Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Free Radic Biol Med ; 224: 588-599, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270945

RESUMO

Neutrophils orchestrate a coordinated attack on bacteria, combining phagocytosis with a potent cocktail of oxidants, including the highly toxic hypochlorous acid (HOCl), renowned for its deleterious effects on proteins. Here, we examined the occurrence of lipid N-chloramines in vivo, their biological activity, and their neutralization. Using a chemical probe for N-chloramines, we demonstrate their formation in the membranes of bacteria and monocytic cells exposed to physiologically relevant concentrations of HOCl. N-chlorinated model membranes composed of phosphatidylethanolamine, the major membrane lipid in Escherichia coli and an important component of eukaryotic membranes, exhibited oxidative activity towards the redox-sensitive protein roGFP2, suggesting a role for lipid N-chloramines in protein oxidation. Conversely, glutathione a cellular antioxidant neutralized lipid N-chloramines by removing the chlorine moiety. In line with that, N-chloramine stability was drastically decreased in bacterial cells compared to model membranes. We propose that lipid N-chloramines, like protein N-chloramines, are involved in inflammation and accelerate the host immune response.

2.
Clin Cosmet Investig Dermatol ; 17: 1853-1861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184035

RESUMO

Background: People who suffered type 2 diabetes have impaired healing of wounds due to the large number of circulating inflammatory cells resulting from high blood sugar levels. The wound healing process involves various complex processes including the degradation of extracellular matrix, a process characterized by an increase in matrix metalloproteinase-9 (MMP-9). Conventional management of diabetic wounds usually involves systemic blood sugar control and topical antimicrobial treatment, including hydrogen peroxide and povidone-iodine, which are known to be cytotoxic to the cells involved in the wound healing cascade. Finding a safe, non-toxic, and effecting wound cleansing still poses a challenge, and hypochlorous acid (HOCl) could act as a potential candidate. Purpose: Unveiling an HOCl ion as an agent for diabetic wound management and MMP-9 as a marker for delayed diabetic wound healing. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Flow Diagram is used to find and select related, eligible literatures for the review. The authors used several databases such as Pro Quest, Scopus, Springer link and Science Direct. In addition, and to expand the data, the database on Google Scholar was also opened. Then, the compiled data are analyzed to form results and discussions to the research question. Results: Five eligible articles passed the inclusion criteria and reviewed for data synthesis. From 5 pieces of literature, it was found that the use of HOCl ions can be a good choice of topical agent in the management of diabetic wounds and decrease the activity of MMP-9, which act as a marker for delayed healing of diabetic wounds. Conclusion: Topical agent, in this case HOCl ion, shows good results and can be used as an option in the management of diabetic wounds and MMP-9 can be used as a predictive marker in the management of diabetic wounds.

3.
J Photochem Photobiol B ; 258: 112995, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096720

RESUMO

Endogenous hypochlorous acid (HOCl) is one of the most important reactive oxygen species (ROS) and acts as a distinct biomarker that is involved in various inflammatory responses including rheumatoid arthritis (RA). Therefore, it's crucial to develop an efficient method for the tracking and analysis of HOCl levels in vivo. Natural products continue to be compounds of interest, because they not only offer diverse and specific molecular scaffolds but also provide invaluable sources for new drug discovery. Herein, we firstly demonstrated harmaline (HML), a natural alkaloid mainly found in Peganum harmala L, could be acted as a novel fluorescent probe for HOCl with exceptional precision and responsiveness. Remarkably, this probe not only specifically tracked HOCl levels in cells and inflammatory RA mouse models, but also exhibited effective anti-inflammatory effects on RAW264.7 cells and anti-proliferative effects on fibroblast-like synoviocytes. Furthermore, HML has the potential to alleviate LPS-induced inflammation by inhibiting the NF-κB signaling pathway. This study represents the first example of a natural product that can simultaneously act as a fluorescent probe for specific ROS and a promising therapeutic candidate for a specific disease, which will undoubtedly extend the application of fluorophore-rich natural products.


Assuntos
Artrite Reumatoide , Corantes Fluorescentes , Harmalina , Ácido Hipocloroso , Animais , Ácido Hipocloroso/metabolismo , Camundongos , Corantes Fluorescentes/química , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Harmalina/química , Harmalina/farmacologia , NF-kappa B/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Humanos , Peganum/química
4.
Antioxidants (Basel) ; 13(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39199167

RESUMO

Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a dysregulated immune response and persistent inflammation. The large number of neutrophilic granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This review will discuss open questions about the contribution of HOCl in RA in order to improve the understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products released by neutrophils during inflammation will be summarized and their effects towards the individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs) and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects induced by these different agents and their contributions in RA.

5.
Small ; : e2400883, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881331

RESUMO

Hypochlorous acid (HOCl), as an indispensable signaling molecule in organisms, is one of the key members of reactive oxygen species (ROS). However, in vivo, real-time dynamic near-infrared fluorescence imaging of HOCl levels in the 1400-1700 nm sub-window (NIR-IIb) remains a major challenge due to the lack of suitable detection methods. Herein, a general design of HOCl-responsive NIR-IIb fluorescence nanoprobe is proposed by integrating NaLuF4Yb/Er@NaLuF4 downshift nanoparticles (DSNPs) and HOCl recognition/NIR-IIb emissive modulation unit of M2-xS (M = Cu, Co, Pb) nanodots for real-time monitoring of HOCl levels. The fluorescence modulation unit of M2-xS nanodots presents remarkably enhanced absorption than Yb sensitizer at 980 nm and greatly inhibits the NIR-IIb fluorescence emission via competitive absorption mechanism. While, the M2-xS nanodots are easily degraded after triggering by HOCl, resulting in HOCl responsive turn-on (≈ten folds) NIR-IIb emission at 1532 nm. More importantly, in vivo highly precise and specific monitoring of inflammatory with abnormal HOCl expression is successfully achieved. Thus, the explored competitive absorption mediated quenching-activation mechanism provides a new general strategy of designing HOCl-responsive NIR-IIb fluorescence nanoprobe for highly specific and sensitive HOCl detection.

6.
Antimicrob Agents Chemother ; 68(7): e0172223, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38771032

RESUMO

Chronic wound infections can be difficult to treat and may lead to impaired healing and worsened patient outcomes. Novel treatment strategies are needed. This study evaluated the effects of intermittently produced hydrogen peroxide (H2O2) and hypochlorous acid (HOCl), generated via an electrochemical bandage (e-bandage), against methicillin-resistant Staphylococcus aureus biofilms in an agar membrane biofilm model. By changing the working electrode potential, the e-bandage generated either HOCl (1.5 VAg/AgCl) or H2O2 (-0.6 VAg/AgCl). The degree of biocidal activity of intermittent treatment with HOCl and H2O2 correlated with HOCl treatment time; HOCl treatment durations of 0, 1.5, 3, 4.5, and 6 hours (with the rest of the 6-hour total treatment time devoted to H2O2 generation) resulted in mean biofilm reductions of 1.36 ± 0.2, 2.22 ± 0.16, 3.46 ± 0.38, 4.63 ± 0.74, and 7.66 ± 0.5 log CFU/cm2, respectively, vs. non-polarized controls, respectively. However, application of H2O2 immediately after HOCl treatment was detrimental to biofilm removal. For example, 3 hours HOCl treatment followed by 3 hours H2O2 resulted in a 1.90 ± 0.84 log CFU/cm2 lower mean biofilm reduction than 3 hours HOCl treatment followed by 3 hours non-polarization. HOCl generated over 3 hours exhibited biocidal activity for at least 7.5 hours after e-bandage operation ceased; 3 hours of HOCl generation followed by 7.5 hours of non-polarization resulted in a biofilm cell reduction of 7.92 ± 0.12 log CFU/cm2 vs. non-polarized controls. Finally, intermittent treatment with HOCl (i.e., interspersed with periods of e-bandage non-polarization) for various intervals showed similar effects (approximately 6 log CFU/cm2 reduction vs. non-polarized control) to continuous treatment with HOCl for 3 hours, followed by 3 hours of non-polarization. These findings suggest that timing and sequencing of HOCl and H2O2 treatments are crucial for maximizing biofilm control when using an e-bandage strategy.


Assuntos
Biofilmes , Peróxido de Hidrogênio , Ácido Hipocloroso , Staphylococcus aureus Resistente à Meticilina , Biofilmes/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Ácido Hipocloroso/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
7.
J Fluoresc ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647962

RESUMO

We have prepared a simple, universal and efficient coumarin-derived fluorescent probe (XDS1) to detecting HOCl. The experimental findings revealed that the introduction of HOCl produced an obvious quenching effect on the probe with high selectivity and sensitivity. The calculated limit of detection (LOD) was as low as 0.02 µM. Furthermore, an impressive response time of less than 10 s was observed when XDS1 detecting HOCl. Importantly, the probe XDS1 exhibited negligible cytotoxicity, thereby facilitating its application for imaging HOCl within biological environment. The probe XDS1 had been successfully used for specific detection in cells.

8.
J Water Health ; 22(3): 601-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557574

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.


Assuntos
COVID-19 , Desinfetantes , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Ácido Hipocloroso/farmacologia , Água , Desinfetantes/farmacologia
9.
J Wound Care ; 33(4): 278-285, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573906

RESUMO

OBJECTIVE: To explore the efficacy of 0.01% hypochlorous acid (HOCl) in the treatment of hard-to-heal wounds infected by multidrug-resistant Acinetobacter baumannii. METHOD: We report a case of hard-to-heal wounds on a patient's forearms that were infected by Acinetobacter baumannii. The wounds were treated with 0.01% HOCl. We reviewed the relevant literature and discussed the definition, epidemiology and pathogenesis of hard-to-heal wounds infected by Acinetobacter baumannii. We also explored the safety and efficacy of 0.01% HOCl for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii. RESULTS: After 3-4 weeks of treatment with 0.01% HOCl, the pain and pruritus of the wounds was gradually alleviated, the infection was controlled and the granulation tissue was fresh. The ulcers also shrank and the nutritional condition of the patient improved. In the fifth week, the skin of the patient's right thigh was grafted to repair the wounds, which then healed within 18 days. During the three years of follow-up, the patient had no relapse. CONCLUSION: In our case, the 0.01% HOCl seemed to effectively inactivate the bacterial biological biofilm. This helped to promote wound healing, and was non-toxic to the tissues. We consider low-concentration HOCl to be safe and effective for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii.


Assuntos
Acinetobacter baumannii , Humanos , Pele , Bactérias , Tecido de Granulação
10.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586004

RESUMO

Chronic wound infections can be difficult to treat and may lead to impaired healing and worsened patient outcomes. Novel treatment strategies are needed. This study evaluated effects of intermittently produced H2O2 and HOCl, generated via an electrochemical bandage (e-bandage), against methicillin-resistant Staphylococcus aureus biofilms in an agar membrane biofilm model. By changing the working electrode potential, the e-bandage generated either HOCl (1.5 VAg/AgCl) or H2O2 (-0.6 VAg/AgCl). The degree of biocidal activity of intermittent treatment with HOCl and H2O2 correlated with HOCl treatment time; HOCl treatment durations of 0, 1.5, 3, 4.5, and 6 hours (with the rest of the 6 hour total treatment time devoted to H2O2 generation) resulted in mean biofilm reductions of 1.36±0.2, 2.22±0.16, 3.46±0.38, 4.63±0.74 and 7.66±0.5 log CFU/cm2, respectively vs. non-polarized controls, respectively. However, application of H2O2 immediately after HOCl treatment was detrimental to biofilm removal. For example, 3-hours HOCl treatment followed by 3-hours H2O2 resulted in a 1.90±0.84 log CFU/cm2 lower mean biofilm reduction than 3-hours HOCl treatment followed by 3-hours non-polarization. HOCl generated over 3-hours exhibited biocidal activity for at least 7.5-hours after e-bandage operation ceased; 3-hours of HOCl generation followed by 7.5-hours of non-polarization resulted in a biofilm cell reduction of 7.92±0.12 log CFU/cm2 vs. non polarized controls. Finally, intermittent treatment with HOCl (i.e., interspersed with periods of e-bandage non-polarization) for various intervals showed similar effects (approximately 6 log CFU/cm2 reduction vs. non-polarized control) to continuous treatment with HOCl for 3-hours, followed by 3-hours of non-polarization. These findings suggest that timing and sequencing of HOCl and H2O2 treatments are crucial for maximizing biofilm control.

11.
Luminescence ; 39(2): e4685, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332465

RESUMO

Biological oxidants participate in many processes in the human body. Their excessive production causes organelle damage, which may result in the accumulation of cytotoxic mediators and cell degradation and may manifest itself in various diseases. Peroxynitrite (ONOO- ), hypochlorous acid (HOCl), hydrogen peroxide (H2 O2 ), and peroxymonocarbonate (HOOCO2 - ) are important oxidants in biology, toxicology, and various pathologies. Derivatives of coumarin, containing an oxidant-sensitive boronate group, have been recently developed for the fluorescent detection of inflammatory oxidants. Here, we report the synthesis and characterization of 4-[2-(morpholin-4-yl)-2-oxoethyl]-2-oxo-2H-chromen-7-yl boronic acid (MpC-BA) as a fluorescent probe for the detection of oxidants, with better solubility in water, high stability and fast response time toward peroxynitrite and hypochlorous acid. The effectiveness of the MpC-BA probe for the detection of peroxynitrite was measured by adding bolus ONOO- or using the co-generating superoxide and nitrogen oxide system. MpC-BA is oxidized by ONOO- to 7-hydroxy-4-[2-(morpholin-4-yl)-2-oxoethyl]-2H-chromen-2-one (MpC-OH). However, peroxynitrite-specific product (MpC-H) is formed in the minor reaction pathway. MpC-OH is also yielded in the reaction of MpC-BA with HOCl, and the subsequent formation of a chlorinated MpC-OH gives a specific product for HOCl (MpC-OHCl). H2 O2 slowly oxidizes MpC-BA. However, the addition of NaHCO3 increased the MpC-OH formation rate. We conclude that MpC-BA is potentially an improved fluorescent probe detecting peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of chlorinated and reduced coumarin(s) will help identify the oxidants detected.


Assuntos
Corantes Fluorescentes , Oxidantes , Humanos , Ácido Hipocloroso , Ácido Peroxinitroso/metabolismo , Oxirredução , Cumarínicos , Morfolinas
12.
Adv Sci (Weinh) ; 11(12): e2303981, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224203

RESUMO

Coloading adjuvant drugs or biomacromolecules with photosensitizers into nanoparticles to enhance the efficiency of photodynamic therapy (PDT) is a common strategy. However, it is difficult to load positively charged photosensitizers and negatively charged adjuvants into the same nanomaterial and further regulate drug release simultaneously. Herein, a single-component dual-functional prodrug strategy is reported for tumor treatment specifically activated by tumor microenvironment (TME)-generated HOCl. A representative prodrug (DHU-CBA2) is constructed using indomethacin grafted with methylene blue (MB). DHU-CBA2 exhibited high sensitivity toward HOCl and achieved simultaneous release of dual drugs in vitro and in vivo. DHU-CBA2 shows effective antitumor activity against lung cancer and spinal metastases via PDT and cyclooxygenase-2 (COX-2) inhibition. Mechanistically, PDT induces immunogenic cell death but stimulates the gene encoding COX-2. Downstream prostaglandins E2 and Indoleamine 2,3 dioxygenase 1 (IDO1) mediate immune escape in the TME, which is rescued by the simultaneous release of indomethacin. DHU-CBA2 promotes infiltration and function of CD8+ T cells, thus inducing a robust antitumor immune response. This work provides an autoboost strategy for a single-component dual-functional prodrug activated by TME-specific HOCl, thereby achieving favorable tumor treatment via the synergistic therapy of PDT and a COX-2 inhibitor.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Pró-Fármacos , Neoplasias da Coluna Vertebral , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Ciclo-Oxigenase 2 , Linfócitos T CD8-Positivos , Neoplasias da Coluna Vertebral/tratamento farmacológico , Indometacina , Microambiente Tumoral
13.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067577

RESUMO

The occurrence of free fatty acids (FFAs) and the generation of reactive oxygen species (ROS) such as hydroxyl radicals (HO●) or hypochlorous acid (HOCl) is characteristic of inflammatory diseases, for instance, rheumatoid arthritis. Unsaturated fatty acids react with ROS yielding a variety of important products such as peroxides and chlorohydrins as primary and chain-shortened compounds (e.g., aldehydes and carboxylic acids) as secondary products. These modified fatty acids are either released from phospholipids by phospholipases or oxidatively modified subsequent to their release. There is increasing evidence that oligomeric products are also generated upon these processes. Fatty acid esters of hydroxy fatty acids (FAHFAs) are considered as very important products, but chlorinated compounds may be converted into dimeric and (with smaller yields) oligomeric products, as well. Our review is structured as follows: first, the different types of FFA oligomers known so far and the mechanisms of their putative generation are explained. Industrially relevant products as well as compounds generated from the frying of vegetable oils are also discussed. Second, the different opinions on whether dimeric fatty acids are considered as "friends" or "foes" are discussed.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Fosfolipídeos , Ácidos Graxos não Esterificados , Ácido Hipocloroso
14.
Biomedicines ; 11(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38137342

RESUMO

This study aimed to elucidate the unique chemical compositions of plasma-activated water (PAW) and the potential antibacterial efficacy of PAW as a novel vaginal cleanser. We analyzed the ion compositions (four anions: F-, Cl-, NO3-, SO42-; five cations: Na+, NH4+, K+, Mg2+, Ca2+) of several formulations of PAW generated at different electrical powers (12 and 24 V) at various treatment time points (1, 10, and 20 min), and stay durations (immediate, 30, and 60 min). As treatment duration increased, hypochlorous acid (HOCl), Ca2+, and Mg2+ concentrations increased and Cl- concentration decreased. Higher electrical power and longer treatment duration resulted in increased HOCl levels, which acts to prevent the growth of general microorganisms. Notably, PAW had no antibacterial effects against the probiotic, Lactobacillus reuteri, which produces lactic acid and is important for vaginal health. These findings indicate that PAW contains HOCl and some cations (Ca2+ and Mg2+), which should help protect against pathogens of the vaginal mucosa and have a cleansing effect within the vaginal environment while not harming beneficial bacteria.

15.
Health Sci Rep ; 6(10): e1497, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37900091

RESUMO

Background and Aims: Diverse protocols prevent infection and/or improve ulcer epithelialization. The existing protocols tend to antagonize the risk factors that promote the chronicity of this type of wound. Hypochlorous acid (HOCl) is used to treat ulcers and wounds because of its antiseptic and noncytotoxic properties. Its liquid form is effective but has little residual effect, while in gel it has more residual power. Methods: An experimental nonrandomized study has been carried out treating 346 chronic ulcers of various etiologies in 220 patients. Ulcer outcomes were originally classified as: "complete healing," "incomplete healing without infection," and "incomplete healing with infection." Various antiseptic solutions were used as ulcers cleaning solutions: liquid HOCl, gel HOCl, polymeric biguanide, or chlorhexidine. Only one was applied to the lesion as monotherapy. But, in other cases, we used a combined HOCl (liquid then gel: bitherapy). Bivariate (Chi-square and variance tests) and multivariate studies (logistic regression) evaluated associations of ulcer characteristics and mono or bitherapy outcomes. Results: Four factors reduce the probability of complete ulcer healing: patient age (odds ratio [OR]: 0.97); weeks of ulcer evolution (OR: 0.99); poor granulation on admission (OR: 0.35); and need for antibiotic therapy (OR: 0.41). One factor favored healing: combined HOCl therapy with liquid plus gel (OR: 4.8). Infections were associated with longer times of evolution (OR: 1.002) and bad odor of the ulcer on admission (OR: 14), but bitreatment with HOCl reduced the risk of infection (OR: 0.3). Conclusion: A double HOCl formulation (liquid plus gel) reduces the probability of poor healing and infection, in chronic ulcers of various etiologies.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37754572

RESUMO

Recently, the use of disinfectants has been becoming a diffused and sometimes indiscriminate practice of paramount importance to limit the spreading of infections. The control of microbial contamination has now been concentrated on the use of traditional agents (i.e., hypochlorite, ozone). However, their prolonged use can cause potential treats, for both human health and environment. Currently, low-impact but effective biocides that are prepared in a way that avoids waste, with a very low toxicity, and safe and easy to handle and store are strongly needed. In this study, produced electrochemically activated hypochlorous (HOCl) acid solutions are investigated and proposed, integrated in a scrubbing machine for floor cleaning treatment. Such an innovative machine has been used for floor cleaning and sanitation in order to evaluate the microbial charge and organic dirt removal capacity of HOCl in comparison with a machine charged with traditional Ecolabel standard detergent. The potential damage on floor materials has also been investigated by means of Scanning Electron Microscope (SEM). A comparative Life Cycle Assessment (LCA) analysis has been carried out for evaluating the sustainability of the use of the HOCl-based and detergent-based machine.


Assuntos
Desinfetantes , Saneamento , Humanos , Detergentes , Ácido Hipocloroso , Difusão
17.
Chembiochem ; 24(15): e202300084, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067194

RESUMO

Hypochlorous acid (HOCl) is critical for maintaining immune system balance, but it can harm mitochondria by hindering enzyme activity, leading to decreased ATP and increased cell death. In this study, we have designed a fluorophore with a pyridinium scaffold for selective staining of the mitochondria and to detect hypochlorite. The fluorophore exhibits strong solvatochromic emission due to intramolecular charge transfer and excellent sub-cellular localization in the mitochondria. Additionally, it shows a rapid response to HOCl with high selectivity among different reactive oxygen/nitrogen compounds with a detection limit of 2.31 µM. Moreover, it is also utilized for the exogenous and endogenous detection of HOCl in live cells, which may help study the role of hypochlorite in organelles at the cellular level. DFT and TDDFT calculations have been carried out to understand the relationship between the structure and properties of the cationic probes with respect to the α-cyano substitution and extension of π-conjugation. The selective detection of HOCl by C4 over other cationic probes has also been well-demonstrated, showing how the binding of HOCl affects the electronic properties of C4 through the analysis of non-bonding orbitals (NBO) population, electrostatic potential surface (ESP), and density of states (DOS) projected DOS investigations.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Humanos , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Células HeLa
18.
GMS Hyg Infect Control ; 18: Doc07, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034111

RESUMO

The objective is to provide a comprehensive overview of the rapidly developing field of the current state of research on in vivo use of hypochlorous acid (HOCl) to aid infection prevention and control, including naso-pharyngeal, alveolar, topical, and systemic HOCl applications. Also, examples are provided of dedicated applications in COVID-19. A brief background of HOCl's biological and chemical specifics and its physiological role in the innate immune system is provided to understand the effect of in vivo applications in the context of the body's own physiological defense mechanisms.

19.
Toxicol In Vitro ; 89: 105583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36924976

RESUMO

Hypochlorous acid (HOCl) is a major oxidant produced by activated neutrophils via the myeloperoxidase catalyzed reaction. The production of HOCl eliminates a wide range of pathogens. However, HOCl can also cause significant oxidative damage in cells and tissues where it is generated. The protective effect of curcumin was studied on HOCl-induced oxidative damage to human red blood cells (RBC). Isolated RBC were incubated with HOCl at 37 °C in absence or presence of different concentrations of curcumin. Hemolysates were prepared and assayed for various biochemical parameters. Treatment of RBC with HOCl alone increased hemolysis, protein carbonyls, heme degradation and chloramines as compared to untreated control cells. This was accompanied by reduction in glutathione level, total sulfhydryls and free amino groups. HOCl also lowered the activities of major antioxidant enzymes and diminished the antioxidant power of RBC. Pre-treatment of RBC with different concentrations of curcumin resulted in concentration-dependent attenuation in all these parameters while curcumin alone had no significant effect. Scanning electron microscopy showed that curcumin prevented HOCl-induced morphological changes in RBC and restored their normal biconcave shape. Thus curcumin can be used as a chemoprotective agent to mitigate HOCl-induced oxidative damage to cells. These results also explain the beneficial effects of curcumin against Helicobacter pylori induced stomach ulcers, caused by excessive production of HOCl at the site of bacterial infection.


Assuntos
Curcumina , Zingiberaceae , Humanos , Ácido Hipocloroso/toxicidade , Antioxidantes/farmacologia , Curcumina/farmacologia , Curcuma , Eritrócitos , Estresse Oxidativo
20.
Wound Repair Regen ; 31(3): 401-409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36951216

RESUMO

Our objective was to assess the efficacy of two successive applications of hypochlorous acid, first as a liquid and then as a gel because liquid hypochlorous acid is effective but has little residual effect, while the gel form has more residual power, and compare it with that of other products. An experimental non-randomised study was carried out, treating 346 chronic ulcers in 220 patients. The antiseptic treatment has been divided into 'hypochlorous acid' (Clortech), 'hypochlorous acid liquid + gel' (Clortech + Microdacyn60R -hydrogel) and 'Others' (Prontosan or Chlorhexidine or Microdacyn60R -hydrogel). Bivariate and multivariate studies analysed the characteristics of the patients and their ulcers, including size, symptoms, signs, treatments received and their duration, and so on. The ulcers were complicated, of long evolution, and most had a vascular origin. On average, antiseptic treatment lasted 14 weeks. At the time of their discharge, or last treatment in the clinics, 59% of the ulcers had healed completely, 9.5% worsened, and 6.9% had become infected during this period. In the bivariate and multivariate studies, we took as reference the 'others' treatments that showed no significant differences in healing time or infection rates compared with liquid hypochlorous acid 100-500 mg/L alone. However, hypochlorous acid liquid + gel showed a synergistic effect, with a higher probability of achieving complete healing (four times) and a lower probability of infection (a fifth), compared to the 'other' antiseptics. In conclusion, a synergistic effect was found with the successive application of hypochlorous acid in liquid followed by gel, an effect that increased healing probability and decreased the risk of the ulcer becoming infected.


Assuntos
Anti-Infecciosos Locais , Ácido Hipocloroso , Humanos , Ácido Hipocloroso/farmacologia , Úlcera , Cicatrização , Anti-Infecciosos Locais/farmacologia , Hidrogéis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA