Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37515003

RESUMO

We develop candidate HIV-1 vaccines, of which two components, ChAdOx1.tHIVconsv1 (C1) and ChAdOx1.HIVconsv62 (C62), are delivered by the simian adenovirus-derived vaccine vector ChAdOx1. Aberrant adenovirus RNA splicing involving transgene(s) coding for the SARS-CoV-2 spike was suggested as an aetiology of rare adverse events temporarily associated with the initial deployment of adenovirus-vectored vaccines during the COVID-19 pandemic. Here, to eliminate this theoretically plausible splicing phenomenon from the list of possible pathomechanisms for our HIV-1 vaccine candidates, we directly sequenced mRNAs in C1- and C62-infected nonpermissive MRC-5 and A549 and permissive HEK293 human cell lines. Our two main observations in nonpermissive human cells, which are most similar to those which become infected after the intramuscular administration of vaccines into human volunteers, were that (i) the dominant adenovirus vector-derived mRNAs were the expected transcripts coding for the HIVconsvX immunogens and (ii) atypical splicing events within the synthetic open reading frame of the two transgenes are rare. We conclude that inadvertent RNA splicing is not a safety concern for the two tested candidate HIV-1 vaccines.

2.
Mol Ther Methods Clin Dev ; 21: 741-753, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34169114

RESUMO

To stop the HIV-1 pandemic, vaccines must induce responses capable of controlling vast HIV-1 variants circulating in the population as well as those evolved in each individual following transmission. Numerous strategies have been proposed, of which the most promising include focusing responses on the vulnerable sites of HIV-1 displaying the least entropy among global isolates and using algorithms that maximize vaccine match to circulating HIV-1 variants by vaccine cocktails of optimized complementing sequences. In this study, we investigated CD8 T cell responses induced by a bi-valent mosaic of highly conserved HIVconsvX regions delivered by a combination of simian adenovirus ChAdOx1 and poxvirus MVA. We compared partially and fully mono- and bi-valent prime-boost regimens and their ability to elicit T cells recognizing natural epitope variants using an interferon-γ enzyme-linked immunospot (ELISPOT) assay. We used 11 well-defined CD8 T cell epitopes in two mouse haplotypes and, for each epitope, assessed recognition of the two vaccine forms together with the other most frequent epitope variants in the HIV-1 database. We conclude that for the magnitude and depth of epitope recognition, CD8 T cell responses benefitted in most comparisons from the combined bi-valent mosaic and envisage the main advantage of the bi-valent vaccine during its deployment to diverse populations.

3.
Vaccines (Basel) ; 8(3)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640600

RESUMO

A vaccine will likely be one of the key tools for ending the HIV-1/AIDS epidemic by preventing HIV-1 spread within uninfected populations and achieving a cure for people living with HIV-1. The currently prevailing view of the vaccine field is to introduce protective antibodies, nevertheless, a vaccine to be effective may need to harness protective T cells. We postulated that focusing a T-cell response on the most vulnerable regions of the HIV-1 proteome while maximizing a perfect match between the vaccine and circulating viruses will control HIV-1 replication. We currently use a combination of replication-deficient simian (chimpanzee) adenovirus and poxvirus modified vaccinia virus Ankara to deliver bivalent conserved-mosaic immunogens to human volunteers. Here, we exploit the mRNA platform by designing tetravalent immunogens designated as HIVconsvM, and demonstrate that mRNA formulated in lipid nanoparticles induces potent, broad and polyfunctional T-cell responses in a pre-clinical model. These results support optimization and further development of this vaccine strategy in experimental medicine trials in humans.

4.
Vaccines (Basel) ; 8(2)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485938

RESUMO

Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.

5.
Front Immunol ; 11: 823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435247

RESUMO

Kick&kill strategies combining drugs aiming to reactivate the viral reservoir with therapeutic vaccines to induce effective cytotoxic immune responses hold potential to achieve a functional cure for HIV-1 infection. Here, we report on an open-label, single-arm, phase I clinical trial, enrolling 15 early-treated HIV-1-infected individuals, testing the combination of the histone deacetylase inhibitor romidepsin as a latency-reversing agent and the MVA.HIVconsv vaccine. Romidepsin treatment resulted in increased histone acetylation, cell-associated HIV-1 RNA, and T-cell activation, which were associated with a marginally significant reduction of the viral reservoir. Vaccinations boosted robust and broad HIVconsv-specific T cells, which were strongly refocused toward conserved regions of the HIV-1 proteome. During a monitored ART interruption phase using plasma viral load over 2,000 copies/ml as a criterium for ART resumption, 23% of individuals showed sustained suppression of viremia up to 32 weeks without evidence for reseeding the viral reservoir. Results from this pilot study show that the combined kick&kill intervention was safe and suggest a role for this strategy in achieving an immune-driven durable viremic control.


Assuntos
Vacinas contra a AIDS/imunologia , Antivirais/uso terapêutico , Depsipeptídeos/uso terapêutico , Infecções por HIV/imunologia , HIV-1/fisiologia , Inibidores de Histona Desacetilases/uso terapêutico , Adulto , Reservatórios de Doenças , Quimioterapia Combinada , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Carga Viral , Viremia , Latência Viral
6.
Vaccines (Basel) ; 8(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963212

RESUMO

CD4+ T-cell responses play an important role in the immune control of the human immunodeficiency virus type 1 (HIV-1) infection and as such should be efficiently induced by vaccination. It follows that definition of HIV-1-derived peptides recognized by CD4+ T cells in association with HLA class II molecules will guide vaccine development. Here, we have characterized the fine specificity of CD4+ T cells elicited in human recipients of a candidate vaccine delivering conserved regions of HIV-1 proteins designated HIVconsv. The majority of these 19 most immunogenic regions contained novel epitopes, that is, epitopes not listed in the Los Alamos National Laboratory HIV Sequence Database, which were able in vitro to stimulate vaccinees' CD4+ T cells to proliferate and produce interferon-γ and tumor necrosis factor-α. Accumulation of HLA class II epitopes will eventually accelerate development of HIV-1 prophylactic and therapeutic vaccines.

7.
Expert Rev Vaccines ; 18(10): 1029-1041, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613649

RESUMO

Introduction: Despite life-saving antiretroviral drugs, an effective HIV-1 vaccine is the best solution and likely a necessary component of any strategy for halting the AIDS epidemic. The currently prevailing aim is to pursue antibody-mediated vaccine protection. With ample evidence for the ability of T cells to control HIV-1 replication, their protective potential should be also harnessed by vaccination. The challenge is to elicit not just any, but protective T cells.Areas covered: This article reviews the clinical experience with the first-generation conserved-region immunogen HIVconsv delivered by combinations of plasmid DNA, simian adenovirus, and poxvirus MVA. The aim of our strategy is to induce strong and broad T cells targeting functionally important parts of HIV-1 proteins common to global variants. These vaccines were tested in eight phase 1/2 preventive and therapeutic clinical trials in Europe and Africa, and induced high frequencies of broadly specific CD8+ T cells capable of in vitro inhibition of four major HIV-1 clades A, B, C and D, and in combination with latency-reactivating agent provided a signal of drug-free virological control in early treated patients.Expert opinion: A number of critical T-cell traits have to come together at the same time to achieve control over HIV-1.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , Linfócitos T/imunologia , Adenovirus dos Símios , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Ensaios Clínicos como Assunto , HIV-1/imunologia , Humanos , Plasmídeos , Poxviridae , Vacinação , Vacinas de DNA/imunologia , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA