Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Immunol ; 174: 32-40, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154583

RESUMO

BACKGROUND: Exosomes are mediators of intercellular communication. Cancer cell-secreted exosomes allow exosome donor cells to promote cancer growth, as well as metastasis. METHODS: Here, exosomes were isolated from the serum of non-small cell lung cancer (NSCLC) patients and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot analysis. NSCLC cell proliferation and migration were assessed using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays. H1299 tumor formation and pulmonary metastasis were examined in a xenograft model in nude mice. RESULTS: We found that exosomes derived from NSCLC (NSCLC-Exos) promoted NSCLC cell migration and proliferation, and that NSCLC-Exo-mediated malignant progression of NSCLC was mediated by miR-199b-5p. Inhibition of miR-199b-5p decreased the effects of NSCLC-Exos on NSCLC malignant progression. HIF1AN was identified as a downstream target of miR-199b-5p. Furthermore, overexpression of HIF1AN reversed the effects of miR-199b-5p on NSCLC malignant progression. CONCLUSION: In summary, our findings demonstrated that exosomal-specific miR-199b-5p promoted proliferation in distant or neighboring cells via the miR-199b-5p/HIF1AN axis, resulting in enhanced tumor growth.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Progressão da Doença , Exossomos , Neoplasias Pulmonares , Camundongos Nus , MicroRNAs , Exossomos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animais , Proliferação de Células/genética , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Camundongos Endogâmicos BALB C
2.
Mol Cell Biol ; 44(4): 138-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644795

RESUMO

Pharmacologic inhibitors of cellular hydroxylase oxygen sensors are protective in multiple preclinical in vivo models of inflammation. However, the molecular mechanisms underlying this regulation are only partly understood, preventing clinical translation. We previously proposed a new mechanism for cellular oxygen sensing: oxygen-dependent, (likely) covalent protein oligomer (oxomer) formation. Here, we report that the oxygen sensor factor inhibiting HIF (FIH) forms an oxomer with the NF-κB inhibitor ß (IκBß). The formation of this protein complex required FIH enzymatic activity and was prevented by pharmacologic inhibitors. Oxomer formation was highly hypoxia-sensitive and very stable. No other member of the IκB protein family formed an oxomer with FIH, demonstrating that FIH-IκBß oxomer formation was highly selective. In contrast to the known FIH-dependent oxomer formation with the deubiquitinase OTUB1, FIH-IκBß oxomer formation did not occur via an IκBß asparagine residue, but depended on the amino acid sequence VAERR contained within a loop between IκBß ankyrin repeat domains 2 and 3. Oxomer formation prevented IκBß from binding to its primary interaction partners p65 and c-Rel, subunits of NF-κB, the master regulator of the cellular transcriptional response to pro-inflammatory stimuli. We therefore propose that FIH-mediated oxomer formation with IκBß contributes to the hypoxia-dependent regulation of inflammation.


Assuntos
NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Ligação Proteica , Hipóxia Celular , Oxigênio/metabolismo , Células HEK293 , Oxigenases de Função Mista/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Hipóxia/metabolismo , Proteínas Repressoras
3.
Connect Tissue Res ; 65(1): 63-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966352

RESUMO

The pivotal role of lncRNAs in osteoporosis progression and development necessitates a comprehensive exploration of the functional and precise molecular mechanisms underlying lncRNA SNHG1's regulation of osteoblast differentiation and calcification. The study involved inducing BMSCs cells to differentiate into osteoblasts, followed by transfections of miR-497-5p inhibitors, pcDNA3.1-SNHG1, sh-HIF1AN, miR-497-5p mimics, and respective negative controls into BMSCs. Quantitative PCR (qPCR) was employed to assess the expression of SNHG1 and miR-497-5p. Western Blotting was conducted to measure the levels of short stature-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and HIF1AN. Alkaline phosphatase (ALP) activity was determined using appropriate assay kits. Calcium nodule staining was performed through Alizarin red staining. Dual luciferase reporter gene assays were executed to validate the interaction between SNHG1 and miR-497-5p, as well as HIF1AN. Throughout osteogenic differentiation, there was a down-regulation of SNHG1 and HIF1AN, in contrast to an elevation in miR-497-5p levels. Direct interactions between miR-497-5p and both SNHG1 and HIF1AN were observed. Notably, SNHG1 exhibited the ability to modulate HIF1AN by influencing miR-497-5p, thereby inhibiting osteogenic differentiation. Functioning as a competitive endogenous RNA, lncRNA SNHG1 exerts an inhibitory influence on osteogenic differentiation via the miR-497-5p/HIF1AN axis. This highlights the potential for lncRNA SNHG1 to emerge as a promising therapeutic target for osteoporosis. The study's findings pave the way for a novel target strategy in the future treatment of osteoporosis.


Assuntos
MicroRNAs , Osteoporose , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Osteoporose/genética , Osteoporose/metabolismo , Células Cultivadas , Oxigenases de Função Mista , Proteínas Repressoras
4.
Arch Biochem Biophys ; 751: 109822, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030054

RESUMO

BACKGROUND: Skin flap transplantation is a routine strategy in plastic and reconstructive surgery for skin-soft tissue defects. Recent research has shown that M2 macrophages have the potential for pro-angiogenesis during tissue healing. METHODS: In our research, we extracted the exosomes from M2 macrophages(M2-exo) and applied the exosomes in the model of skin flap transplantation. The flap survival area was measured, and the choke vessels were assessed by morphological observation. Hematoxylin and eosin (H&E) staining and Immunohistochemistry were applied to assess the neovascularization. The effect of M2-exo on the function of Human umbilical vein endothelial cells (HUVECs) was also investigated. We also administrated 2-methoxyestradiol (2-ME2, an inhibitor of HIF-1α) to explore the underlying mechanism. We tested the effects of M2-Exo on the proliferation of HUVECs through CCK8 assay and EdU staining assay. RESULTS: The survival area and number of micro-vessels in the skin flaps were increased in the M2-exo group. Besides, the dilation rate of choke vessels was also enhanced in the M2-exo group. Additionally, compared with the control group, M2-exo could accelerate the proliferation, migration and tube formation of HUVECs in vitro. Furthermore, the expression of the pro-angiogenesis factors, HIF-1α and VEGFA, were overexpressed with the treatment of the M2-exo. The expression of HIF1AN protein level was decreased in the M2-exo group. Finally, treatment with HIF-1α inhibitor reverses the pro-survival effect of M2-exo on skin flaps by interfering with the HIF1AN/HIF-1α/VEGFA signaling pathway. CONCLUSION: This study showed that M2-exosomes promote skin flap survival by enhancing angiogenesis, with HIF1AN/HIF-1α/VEGFA playing a crucial role in this process.


Assuntos
Exossomos , Humanos , Exossomos/metabolismo , Angiogênese , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Open Med (Wars) ; 18(1): 20230775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854282

RESUMO

Endometriosis (EM) is a prevalent estrogen-dependent disorder that adversely affects the life quality of many reproductive-age women. Previous evidence has suggested the significant role of miR-429 in EM; however, its molecular mechanisms underlying EM pathogenesis are unclarified. Human endometrial stromal cells (HESCs) were identified using immunofluorescence staining and flow cytometry. A mouse EM model was established by endometrial auto-transplantation. RNA and protein expression of molecules was examined using real-time quantitative polymerase chain reaction and western blotting, respectively. In vitro functional experiments showed that inhibiting miR-429 restrained HESC proliferation, migration, and invasiveness. Luciferase reporter assay confirmed that miR-429 targeted hypoxia-inducible factor 1 subunit alpha inhibitor (HIF1AN) in HESCs. HIF1AN silencing offset the negative regulation of miR-429 inhibition on the HIF1A/vascular endothelial growth factor (VEGF) signaling pathway. In vivo experiments showed that depletion of miR-429 attenuated ectopic lesion development in the mouse EM model. Collectively, suppressing miR-429 hinders the invasive behaviors of HESCs and EM progression in mice by targeting HIF1AN and regulating the HIF1A/VEGF signaling pathway.

6.
Nephrol Dial Transplant ; 38(10): 2276-2288, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37096392

RESUMO

BACKGROUND: The roles of hypoxia and hypoxia inducible factor (HIF) during chronic kidney disease (CKD) are much debated. Interventional studies with HIF-α activation in rodents have yielded contradictory results. The HIF pathway is regulated by prolyl and asparaginyl hydroxylases. While prolyl hydroxylase inhibition is a well-known method to stabilize HIF-α, little is known about the effect asparaginyl hydroxylase factor inhibiting HIF (FIH). METHODS: We used a model of progressive proteinuric CKD and a model of obstructive nephropathy with unilateral fibrosis. In these models we assessed hypoxia with pimonidazole and vascularization with three-dimensional micro-computed tomography imaging. We analysed a database of 217 CKD biopsies from stage 1 to 5 and we randomly collected 15 CKD biopsies of various severity degrees to assess FIH expression. Finally, we modulated FIH activity in vitro and in vivo using a pharmacologic approach to assess its relevance in CKD. RESULTS: In our model of proteinuric CKD, we show that early CKD stages are not characterized by hypoxia or HIF activation. At late CKD stages, some areas of hypoxia are observed, but these are not colocalizing with fibrosis. In mice and in humans, we observed a downregulation of the HIF pathway, together with an increased FIH expression in CKD, according to its severity. Modulating FIH in vitro affects cellular metabolism, as described previously. In vivo, pharmacologic FIH inhibition increases the glomerular filtration rate of control and CKD animals and is associated with decreased development of fibrosis. CONCLUSIONS: The causative role of hypoxia and HIF activation in CKD progression is questioned. A pharmacological approach of FIH downregulation seems promising in proteinuric kidney disease.


Assuntos
Hipóxia , Oxigenases de Função Mista , Humanos , Animais , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Microtomografia por Raio-X , Proteínas Repressoras/genética , Regulação para Baixo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
7.
Front Oncol ; 13: 1080910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816977

RESUMO

Background: Hypoxia-inducible factor 1-alpha (HIF-1α) stability and transcriptional action are reduced by the hypoxia-inducible factor 1-alpha subunit suppressor (HIF1AN). Its inappropriate expression is associated with the development of cancer and immune control. It is yet unknown how HIF1AN, clinical outcomes, and immune involvement in breast cancer (BC) are related. Methods: Using the GEPIA, UALCAN, TIMER, Kaplan-Meier plotter, and TISIDB datasets, a thorough analysis of HIF1AN differential expression, medical prognosis, and the relationship between HIF1AN and tumor-infiltrating immune cells in BC was conducted. Quantitative real-time PCR (qRT-PCR) analysis of BC cells were used for external validation. Results: The findings revealed that, as compared to standard specimens, BC cells had significantly lower levels of HIF1AN expression. Good overall survival (OS) for BC was associated with higher HIF1AN expression. Additionally, in BC, the expression of HIF1AN was closely associated with the chemokines and immune cell infiltration, including neutrophils, macrophages, T helper cells, B cells, Tregs, monocytes, dendritic cells, and NK cells. A high correlation between HIF1AN expression and several immunological indicators of T-cell exhaustion was particularly revealed by the bioinformatic study. Conclusions: HIF1AN is a predictive indicator for breast tumors, and it is useful for predicting survival rates.

8.
Biol Res ; 56(1): 4, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683111

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) are critical for sustaining spermatogenesis. Even though several regulators of SSC have been identified in rodents, the regulatory mechanism of SSC in humans has yet to be discovered. METHODS: To explore the regulatory mechanisms of human SSCs, we analyzed publicly available human testicular single-cell sequencing data and found that Ankyrin repeat and SOCS box protein 9 (ASB9) is highly expressed in SSCs. We examined the expression localization of ASB9 using immunohistochemistry and overexpressed ASB9 in human SSC lines to explore its role in SSC proliferation and apoptosis. Meanwhile, we used immunoprecipitation to find the target protein of ASB9 and verified its functions. In addition, we examined the changes in the distribution of ASB9 in non-obstructive azoospermia (NOA) patients using Western blot and immunofluorescence. RESULTS: The results of uniform manifold approximation and projection (UMAP) clustering and pseudotime analysis showed that ASB9 was highly expressed in SSCs, and its expression gradually increased during development. The immunohistochemical and dual-color immunofluorescence results displayed that ASB9 was mainly expressed in nonproliferating SSCs. Overexpression of ASB9 in the SSC line revealed significant inhibition of cell proliferation and increased apoptosis. We predicted the target proteins of ASB9 and verified that hypoxia-inducible factor 1-alpha inhibitor (HIF1AN), but not creatine kinase B-type (CKB), has a direct interaction with ASB9 in human SSC line using protein immunoprecipitation experiments. Subsequently, we re-expressed HIF1AN in ASB9 overexpressing cells and found that HIF1AN reversed the proliferative and apoptotic changes induced by ASB9 overexpression. In addition, we found that ABS9 was significantly downregulated in some NOA patients, implying a correlation between ASB9 dysregulation and impaired spermatogenesis. CONCLUSION: ASB9 is predominantly expressed in human SSCs, it affects the proliferation and apoptotic process of the SSC line through HIF1AN, and its abnormal expression may be associated with NOA.


Assuntos
Testículo , Ubiquitina-Proteína Ligases , Masculino , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Testículo/metabolismo , Espermatogênese/fisiologia , Linhagem Celular , Proliferação de Células , Apoptose , Ubiquitinas/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
9.
Burns ; 49(3): 622-632, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35610079

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are identified as important regulators in human diseases, including keloid. The purpose of this study is to reveal the role and molecular mechanism of circSLC8A1 in keloid formation. METHODS: Expression of circSLC8A1, microRNA (miR)-181a-5p, and hypoxia inducible factor 1 alpha inhibitor (HIF1AN) were detected by quantitative real-time PCR. Protein expression of extracellular matrix (ECM) deposition markers and HIF1AN was detected by western blot analysis. Furthermore, the interaction between miR-181a-5p and circSLC8A1 or HIF1AN was confirmed by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. RESULTS: Expression of circSLC8A1 was downregulated in keloid tissues and HKFs. Overexpression of circSLC8A1 suppressed HKFs proliferation, migration, ECM deposition, and promoted apoptosis. MiR-181a-5p is targeted by circSLC8A1, and its mimic reversed the effect of circSLC8A1 on the biological function of HKFs. HIF1AN was a target of miR-181a-5p, and it was positively regulated by circSLC8A1. Knockdown of HIF1AN also reversed the negatively regulation of circSLC8A1 on the biological functions of HKFs. CONCLUSION: Our data showed that circSLC8A1 regulates the miR-181a-5p/HIF1AN axis to restrain HKFs biological functions, confirming that circSLC8A1 might serve as a novel therapeutic target for keloids.


Assuntos
Queimaduras , Queloide , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Queloide/metabolismo , Proliferação de Células/genética , Queimaduras/metabolismo , Fibroblastos/patologia , Apoptose/genética , Matriz Extracelular/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo
10.
Biol. Res ; 56: 4-4, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1420302

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) are critical for sustaining spermatogenesis. Even though several regulators of SSC have been identified in rodents, the regulatory mechanism of SSC in humans has yet to be discovered. METHODS: To explore the regulatory mechanisms of human SSCs, we analyzed publicly available human testicular single-cell sequencing data and found that Ankyrin repeat and SOCS box protein 9 (ASB9) is highly expressed in SSCs. We examined the expression localization of ASB9 using immunohistochemistry and overexpressed ASB9 in human SSC lines to explore its role in SSC proliferation and apoptosis. Meanwhile, we used immunoprecipitation to find the target protein of ASB9 and verified its functions. In addition, we examined the changes in the distribution of ASB9 in non-obstructive azoospermia (NOA) patients using Western blot and immunofluorescence. RESULTS: The results of uniform manifold approximation and projection (UMAP) clustering and pseudotime analysis showed that ASB9 was highly expressed in SSCs, and its expression gradually increased during development. The immunohistochemical and dual-color immunofluorescence results displayed that ASB9 was mainly expressed in nonproliferating SSCs. Overexpression of ASB9 in the SSC line revealed significant inhibition of cell proliferation and increased apoptosis. We predicted the target proteins of ASB9 and verified that hypoxia-inducible factor 1-alpha inhibitor (HIF1AN), but not creatine kinase B-type (CKB), has a direct interaction with ASB9 in human SSC line using protein immunoprecipitation experiments. Subsequently, we re-expressed HIF1AN in ASB9 overexpressing cells and found that HIF1AN reversed the proliferative and apoptotic changes induced by ASB9 overexpression. In addition, we found that ABS9 was significantly downregulated in some NOA patients, implying a correlation between ASB9 dysregulation and impaired spermatogenesis. CONCLUSION: ASB9 is predominantly expressed in human SSCs, it affects the proliferation and apoptotic process of the SSC line through HIF1AN, and its abnormal expression may be associated with NOA.


Assuntos
Humanos , Masculino , Testículo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Repressoras/metabolismo , Espermatogênese/fisiologia , Ubiquitinas/metabolismo , Linhagem Celular , Apoptose , Proliferação de Células , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Oxigenases de Função Mista/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA