Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364990

RESUMO

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Hipercalciúria/diagnóstico , Hipercalciúria/tratamento farmacológico , Hipercalciúria/genética , Rim/metabolismo , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo
2.
BMC Pediatr ; 24(1): 121, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355430

RESUMO

BACKGROUND: Hereditary hypophosphatemia rickets with hypercalciuria (HHRH) is a rare autosomal recessive disorder characterised by reduced renal phosphate reabsorption leading to hypophosphataemia, rickets and bone pain. Here, we present a case of HHRH in a Chinese boy. CASE PRESENTATION: We report a 11-year-old female proband, who was admitted to our hospital with bilateral genuvarum deformity and short stature. Computed Tomography (CT) showed kidney stones, blood tests showed hypophosphatemia, For a clear diagnosis, we employed high-throughput sequencing technology to screen for variants. Our gene sequencing approach encompassed whole exome sequencing, detection of exon and intron junction regions, and examination of a 20 bp region of adjacent introns. Flanking sequences are defined as ±50 bp upstream and downstream of the 5' and 3' ends of the coding region.The raw sequence data were compared to the known gene sequence data in publicly available sequence data bases using Burrows-Wheeler Aligner software (BWA, 0.7.12-r1039), and the pathogenic variant sites were annotated using Annovar. Subsequently, the suspected pathogenic variants were classified according to ACMG's gene variation classification system. Simultaneously, unreported or clinically ambiguous pathogenic variants were predicted and annotated based on population databases. Any suspected pathogenic variants identified through this analysis were then validated using Sanger sequencing technology. At last, the proband and her affected sister carried pathogenic homozygous variant in the geneSLC34A3(exon 13, c.1402C > T; p.R468W). Their parents were both heterozygous carriers of the variant. Genetic testing revealed that the patient has anLRP5(exon 18, c.3917C > T; p.A1306V) variant of Uncertain significance, which is a rare homozygous variant. CONCLUSION: This case report aims to raise awareness of the presenting characteristics of HHRH. The paper describes a unique case involving variants in both theSLC34A3andLRP5genes, which are inherited in an autosomal recessive manner. This combination of gene variants has not been previously reported in the literature. It is uncertain whether the presence of these two mutated genes in the same individual will result in more severe clinical symptoms. This report shows that an accurate diagnosis is critical, and with early diagnosis and correct treatment, patients will have a better prognosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Distúrbios do Metabolismo do Fósforo , Criança , Feminino , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Heterozigoto , Hipercalciúria/diagnóstico , Hipercalciúria/genética , Hipofosfatemia/genética , Íntrons , Mutação , Distúrbios do Metabolismo do Fósforo/genética
3.
Calcif Tissue Int ; 114(2): 137-146, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37981601

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare disorder of phosphate homeostasis. We describe a single-center experience of genetically proven HHRH families and perform systematic review phenotype-genotype correlation in reported biallelic probands and their monoallelic relatives. Detailed clinical, biochemical, radiological, and genetic data were retrieved from our center and a systematic review of Pub-Med and Embase databases for patients and relatives who were genetically proven. Total of nine subjects (probands:5) carrying biallelic SLC34A3 mutations (novel:2) from our center had a spectrum from rickets/osteomalacia to normal BMD, with hypophosphatemia and hypercalciuria in all. We describe the first case of genetically proven HHRH with enthesopathy. Elevated FGF23 in another patient with hypophosphatemia, iron deficiency anemia, and noncirrhotic periportal fibrosis led to initial misdiagnosis as tumoral osteomalacia. On systematic review of 58 probands (with biallelic SLC34A3 mutations; 35 males), early-onset HHRH and renal calcification were present in ~ 70% and late-onset HHRH in 10%. c.575C > T p.(Ser192Leu) variant occurred in 53% of probands without skeletal involvement. Among 110 relatives harboring monoallelic SLC34A3 mutation at median age 38 years, renal calcification, hypophosphatemia, high 1,25(OH)2D, and hypercalciuria were observed in ~30%, 22.3%, 40%, and 38.8%, respectively. Renal calcifications correlated with age but were similar across truncating and non-truncating variants. Although most relatives were asymptomatic for bone involvement, 6/12(50%) had low bone mineral density. We describe the first monocentric HHRH case series from India with varied phenotypes. In a systematic review, frequent renal calcifications and low BMD in relatives with monoallelic variants (HHRH trait) merit identification.


Assuntos
Entesopatia , Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Doenças Renais Císticas , Nefrocalcinose , Osteomalacia , Masculino , Humanos , Adulto , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/complicações , Hipercalciúria/genética , Osteomalacia/complicações , Osteomalacia/genética
4.
J Bone Miner Res ; 37(8): 1580-1591, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35689455

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) represents an FGF23-independent disease caused by biallelic variants in the solute carrier family 34-member 3 (SLC34A3) gene. HHRH is characterized by chronic hypophosphatemia and an increased risk for nephrocalcinosis and rickets/osteomalacia, muscular weakness, and secondary limb deformity. Biochemical changes, but no relevant skeletal changes, have been reported for heterozygous SLC34A3 carriers. Therefore, we assessed the characteristics of individuals with biallelic and monoallelic SLC34A3 variants. In 8 index patients and 5 family members, genetic analysis was performed using a custom gene panel. The skeletal assessment comprised biochemical parameters, areal bone mineral density (aBMD), and bone microarchitecture. Pathogenic SLC34A3 variants were revealed in 7 of 13 individuals (2 homozygous, 5 heterozygous), whereas 3 of 13 carried monoallelic variants of unknown significance. Whereas both homozygous individuals had nephrocalcinosis, only one displayed a skeletal phenotype consistent with HHRH. Reduced to low-normal phosphate levels, decreased tubular reabsorption of phosphate (TRP), and high-normal to elevated values of 1,25-OH2 -D3 accompanied by normal cFGF23 levels were revealed independently of mutational status. Interestingly, individuals with nephrocalcinosis showed significantly increased calcium excretion and 1,25-OH2 -D3 levels but normal phosphate reabsorption. Furthermore, aBMD Z-score <-2.0 was revealed in 4 of 8 heterozygous carriers, and HR-pQCT analysis showed a moderate decrease in structural parameters. Our findings highlight the clinical relevance also of monoallelic SLC34A3 variants, including their potential skeletal impairment. Calcium excretion and 1,25-OH2 -D3 levels, but not TRP, were associated with nephrocalcinosis. Future studies should investigate the effects of distinct SLC34A3 variants and optimize treatment and monitoring regimens to prevent nephrocalcinosis and skeletal deterioration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Raquitismo Hipofosfatêmico Familiar , Nefrocalcinose , Cálcio/uso terapêutico , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico por imagem , Raquitismo Hipofosfatêmico Familiar/genética , Humanos , Hipercalciúria/complicações , Hipercalciúria/tratamento farmacológico , Hipercalciúria/genética , Nefrocalcinose/genética , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
5.
Kidney Med ; 4(3): 100419, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35386604

RESUMO

Rationale & Objective: Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare monogenic disorder caused by SLC34A3 pathogenic variants. HHRH is characterized by kidney phosphate wasting, hypophosphatemia, hypercalciuria, an elevated 1,25-dihydroxyvitamin D level, nephrocalcinosis, and urinary stone disease. Previously, we reported a 100% prevalence of kidney cysts in the related CYP24A1 deficiency. Thus, in the current study, we characterized cysts' presence in HHRH, another monogenic cause of hypercalciuria, nephrocalcinosis, and urinary stone disease. Study Design: Case series. Setting & Participants: Medical records from the Mayo Clinic and the Rare Kidney Stone Consortium monogenic stone disease database were queried for patients with a genetically confirmed HHRH diagnosis. The number, sizes, and locations of kidney cysts in each patient were recorded. Results: Twelve patients with SLC34A3 pathogenic variants were identified (7 monoallelic, 5 biallelic). Of these, 5 (42%) were males, and the median (Q1, Q3) ages were 16 years (13, 35 years) at clinical presentation and 42 years (20, 57 years) at genetic confirmation. Kidney cysts were present in 9 of 12 (75%) patients, and the median (Q1, Q3) age at first cyst detection was 41 years (13, 50 years). The median number of cysts per patient was 2.0 (0.5, 3.5). Fifty percent of adult patients had a cyst number that exceeded the 97.5th percentile of an age- and sex-matched control population. All children had at least 2 or more total cysts. None had a family history of cystic kidney disease. Limitations: Retrospective study, possible selection bias, single-center experience. Conclusions: A strong association between HHRH and kidney cysts was observed. Similarities in the biochemical profiles of HHRH and CYP24A1 deficiency suggest elevated active vitamin D and hypercalciuria may be potential cystogenic factors. Further studies are needed to understand how genetic changes in SLC34A3 favor cyst formation.

6.
Urolithiasis ; 47(6): 511-519, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30798342

RESUMO

Loss-of-function mutations of SLC34A3 represent an established cause of a distinct renal phosphate wasting disorder termed hereditary hypophosphatemic rickets with hypercalciuria (HHRH). SLC34A3 encodes the renal phosphate transporter NaPi2c expressed at the apical brush border of proximal renal tubules. Substitution of p.Ser192Leu is one of the most frequent genetic changes among HHRH patients in Europe, but has never been systematically evaluated, clinically or on a cellular level. Identification of a 32-year-old female with a homozgyous c.575C>T, p.Ser192Leu substitution enabled a more comprehensive assessment of the impact of this missense variant. Clinically, the patient showed renal phosphate wasting and nephrocalcinosis without any bone abnormalities. Heterozygous carriers of deleterious SLC34A3 variants were previously described to harbor an increased risk of kidney stone formation and renal calcification. We hence examined the frequency of p.Ser192Leu variants in our adult kidney stone cohort and compared the results to clinical findings of previously published cases of both mono- and biallelic p.Ser192Leu changes. On a cellular level, p.Ser192Leu-mutated transporters localize to the plasma membrane in different cellular systems, but lead to significantly reduced transport activity of inorganic phosphate upon overexpression in Xenopus oocytes. Despite the reduced function in ectopic cellular systems, the clinical consequences of p.Ser192Leu may appear relatively mild, at least in our index patient, and can potentially be missed in clinical practice.


Assuntos
Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/genética , Mutação de Sentido Incorreto , Nefrocalcinose/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Adulto , Raquitismo Hipofosfatêmico Familiar/complicações , Feminino , Humanos , Hipercalciúria/complicações , Nefrocalcinose/complicações
7.
Pflugers Arch ; 471(1): 149-163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30109410

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/genética , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Animais , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Fator de Crescimento de Fibroblastos 23 , Humanos , Hipercalciúria/diagnóstico , Hipercalciúria/tratamento farmacológico , Mutação com Perda de Função , Fosfatos/uso terapêutico , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Vitamina D/sangue , Vitamina D/uso terapêutico , Vitaminas/sangue , Vitaminas/uso terapêutico
8.
Bone ; 97: 15-19, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27939817

RESUMO

OBJECTIVE: To identify a genetic basis for markedly reduced bone density and multiple fractures in an adult patient with hypophosphatemia and hypercalciuria. SUBJECTS: A 54-year-old Vietnamese man, his unaffected two daughters and wife. METHODS: We performed biochemical studies and sequenced the SLC34A3 gene using genomic DNA from peripheral blood mononuclear cells. RESULTS: Biochemical evaluation of the proband revealed hypophosphatemia with increased renal phosphate wasting, hypercalciuria, low serum parathyroid hormone (PTH) and an elevated serum 1,25(OH)2D level. Mutation analysis of SLC34A3 gene revealed that the patient was a compound heterozygote for two nonsynonymous nucleotide substitutions: a novel c.571G>A (p.G191S) damaging mutation and the previously reported c.200G>A (p.R67H) polymorphism, consistent with the clinical diagnosis of late-onset hereditary hypophosphatemic rickets with hypercalciuria (HHRH). His wife and older daughter both carried the p.R67H polymorphism, while his younger daughter was compound heterozygous for p.R67H and p.G191S. CONCLUSIONS: HHRH is an uncommon autosomal recessive disease that generally manifests in childhood as rickets or nephrolithiasis, but an adult onset phenotype may occur in heterozygous carriers of SLC34A3 mutations. The severe presentation of this proband in adulthood with marked nephrolithiasis, multiple fractures and low bone density emphasizes the importance of measuring the serum phosphorus level in patients with suspected but unexplained osteoporosis and/or recurrent renal stones. The recognition of late-onset HHRH facilitates timely institution of appropriate therapy.


Assuntos
Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/genética , Mutação/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Idade de Início , Osso e Ossos/patologia , Densitometria , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Linhagem , Radiografia Torácica
9.
Bone ; 59: 114-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24246249

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder inherited in an autosomal recessive fashion and characterized by hypophosphatemia, short stature, rickets and/or osteomalacia, and secondary absorptive hypercalciuria. HHRH was recently mapped to chromosome 9q34, which contains the gene SLC34A3 which encodes the renal proximal tubular sodium-phosphate cotransporter NaPi-IIc. Here we describe a 29-year-old man with a history of childhood rickets who presented with increased renal phosphate clearance leading to hypophosphatemia, hypercalciuria, low serum parathyroid hormone (PTH), elevated serum 1,25-dihydroxyvitamin D (1,25(OH)2D) and recurrent nephrolithiasis. We performed a mutation analysis of SLC34A3 (exons and adjacent introns) of the proband and his parents to determine if there was a genetic contribution. The proband proved to be compound heterozygous for two missense mutations in SLC34A3: one novel mutation in exon 7 c.571G>C (p.G191R) and one previously identified mutation in exon 13 c.1402C>T (p.R468W). His parents were both asymptomatic heterozygous carriers of one of these two mutations. We also performed an oral phosphate loading test and compared serum phosphate, intact PTH, and intact fibroblast growth factor 23 (iFGF23) in this patient versus patients with other forms of hypophosphatemic rickets, the results of which further revealed that the mechanism of hypophosphatemia in HHRH is independent of FGF23. This is the first report of HHRH in the Chinese population. Our findings of the novel mutation in exon 7 add to the list of more than 20 reported mutations of SLC34A3.


Assuntos
Povo Asiático/genética , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/complicações , Hipercalciúria/genética , Mutação/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , China , Raquitismo Hipofosfatêmico Familiar/sangue , Raquitismo Hipofosfatêmico Familiar/diagnóstico por imagem , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Heterozigoto , Humanos , Hipercalciúria/sangue , Hipercalciúria/diagnóstico por imagem , Masculino , Dados de Sequência Molecular , Hormônio Paratireóideo/sangue , Fosfatos/sangue , Radiografia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/química
10.
Bone ; 59: 53-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24176905

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder, characterized by hypophosphatemia, variable degrees of rickets/osteomalacia, and hypercalciuria secondary to increased serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels. HHRH is caused by mutations in the SLC34A3 gene, which encodes sodium-phosphate co-transporter type IIc. A 6-1/2-year-old female presented with a history of nephrolithiasis. Her metabolic evaluation revealed increased 24-hour urine calcium excretion with high serum calcium, low intact parathyroid hormone (PTH), and elevated 1,25(OH)2D. In addition, the patient had low to low-normal serum phosphorus with high urine phosphorus. The patient had normal stature; without rachitic or boney deformities or a history of fractures. Genetic analysis of SLC34A3 revealed the patient to be a compound heterozygote for a novel single base pair deletion in exon 12 (c.1304delG) and 30-base pair deletion in intron 6 (g.1440-1469del). The single-base pair mutation causes a frameshift, which results in premature stop codon. The intronic deletion is likely caused by misalignment of the 4-basepair homologous repeats and results in the truncation of an already small intron to 63bp, which would impair proper RNA splicing of the intron. This is the fourth unique intronic deletion identified in patients with HHRH, suggesting the frequent occurrence of sequence misalignments in SLC34A3 and the importance of screening introns in patients with HHRH.


Assuntos
Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/complicações , Hipercalciúria/genética , Íntrons/genética , Deleção de Sequência/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Sequência de Bases , Criança , Análise Mutacional de DNA , Demografia , Feminino , Predisposição Genética para Doença , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA