Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biology (Basel) ; 13(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39056685

RESUMO

Infectious bronchitis virus (IBV), a coronavirus that causes severe respiratory and gastrointestinal illness in poultry, leads to substantial economic losses. According to earlier research, IBV infection causes chicken macrophage HD11 cells to undergo cell apoptosis. Reactive oxygen species (ROS) and the IBV-activated intrinsic apoptotic signaling pathway were examined in this work. The findings demonstrate that IBV infection causes ROS to accumulate. Moreover, IBV infection decreased the mitochondrial transmembrane potential in HD11 cells, which could be blocked by ROS antioxidants (PDTC and NAC). The two antioxidants significantly affected the expression of Bcl-2 and Bax and further inhibited the activation of caspase-3 and apoptosis in HD11 cells. Additionally, IBV replication was decreased by blocking ROS accumulation. Pretreating HD11 cells with ammonium chloride (NH4Cl) prevented IBV from entering the cells and reduced the oxidative stress which IBV causes. The ability to accumulate ROS was also lost in UV-inactivated IBV. The IBV N protein induces cell apoptosis through the activation of ROS. These findings provide an explanation for the processes of IBV infection in immune cells by indicating that IBV-induced ROS generation triggers cell apoptosis in HD11 cells.

2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473897

RESUMO

The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated. This study used the H9N2 virus as a model pathogen to explore the regulation of FcRY expression in avian macrophages. FcRY was highly expressed in HD11 cells, as shown by reverse transcription polymerase chain reactions, and indirect immunofluorescence indicated that FcRY was widely expressed in HD11 cells. HD11 cells infected with live H9N2 virus exhibited downregulated FcRY expression. Transfection of eukaryotic expression plasmids encoding each viral protein of H9N2 into HD11 cells revealed that nonstructural protein (NS1) and matrix protein (M1) downregulated FcRY expression. In addition, the use of a c-jun N-terminal kinase (JNK) activator inhibited the expression of FcRY, while a JNK inhibitor antagonized the downregulation of FcRY expression by live H9N2 virus, NS1 and M1 proteins. Finally, a dual luciferase reporter system showed that both the M1 protein and the transcription factor c-jun inhibited FcRY expression at the transcriptional level. Taken together, the transcription factor c-jun was a negative regulator of FcRY, while the live H9N2 virus, NS1, and M1 proteins downregulated the FcRY expression through activating the JNK signaling pathway. This provides an experimental basis for a novel mechanism of immunosuppression in the H9N2 avian influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas/metabolismo , Vírus da Influenza A Subtipo H9N2/fisiologia , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo
3.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492902

RESUMO

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Assuntos
Galinhas , Dexametasona , Macrófagos , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/imunologia , Galinhas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Dexametasona/farmacologia , Apoptose , Tolerância Imunológica , Regulação da Expressão Gênica , Terapia de Imunossupressão , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Baço/imunologia , Baço/metabolismo , Transdução de Sinais , Estresse Fisiológico/imunologia , Linhagem Celular , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proliferação de Células
4.
Res Vet Sci ; 165: 105053, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856945

RESUMO

Circular RNAs (circRNAs) have a regulatory role in gene expression, development, differentiation, and immune response. In a previous study, circular RNA STX8 (circSTX8) exhibited low expression in chicken lungs during lipopolysaccharide (LPS) stimulation. PCR amplification and Sanger sequencing showed that circSTX8 was created by back-splicing of exons 5 to 6 of STX8. RNase R exonuclease treatment indicated that circSTX8 was a stable circular RNA. RT-qPCR showed that circSTX8 was highly expressed in cecum, spleen, harderian gland, stomach, thymus, liver, small intestine, and lung instead of that in muscle, cerebrum, and cerebellum (n = 8). Chicken macrophages were then divided into four groups: control, overexpression of circSTX8 group, LPS group, and overexpression of circSTX8 + LPS group. CCK8 and RT-qPCR showed that circSTX8 can exacerbate the cellular injury induced by LPS, resulting in a reduction of cell viability and an increase of the pro-inflammatory cytokines expression. In addition, four miRNAs were identified to interact with circSTX8, potentially targeting 914 genes, which were significantly enriched in the pathways of Tight junction, mTOR signaling pathway, MAPK signaling pathway, TGF-beta signaling pathway, Notch signaling pathway, ErbB signaling pathway, and Cell adhesion molecules. These findings showed that circSTX8 was able to regulate the LPS induced cellular immune and inflammatory response.


Assuntos
Galinhas , RNA Circular , Animais , Galinhas/genética , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Transdução de Sinais
5.
J Poult Sci ; 60(1): 2023002, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36756048

RESUMO

CpG-oligodeoxynucleotides (. CpG-ODNs: ) have been shown to possess immunostimulatory features in both mammals and birds. However, compared to their proinflammatory effects, little is known about the anti-inflammatory responses triggered by CpG-ODN in avian cells. Hence, in this study, the anti-inflammatory response in the chicken macrophage cell line HD11 was characterized under stimulation with five types of CpG-ODNs: CpG-A1585, CpG-AD35, CpG-B1555, CpG-BK3, and CpG-C2395. Single-stimulus of CpG-B1555, CpG-BK3, or CpG-C2395 induced interleukin (IL)-10 expression without causing cell injury. The effects of pretreatment with CpG-ODNs before subsequent lipopolysaccharide stimulation were also evaluated. Interestingly, pretreatment with only CpG-C2395 resulted in high expression levels of IL-10 mRNA in the presence of lipopolysaccharide. Finally, gene expression analysis of inflammation-related cytokines and receptors revealed that pre-treatment with CpG-C2395 significantly reduced the mRNA expression of tumor necrosis factor-α, IL-1ß, IL-6, and Toll-like receptor 4. Overall, these results shed light on the anti-inflammatory responses triggered by CpG-C2395 stimulation through a comparative analysis of five types of CpG-ODNs in chicken macrophages. These results also offer insights into the use of CpG-ODNs to suppress the expression of proinflammatory cytokines, which may be valuable in the prevention of avian infectious diseases in the poultry industry.

6.
Dev Comp Immunol ; 142: 104666, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764422

RESUMO

HSPA8 (Heat shock 70 kDa protein 8) is a molecular chaperone involved in a variety of cellular processes. This gene may affect the proliferation, apoptosis and immune function of chicken macrophages, but the specific mechanism remains unclear. The purpose of this study was to explore the effect of the HSPA8 gene on the proliferation, apoptosis and immune function of chicken macrophages. In this study, a chicken HSPA8 overexpression plasmid, interference fragment and corresponding controls were transfected into HD11 cells, and then the expression of the HSPA8 gene, cell proliferation, cell cycle, apoptosis rate and immune function of each group were detected. The results showed that transfection of the HSPA8 overexpression plasmid significantly upregulated the level of HSPA8 expression in HD11 cells compared with the control; significantly promoted the proliferation of HD11 cells and the expression of PCNA, CCND1 and CCNB3; decreased the number of cells in the G1 phase and increased the number of cells in the S phase; decreased the rate of apoptosis and upregulated the expression of Bcl-2; and promoted the expression of the LPS-induced cytokines IL-1ß, IL-6 and TNF-α. Transfection of the HSPA8 interference fragment significantly downregulated the level of HSPA8 expression in HD11 cells; significantly inhibited the proliferation of HD11 cells and the expression of PCNA, CCND1 and CDK1; increased the number of cells in the G1 phase and decreased the number of cells in the S phase; increased the rate of apoptosis, downregulated the expression of Bcl-2 and upregulated the expression levels of Fas and FasL; and inhibited the expression of the LPS-induced cytokines IL-1ß and NF-κB. The results suggested that HSPA8 promotes the proliferation of and inhibits the apoptosis of HD11 cells and has a proinflammatory effect.


Assuntos
Citocinas , Lipopolissacarídeos , Animais , Apoptose/genética , Proliferação de Células , Citocinas/genética , Imunidade , Lipopolissacarídeos/farmacologia , Antígeno Nuclear de Célula em Proliferação , Proteínas Proto-Oncogênicas c-bcl-2 , Galinhas
7.
Front Vet Sci ; 9: 1005899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187840

RESUMO

Avian pathogenic E. coli (APEC), one of the widespread zoonotic-pathogen, can cause a series of diseases collectively known as colibacillosis. This disease can cause thousands of million dollars economic loss each year in poultry industry and threaten to human health via meat or egg contamination. However, the detailed molecular mechanism underlying APEC infection is still not fully understood. Circular RNAs, a new type of endogenous noncoding RNA, have been demonstrated to involve in various biological processes. However, it is still not clear whether the circRNAs participate in host response against APEC infection. Herein, we utilized the high-throughput sequence technology to identify the circRNA expression profiles in APEC infected HD11 cells. A total of 49 differentially expressed (DE) circRNAs were detected in the comparison of APEC infected HD11 cells vs. wild type HD11 cells, which were involved in MAPK signaling pathway, Endocytosis, Focal adhesion, mTOR signaling pathway, and VEGF signaling pathway. Specifically, the source genes (BRAF, PPP3CB, BCL2L13, RAB11A, and TSC2) and their corresponding DE circRNAs may play a significant role in APEC infection. Moreover, based on ceRNA regulation, we constructed the circRNA-miRNA network and identified a couple of important regulatory relationship pairs related to APEC infection, including circRAB11A-gga-miR-125b-3p, circRAB11A-gga-miR-1696, and circTSC2-gga-miR-1649-5p. Results indicate that the aforementioned specific circRNAs and circRNA-miRNA network might have important role in regulating host immune response against APEC infection. This study is the first time to investigate the circRNAs expression profile and the biological function of the source genes of the identified DE circRNAs after APEC infection of chicken HD11 cells. These results would contribute to a better understanding of the molecular mechanisms in host response against APEC infection.

8.
Int J Biochem Cell Biol ; : 106186, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35217190

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal

9.
Front Vet Sci ; 9: 1092812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699331

RESUMO

Introduction: Beta-glucans are known as biological response modifiers due to their ability to activate the immune system. This research aimed to determine the efficacy and safety of feeding beta-glucans from various sources on the immune status and intestinal morphology of chickens. Methods: To this end we used in vitro and in vivo set-ups. In the in vitro set-up the chicken macrophage cell line HD-11 was used to measure the response of the chicken immune cells to beta-glucans extracted from algae and mushrooms on immune-related gene expression and associated activities. Additionally, we conducted two in vivo experiments using either beta-glucans extracted from yeast or mix of yeast and mushrooms beta-glucans as part of the chicks feed in order to test their effects on the chick intestinal morphology. Results: In the in vitro set-up exposure of HD-11 cells to a concentration of 1 mg/ml of algae and mushroom beta-glucans resulted in significantly higher expression of 6 genes (TNFα, IL4, IL6, IL8, IL10, and iNOS2) compared to control. The release of nitrite oxide (NO) to the medium after exposure of HD-11 cells to mushrooms or algae beta-glucans was significantly increased compared to control. Additionally, significantly increased phagocytosis activity was found after exposure of the cells to algae and mushroom beta-glucans. In the in vivo set-up we observed that the length of the villi and the number of goblet cells in the ileum and the jejunum in the beta-glucan fed chicks were significantly augmented compared to control, when the chicks were fed with either yeast or yeast and mushroom beta-glucans mix. Discussion: In conclusion, dietary supplementation of poultry with beta-glucan exerts significant and positive effects on immune activity and the intestinal morphology in poultry.

10.
Int Immunopharmacol ; 101(Pt B): 108250, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656906

RESUMO

Baicalin is a well-known flavonoid compound, possess therapeutic potential against inflammatory diseases. Previous studies reported that Mycoplasma gallisepticum (MG) induced inflammatory response and immune dysregulation inside the host body. However, the underlying molecular mechanisms of baicalin against MG-infected chicken-like macrophages (HD11 cells) are still illusive. Oxidant status and total reactive oxygen species (ROS) were detected by ELISA assays and flow cytometry respectively. Mitochondrial membrane potential (ΔΨM) was evaluated by immunofluorescence microscopy. Transmission electron microscopy was used for ultrastructural analysis. The hallmarks of inflammation and autophagy were determined by western blotting. Oxidative stress and reactive oxygen species (ROS) were significantly enhanced in the MG-infected HD11 cells. MG infection caused disruption in the mitochondrial membrane potential (ΔΨM) compared to the control conditions. Meanwhile, baicalin treatment reduced MG-induced reactive oxygen species (ROS), oxidative stress and alleviated the disruption in ΔΨM. The activities of inflammatory markers were significantly enhanced in the MG-infected HD11 cells. Increased protein expressions of TLR-2-NF-κB pathway, NLRP3-inflammasome and autophagy-related proteins were detected in the MG-infected HD11 cells. Besides, baicalin treatment significantly reduced the protein expressions of TLR-2-NF-κB pathway and NLRP3 inflammasome. While, the autophagy-related proteins were significantly enhanced with baicalin treatment in a dose-dependent manner in the MG-infected HD11 cells. The results showed that baicalin prevented HD11 cells from MG-induced oxidative stress and inflammation via the opposite modulation of TLR-2-NF-κB-mediated NLRP3-inflammasome pathway and autophagy, and baicalin could be a promising candidate for the prevention of inflammatory effects caused by MG-infection in macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Proteínas Aviárias/metabolismo , Galinhas/imunologia , Flavonoides/uso terapêutico , Inflamassomos/metabolismo , Macrófagos/imunologia , Infecções por Mycoplasma/tratamento farmacológico , Mycoplasma gallisepticum/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças das Aves Domésticas/tratamento farmacológico , Animais , Proteínas Aviárias/genética , Linhagem Celular , Potencial da Membrana Mitocondrial , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo
11.
Protein Pept Lett ; 27(1): 60-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31362652

RESUMO

BACKGROUND: Cathelicidins are a family of Host Defense Peptides (HDPs), that play an important role in the innate immune response. They exert both broad-spectrum antimicrobial activity against pathogens, and strong immunomodulatory functions that affect the response of innate and adaptive immune cells. OBJECTIVE: The aim of this study was to investigate immunomodulation by the chicken cathelicidin CATH-2 and compare its activities to those of the human cathelicidin LL-37. METHODS: Chicken macrophages and chicken monocytes were incubated with cathelicidins. Activation of immune cells was determined by measuring surface markers Mannose Receptor Ctype 1 (MRC1) and MHC-II. Cytokine production was measured by qPCR and nitric oxide production was determined using the Griess assay. Finally, the effect of cathelicidins on phagocytosis was measured using carboxylate-modified polystyrene latex beads. RESULTS: CATH-2 and its all-D enantiomer D-CATH-2 increased MRC1 and MHC-II expression, markers for antigen presentation, on primary chicken monocytes, whereas LL-37 did not. D-CATH- 2 also increased the MRC1 and MHC-II expression if a chicken macrophage cell line (HD11 cells) was used. In addition, LPS-induced NO production by HD11 cells was inhibited by CATH-2 and D-CATH-2. CONCLUSION: These results are a clear indication that CATH-2 (and D-CATH-2) affect the activation state of monocytes and macrophages, which leads to optimization of the innate immune response and enhancement of the adaptive immune response.


Assuntos
Biomarcadores/metabolismo , Catelicidinas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Linhagem Celular , Galinhas , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
12.
Antioxidants (Basel) ; 8(11)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703342

RESUMO

As an important micronutrient, selenium (Se) plays many essential roles in immune response and protection against pathogens in humans and animals, but underlying mechanisms of Se-based control of salmonella growth within macrophages remain poorly elucidated. In this study, using RNA-seq analyses, we demonstrate that Se treatment (at an appropriate concentration) can modulate the global transcriptome of chicken macrophages HD11. The bioinformatic analyses (KEGG pathway analysis) revealed that the differentially expressed genes (DEGs) were mainly enriched in retinol and glutathione metabolism, revealing that Se may be associated with retinol and glutathione metabolism. Meanwhile, Se treatment increased the number of salmonella invading the HD11 cells, but reduced the number of salmonella within HD11 cells, suggesting that enhanced clearance of salmonella within HD11 cells was potentially modulated by Se treatment. Furthermore, RNA-seq analyses also revealed that nine genes including SIVA1, FAS, and HMOX1 were differentially expressed in HD11 cells infected with salmonella following Se treatment, and GO enrichment analysis showed that these DEGs were mainly enriched in an extrinsic apoptotic signaling pathway. In summary, these results indicate that Se treatment may not only affect retinol and glutathione metabolism in macrophages, but could also inhibit salmonella-induced macrophage apoptosis via an extrinsic apoptotic signaling pathway involving SIVA1.

13.
Poult Sci ; 96(6): 1849-1854, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204713

RESUMO

Poultry products such as meat and eggs are known reservoirs for Salmonella serovars. Macrophages play an important role by limiting bacterial replication using several defense mechanisms including immune and inflammatory mediators, antibacterial proteins, reactive nitrogen and oxygen species. In this study, we evaluate transcriptional changes in Toll-like receptors, immune/inflammatory cytokines, chemokines, antibacterial factors, and nitric oxide (NO) production in HD11 chicken macrophages in response to intracellular persistence of poultry-derived Salmonella enterica Enteritidis (SE), Typhimurium (ST), and Heidelberg (SH) that were associated with human salmonellosis. Invasion of ST was higher than SE or SH; however, SH persistence in HD11 cells at 18 h post infection (hpi) was more pronounced than the other 2 serovars. In comparison to the uninfected control HD11 cells, expression of TLR5 was >2 fold higher for SE and SH which was followed by up-regulation of downstream signal transduction molecules. Significant up-regulation of antibacterial peptides, proinflammatory chemokines, cytokines, and NO production were observed in response to SE, SH, and ST at 18 hpi. These results indicate that although antibacterial factors contribute to the clearance of invading Salmonella, some of the differences in response could also be due to the different virulence properties of these serovars.


Assuntos
Galinhas , Macrófagos/microbiologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/patogenicidade , Animais , Linhagem Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Doenças das Aves Domésticas/imunologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Salmonelose Animal/imunologia , Salmonella enterica/genética , Salmonella enterica/imunologia , Sorogrupo , Transdução de Sinais , Receptores Toll-Like , Transcriptoma
14.
Res Vet Sci ; 111: 36-42, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27914220

RESUMO

Macrophages play important roles in mediating virus-induced innate immune responses and are thought to be involved in the pathogenesis of bacterial superinfections. The innate immune response initiated by both low pathogenicity AIV and bacterial superinfection in their avian host is not fully understood. We therefore determine the transcripts of innate immune-related genes following avian H9N2 AIV virus infection and E. coli LPS co-stimulation of avian macrophage-like cell line HD11 cells. More pronounced expression of pro-inflammatory cytokines (IL-6 and IL-1ß) as well as the inflammatory chemokines (CXCLi1 and CXCLi2) was observed in virus infected plus LPS treated HD11 cells compared to H9N2 virus solely infected control. For two superinfection groups, the levels of genes examined in a prior H9N2 virus infection before secondary LPS treatment group were significantly higher as compared with simultaneous virus infection plus LPS stimulation group. Interestingly, similar high levels of IL-6 gene were observed between LPS sole stimulation group and two superinfection groups. Moreover, IL-10 and TGF-ß3 mRNA levels in both superinfection groups were moderately upregulated compared to sole LPS stimulation group or virus alone infection group. Although TLR4 and MDA5 levels in virus alone infection group were significantly lower compared to that in both superinfection groups, TLR4 upregulation respond more rapid to virus sole infection compared to LPS plus virus superinfection. Collectively, innate immune-related genes respond more pronounced in LPS stimulation plus H9N2 virus infection HD11 cells compared to sole virus infection or LPS alone stimulation control cells.


Assuntos
Galinhas , Citocinas/metabolismo , Imunidade Inata/fisiologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Animais , Linhagem Celular , Quimiocinas/metabolismo , Escherichia coli/metabolismo , Regulação da Expressão Gênica/imunologia
15.
Immunobiology ; 220(5): 555-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25623031

RESUMO

Mannose-binding lectin (MBL) is a C-type serum lectin of importance in innate immunity. Low serum concentrations of MBL have been associated with greater susceptibility to infections. In this study, binding of purified chicken MBL (cMBL) to Salmonella enterica subsp. enterica (S. enterica) serotypes B, C1 and D was investigated by flow cytometry, and Staphylococcus aureus (S. aureus) was used for comparison. For S. enterica the C1 serotypes were the only group to exhibit binding to cMBL. Furthermore, functional studies of the role of cMBL in phagocytosis and complement activation were performed. Spiking with cMBL had a dose-dependent effect on the HD11 phagocytic activity of S. enterica subsp. enterica serovar Montevideo, and a more pronounced effect in a carbohydrate competitive assay. This cMBL dose dependency of opsonophagocytic activity by HD11 cells was not observed for S. aureus. No difference in complement-dependent bactericidal activity in serum with high or low cMBL concentrations was found for S. Montevideo. On the other hand, serum with high concentrations of cMBL exhibited a greater bactericidal activity to S. aureus than serum with low concentrations of cMBL. The results presented here emphasise that chicken cMBL exhibits functional similarities with its mammalian counterparts, i.e. playing a role in opsonophagocytosis and complement activation.


Assuntos
Lectina de Ligação a Manose/imunologia , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Células Cultivadas , Galinhas , Ativação do Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/imunologia , Imunidade Inata , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia
16.
Innate Immun ; 21(4): 406-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25213348

RESUMO

Serotonin (5-hydroxytryptamine; 5-HT) transporter (5-HTT) is involved in inflammation and the stress response. In this study, we examined the regulation of 5-HTT expression in macrophage HD11 cells in response to bacterial LPS. Long-term exposure of cells to LPS (6-18 h) produced a decrease in 5-HTT mRNA expression. Accordingly, reduced 5-HTT activity measured by 5-HT uptake was also observed in LPS-treated HD11 cells. Moreover, LPS treatment, as well as co-transfection with an expression vector encoding the chicken CCAAT/enhancer binding protein beta (C/EBPß), resulted in inhibition of 5-HTT promoter activity. Indeed, sequence analysis revealed several C/EBPß binding motifs in the upstream region of the 5-HTT gene, which specifically interacted with C/EBPß both in an in vitro band shift assay and in living HD11 cells. The C/EBPß binding was activated in cells treated with LPS. The role of C/EBPß in LPS inhibition of 5-HTT expression was further confirmed by small interfering RNA interference, which demonstrated that knockdown of endogenous C/EBPß attenuated the inhibition of 5-HTT expression in LPS-treated cells. Taken together, the results suggest that C/EBPß plays a critical role in regulating the 5-HTT gene in macrophages in response to pro-inflammatory stimuli.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Macrófagos/imunologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Sítios de Ligação/genética , Fator de Ligação a CCAAT/genética , Linhagem Celular , Galinhas , Regulação para Baixo/genética , Lipopolissacarídeos/imunologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA