in AML patients. Knockdown of HCK leads to cell cycle arrest, which results in a dramatic decrease in the proliferation and colony formation in human AML cell lines. Moreover, HCK is required for leukemogenesis and leukaemia maintenance in vivo and in vitro. HCK is necessary for the self-renewal of LSCs during serial transplantation and limiting dilution assay. The phenotypes resulting from HCK deficiency can be rescued by CDK6 overexpression in the human cell line. RNA sequencing and gene expression have demonstrated that HCK may sustain cell cycle entry and maintain the self-renewal ability of LSCs through activating the ERK1/2-c-Myc-CDK6 signalling axis. In contrast, HCK deletion does not affect normal haematopoiesis or haematopoietic reconstruction in mice. CONCLUSIONS: HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML and may be an ideal therapeutic target for eradicating LSCs without influencing normal haematopoiesis.


Assuntos
Quinase 6 Dependente de Ciclina/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-hck/genética , Proteínas Proto-Oncogênicas c-hck/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Bases de Dados Genéticas , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Knockout , Transplante de Neoplasias
13.
Front Microbiol ; 12: 640693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025601

RESUMO

INTRODUCTION: The fungi ITS sequence length dissimilarity, non-specific amplicons, including chimaera formed during Polymerase Chain Reaction (PCR), added to sequencing errors, create bias during similarity clustering and abundance estimation in the downstream analysis. To overcome these challenges, we present a novel approach, Hierarchical Clustering with Kraken (HCK), to classify ITS1 amplicons and Abundance-Base Alternative Approach (ABAA) pipeline to detect and filter non-specific amplicons in fungi metabarcoding sequencing datasets. MATERIALS AND METHODS: We compared the performances of both pipelines against QIIME, KRAKEN, and DADA2 using publicly available fungi ITS mock community datasets and using BLASTn as a reference. We calculated the Precision, Recall, F-score using the True-Positive, False-positive, and False-negative estimation. Alpha diversity (Chao1 and Shannon metrics) was also used to evaluate the diversity estimation of our method. RESULTS: The analysis shows that ABAA reduced the number of false-positive with all metabarcoding methods tested, and HCK increases precision and recall. HCK, coupled with ABAA, improves the F-score and bring alpha diversity metric value close to that of the BLASTn alpha diversity values when compared to QIIME, KRAKEN, and DADA2. CONCLUSION: The developed HCK-ABAA approach allows better identification of the fungi community structures while avoiding use of a reference database for non-specific amplicons filtration. It results in a more robust and stable methodology over time. The software can be downloaded on the following link: https://bitbucket.org/GottySG36/hck/src/master/.

14.
Microvasc Res ; 136: 104172, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894273

RESUMO

BACKGROUND: VSMC proliferation and migration pathways play important roles in plaque formation in the vessel stenosis and re-stenosis processes. The microRNAs affect the expression of many genes that regulate these cellular processes. The aim of this study was to investigate the effects of miR-181b, miR-204, and miR-599 on the gene and protein expression levels of hematopoietic cell kinase (HCK) in VSMCs. METHODS: miR-181b, miR-204 were predicted for the suppression of HCK in the chemokine signaling pathway using bioinformatics tools. Then, the VSMCs were transfected by PEI-containing microRNAs. The HCK gene and protein expression levels were evaluated using RT-qPCR and Western blotting techniques, respectively. Moreover, the cellular proliferation and migration were evaluated by MTT and scratch assay methods. RESULTS: The miR-181b and miR-204 decreased significantly the HCK gene and (total and phosphorylated) protein expression levels. Also, the miR-599 did not show any significant effects on the HCK gene and protein levels. The data also showed that miR-181b, miR-204, and miR-599 prevent significantly the proliferation and migration of VSMCs. CONCLUSION: The downregulation of HCK by miR-181b and miR-204 suppressed the VSMC proliferation and migration.


Assuntos
Movimento Celular , Proliferação de Células , MicroRNAs/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Células Cultivadas , Regulação para Baixo , Humanos , MicroRNAs/genética , Músculo Liso Vascular/ultraestrutura , Miócitos de Músculo Liso/ultraestrutura , Proteínas Proto-Oncogênicas c-hck/genética , Transdução de Sinais
15.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33597213

RESUMO

Chronic immune activation is an important driver of human immunodeficiency virus type 1 (HIV-1) pathogenesis and has been associated with the presence of tumor necrosis factor-α converting enzyme (TACE) in extracellular vesicles (EVs) circulating in infected individuals. We have recently shown that activation of the Src-family tyrosine kinase hematopoietic cell kinase (Hck) by HIV-1 Nef can trigger the packaging of TACE into EVs via an unconventional protein secretion pathway. Using a panel of HIV-1 Nef mutants and natural HIV-2 and simian immunodeficiency virus (SIV) Nef alleles, we now show that the capacity to promote TACE secretion depends on the superior ability of HIV-1-like Nef alleles to induce Hck kinase activity, whereas other Nef effector functions are dispensable. Strikingly, among the numerous Src-family downstream effectors, serine/threonine kinase Raf-1 was found to be necessary and alone sufficient to trigger the secretion of TACE into EVs. These data reveal the involvement of Raf-1 in regulation of unconventional protein secretion and highlight the importance of Raf-1 as a cellular effector of Nef, thereby suggesting a novel rationale for testing pharmacological inhibitors of the Raf-MAPK pathway to treat HIV-associated immune activation.IMPORTANCE Chronic immune activation contributes to the immunopathogenesis of human immunodeficiency virus type 1 (HIV-1) infection and is associated with poor recovery of the immune system despite potent antiretroviral therapy, which is observed in 10% to 40% drug-treated patients depending on the definition of immune reconstitution. We have previously shown that the HIV pathogenicity factor Nef can promote loading of the proinflammatory protease TACE into extracellular vesicles (EVs), and the levels of such TACE-containing EVs circulating in the blood correlate with low CD4 lymphocyte counts in HIV patients receiving antiretroviral therapy. Here, we show that Nef promotes uploading of TACE into EVs by triggering unconventional secretion via activation of the Hck/Raf/mitogen-activated protein kinase (MAPK) cascade. We find that several pharmaceutical inhibitors of these kinases that are currently in clinical use for other diseases can potently suppress this pathogenic deregulation and could thus provide a novel strategy for treating HIV-associated immune activation.


Assuntos
Proteína ADAM17/metabolismo , Vesículas Extracelulares/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Proteínas Proto-Oncogênicas c-raf/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Células HEK293 , HIV-2/fisiologia , Humanos , Proteínas Proto-Oncogênicas c-hck/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Células THP-1 , Proteínas Virais Reguladoras e Acessórias/metabolismo
16.
Front Vet Sci ; 8: 632599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604367

RESUMO

Deoxynivalenol (DON) can activate related signaling pathways and induce gastrointestinal disorders. Based on the results of previous studies, this study tried to explore the relationship between DON-induced intestinal inflammation of weaned rabbits and the ERK-p38 signaling pathway. Forty-five weaned rabbits were divided into three treatments: control, LD and HD group. All rabbits were treated with diet containing a same nutrient content, but animals in the LD and HD groups were additionally administered DON via drinking water at 0.5 and 1.5 mg/kg b.w./d, respectively. The protocol consisted of a total feeding period of 31 days, including a pre-feeding period of 7 days. Western blotting, qRT-PCR, and immunohistochemistry were applied for analysis the expression of protein and mRNA of extracellular signal-regulated kinase (ERK), p38, double-stranded RNA-activated protein kinase (PKR), and hematopoietic cell kinase (Hck) in the duodenum, jejunum, and ileum of rabbits, as well as the distribution of positive reactants. The results proved that DON intake could enhance the levels of inflammatory factors in serum and damage the intestinal structure barrier of rabbits. Meanwhile, DON addition can stimulate the protein and mRNA expression for ERK, p38, PKR, and Hck in the intestine of rabbits, especially in the duodenum, as well as expand the distribution of positive reactants, in a dose-dependent manner.

17.
J Biol Chem ; 296: 100449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617879

RESUMO

Hck, a Src family nonreceptor tyrosine kinase (SFK), has recently been established as an attractive pharmacological target to improve pulmonary function in COVID-19 patients. Hck inhibitors are also well known for their regulatory role in various malignancies and autoimmune diseases. Curcumin has been previously identified as an excellent DYRK-2 inhibitor, but curcumin's fate is tainted by its instability in the cellular environment. Besides, small molecules targeting the inactive states of a kinase are desirable to reduce promiscuity. Here, we show that functionalization of the 4-arylidene position of the fluorescent curcumin scaffold with an aryl nitrogen mustard provides a stable Hck inhibitor (Kd = 50 ± 10 nM). The mustard curcumin derivative preferentially interacts with the inactive conformation of Hck, similar to type-II kinase inhibitors that are less promiscuous. Moreover, the lead compound showed no inhibitory effect on three other kinases (DYRK2, Src, and Abl). We demonstrate that the cytotoxicity may be mediated via inhibition of the SFK signaling pathway in triple-negative breast cancer and murine macrophage cells. Our data suggest that curcumin is a modifiable fluorescent scaffold to develop selective kinase inhibitors by remodeling its target affinity and cellular stability.


Assuntos
Curcumina/farmacologia , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-hck/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Clonagem Molecular , Curcumina/análogos & derivados , Curcumina/síntese química , Estabilidade de Medicamentos , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Células HT29 , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-hck/química , Proteínas Proto-Oncogênicas c-hck/genética , Proteínas Proto-Oncogênicas c-hck/metabolismo , Células RAW 264.7 , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Quinases da Família src/genética , Quinases da Família src/metabolismo , Quinases Dyrk
18.
Int J Med Sci ; 17(17): 2773-2789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162805

RESUMO

The role of HCK expression in the prognosis of breast cancer patients is unclear. Thus, this study aimed to explore the clinical implications of HCK expression in breast cancer. We assessed HCK expression and genetic variations in breast cancer using Oncomine, GEPIA, UALCAN, and cBioPortal databases. Then, immunochemistry was used to analyze HCK expression in breast cancer specimens, non-cancer tissues and metastatic cancer tissues. Consequently, we evaluated the effect of HCK expression on survival outcomes set as disease-free survival (DFS) and overall survival (OS). Finally, STRING, Coexpedia, and TISIDB database were explored to identify the molecular functions and regulation pathways of HCK. We found that breast cancer tissues have more HCK mRNA transcripts than non-cancer tissues. Patients with HCK expression had significantly shorter DFS and OS. The ratio of HCK expression was higher in cancer tissues than in non-cancer tissues. These results from STRING database, FunRich software, and TISIDB database showed that HCK was involved in mediating multiple biological processes including immune response-regulating signaling pathway, cell growth and maintenance through multiple signaling pathways including epithelial to mesenchymal transition, PI3K/AKT signaling pathway, and focal adhesion. Overall, HCK may be an oncogene in the development of breast cancer and thus may as a novel biomarker and therapeutic target for breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/mortalidade , Recidiva Local de Neoplasia/epidemiologia , Proteínas Proto-Oncogênicas c-hck/genética , Idoso , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/sangue , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Carcinoma Ductal de Mama/sangue , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/terapia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Adesões Focais/efeitos dos fármacos , Adesões Focais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoquímica , Mastectomia , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Fosfatidilinositol 3-Quinases , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-hck/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-hck/sangue , Medição de Risco/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
J Biol Chem ; 295(44): 15158-15171, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32862141

RESUMO

Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD4/metabolismo , Cristalografia por Raios X , Regulação para Baixo , HIV-1/patogenicidade , Evasão da Resposta Imune , Complexo Principal de Histocompatibilidade , Proteínas de Membrana/metabolismo , Proteínas Quinases/efeitos dos fármacos , Transporte Proteico , Relação Estrutura-Atividade , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química
20.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32484210

RESUMO

The hematopoietic cell kinase (HCK), a member of the Src family protein-tyrosine kinases (SFKs), is primarily expressed in cells of the myeloid and B lymphocyte lineages. Nevertheless, the roles of HCK in glioblastoma (GBM) remain to be examined. Thus, we aimed to investigate the effects of HCK on GBM development both in vitro and in vivo, as well as the underlying mechanism. The present study found that HCK was highly expressed in both tumor tissues from patients with GBM and cancer cell lines. HCK enhanced cell viability, proliferation, and migration, and induced cell apoptosis in vitro. Tumor xenografts results also demonstrated that HCK knockdown significantly inhibited tumor growth. Interestingly, gene set enrichment analysis (GSEA) showed HCK was closed associated with epithelial mesenchymal transition (EMT) and TGFß signaling in GBM. In addition, we also found that HCK accentuates TGFß-induced EMT, suggesting silencing HCK inhibited EMT through the inactivation of Smad signaling pathway. In conclusion, our findings indicated that HCK is involved in GBM progression via mediating EMT process, and may be served as a promising therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas/enzimologia , Transição Epitelial-Mesenquimal , Glioblastoma/enzimologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-hck/genética , Transdução de Sinais , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA