Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Open Med (Wars) ; 19(1): 20230844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756247

RESUMO

Ulcerative colitis (UC) has been identified as a severe inflammatory disease with significantly increased incidence across the world. The detailed role and mechanism of HOXD10 in UC remain unclear. In present study, we found that HOXD10 was lowly expressed in UC samples and was notably decreased by dextran sulfate sodium (DSS) administration. Overexpression of HOXD10 dramatically ameliorated DSS-induced UC symptoms, including the loss of weight, increased disease activity index values, and the shortened colon length. Additionally, terminal-deoxynucleoitidyl transferase mediated nick end labeling and immunohistochemistry staining assays showed that HOXD10 overexpression suppressed cell apoptosis and facilitated proliferation of colon tissues after DSS treatment. Moreover, HOXD10 overexpression obviously suppressed DSS-triggered inflammatory response by decreasing the expression level of TNF-α, IL-6, and IL-1ß. Furthermore, overexpression of HOXD10 effectively restored the intestinal permeability, thereby alleviating DSS-induced intestinal barrier dysfunction. Mechanistic study demonstrated that HOXD10 significantly reduced the activities of Rho/ROCK/MMPs axis in colon tissues of mice with UC. In conclusion, this study revealed that HOXD10 might effectively improve DSS-induced UC symptoms by suppressing the activation of Rho/ROCK/MMPs pathway.

2.
Sci Rep ; 14(1): 10096, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698014

RESUMO

Pou6f2 is a genetic connection between central corneal thickness (CCT) in the mouse and a risk factor for developing primary open-angle glaucoma. POU6F2 is also a risk factor for several conditions in humans, including glaucoma, myopia, and dyslexia. Recent findings demonstrate that POU6F2-positive retinal ganglion cells (RGCs) comprise a number of RGC subtypes in the mouse, some of which also co-stain for Cdh6 and Hoxd10. These POU6F2-positive RGCs appear to be novel of ON-OFF directionally selective ganglion cells (ooDSGCs) that do not co-stain with CART or SATB2 (typical ooDSGCs markers). These POU6F2-positive cells are sensitive to damage caused by elevated intraocular pressure. In the DBA/2J mouse glaucoma model, heavily-labeled POU6F2 RGCs decrease by 73% at 8 months of age compared to only 22% loss of total RGCs (labeled with RBPMS). Additionally, Pou6f2-/- mice suffer a significant loss of acuity and spatial contrast sensitivity along with an 11.4% loss of total RGCs. In the rhesus macaque retina, POU6F2 labels the large parasol ganglion cells that form the magnocellular (M) pathway. The association of POU6F2 with the M-pathway may reveal in part its role in human glaucoma, myopia, and dyslexia.


Assuntos
Dislexia , Glaucoma , Miopia , Células Ganglionares da Retina , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Dislexia/genética , Dislexia/metabolismo , Dislexia/patologia , Glaucoma/patologia , Glaucoma/metabolismo , Glaucoma/genética , Pressão Intraocular , Camundongos Endogâmicos DBA , Camundongos Knockout , Miopia/patologia , Miopia/metabolismo , Miopia/genética , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Fatores de Risco
3.
J Cancer ; 15(5): 1213-1224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356716

RESUMO

Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer. Although studies have reported that downregulation of HOXD10 expression may contribute to the migration and invasion abilities in EOC, much about its regulation remains to be fully elucidated. The present study aimed to identify different gene expression profiles associated with HOXD10 overexpression in EOC cells. The present study confirmed that HOXD10 overexpression effectively inhibited the proliferation and motility of the TOV21G and TOV112D cells. Further, we overexpress HOXD10 in TOV112D cells, the different gene expression (DEGs) profiles induce by HOXD10 was analyze by the Human OneArray microarray. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), ingenuity pathway analysis (IPA) was used to perform the pathway enrichment analysis for the DEGs. Integrated bioinformatics analysis showed that the DEGs were enriched for terms related to oxidative phosphorylation and mitochondrial function pathways. Dysfunction oxidative phosphorylation metabolic pathway occurs frequently in many tumors. We validated the expression of NDUFA7, UQCRB and CCL2 using qPCR, involving in metabolism-related pathway, were significantly changed by HOXD10 overexpression in EOC. The detailed regulatory mechanism that links HOXD10 and the oxidative phosphorylation genes is not yet fully understood, our findings provide novel insight into HOXD10-mediated pathways and their effects on cancer metabolism, carcinogenesis, and the progression of EOC. Thus, the data suggest that strategies to interfere with metabolism-related pathways associated with cancer drug resistance could be considered for the treatment of ovarian tumors.

4.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069061

RESUMO

Dysregulated B cell receptor-associated protein 31 (BAP31) plays a crucial role in tumor progression. This study aimed to investigate the functions and molecular mechanism of BAP31 on the miR-206/133b cluster in colorectal cancer (CRC). qPCR was conducted to detect miRNA and mRNA levels in tissues and cells. Western blot assays were used to assess the levels of biomarkers and targets, as well as the levels of BAP31 and HOXD10. Wound healing, coculture and transwell assays were conducted to assess the transendothelial migration abilities of CRC cells. A luciferase assay was employed to assess miRNA binding effects on targets, as well as the initiating transcription effect of genomic fragments. Tumor growth and lung metastatic models were established through an in vivo animal study. BAP31 overexpression in CRC cells led to a reduction in the expression of the miR-206/133b cluster. The expression of the miR-206/133b cluster was correlated with the transendothelial migration capability of CRC cells. The miR-206/133b cluster was found to directly regulate cell division cycle 42 (CDC42) and actin-related protein 2/3 complex subunit 5 (ARPC5) in the tight junction pathway (hsa04530). Moreover, a potential transcription regulator of the miR-206/133b cluster was also found to be Homeobox D10 (HOXD10). We further elucidated the molecular mechanisms and functional mechanisms of BAP31's regulatory role in the expression levels of the miR-206/133b cluster by inhibiting HOXD10 translocation from the cytoplasm to the nucleus. In conclusion, this study provides valuable insights into how BAP31 regulates the transcription of the miR-206/133b cluster and how BAP31-related lung metastases arise in CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , MicroRNAs , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Migração Transendotelial e Transepitelial
5.
Pathol Res Pract ; 248: 154643, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406379

RESUMO

Homeobox D10 (HOXD10) is a transcription factor from the homeobox gene family that controls cell differentiation and morphogenesis throughout development.Due to their functional interaction, changes in HOXD10 gene expression might induce tumors. This narrative review focuses on how and why the dysregulation in the signaling pathways linked with HOXD10 contributes to the metastatic development of cancer. Organ development and tissue homeostasis need highly conserved homeotic transcription factors from homeobox (HOX) genes. Their dysregulation disrupts regulatory molecule action, causing tumors. The HOXD10 gene is upregulated in breast, gastric, hepatocellular, colorectal, bladder, cholangiocellular carcinoma and prostate cancer. Tumor signaling pathways are affected by HOXD10 gene expression changes. This study examines HOXD10-associated signaling pathway dysregulation, which may alter metastatic cancer signaling. In addition, the theoretical foundations that alter HOXD10-mediated therapeutic resistance in malignancies has been presented. New cancer therapy methods will be simpler to develop with the newly discovered knowledge. This review showed that HOXD10 may be a tumor suppressor gene and a new cancer treatment target signaling pathway.


Assuntos
Proteínas de Homeodomínio , Neoplasias Gástricas , Masculino , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Genes Homeobox , Fatores de Transcrição/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia
6.
Am J Reprod Immunol ; 88(5): e13609, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964231

RESUMO

BACKGROUND: One of the important reasons for the development of preeclampsia (PE) is the abnormal function of trophoblast cells. Many circular RNAs (circRNAs) have been confirmed to participate in the regulation of trophoblast cell function to mediate PE progression. However, whether circ_0077109 is involved in PE progression through regulating trophoblast cell function remains unclear. METHODS: Quantitative real-time PCR was utilized for measuring the expression of circ_0077109, microRNA (miR)-139-5p and homeobox D10 (HOXD10). Trophoblast cell proliferation, apoptosis, invasion, and angiogenesis was assessed cell counting kit 8 assay, EdU assay, flow cytometry, transwell assay and tube formation assay. In addition, western blot analysis was used to determine protein expression. The interaction between miR-139-5p and circ_0077109 or HOXD10 was verified by dual-luciferase reporter assay and RIP assay. RESULTS: Our results pointed out that circ_0077109 was a circRNA with upregulated expression in PE patients. Overexpression of circ_0077109 suppressed trophoblast cell proliferation, invasion, and angiogenesis, while increased apoptosis. MiR-139-5p was found to be sponged by circ_0077109, and its mimic reversed the suppressive effect of circ_0077109 on trophoblast cell function. HOXD10 was a target of miR-139-5p, and its overexpression inhibited trophoblast cell proliferation, invasion, and angiogenesis. MiR-139-5p inhibitor could repress trophoblast cell function, while this effect could be reversed by HOXD10 knockdown. CONCLUSION: In summary, we confirmed that circ_0077109 inhibited trophoblast cell function through the regulation of miR-139-5p/HOXD10 axis, which might be a potential target for PE treatment.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , MicroRNAs/genética , RNA Circular , Proliferação de Células/fisiologia , Neovascularização Patológica , Fatores de Transcrição , Proteínas de Homeodomínio
7.
Oncol Rep ; 48(1)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35642686

RESUMO

Following the publication of the above paper, an interested reader drew to the authors' attention that, in Fig. 2 on p. 1835, which was designed to show how miR­10b promotes the migration and invasion of human bladder cancer cell lines in vitro, there appeared to be several overlapping panels such that certain of the data may have been derived from the same original sources, even though they were intended to show the results obtained under different experimental conditions. The authors have re­examined their original data, and have realized that the errors arose as a consequence of inadvertently misfiling and mishandling the data. The corrected version of Fig. 2 is shown below. Note that these errors did not affect the overall conclusions reported in the study. All the authors agree to the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish it; furthermore, they apologize for any inconvenience caused to the readership of the Journal. [the original article was published in Oncology Reports 31: 1832­1838, 2014; DOI: 10.3892/or.2014.3048].

8.
Mol Biol Rep ; 49(3): 1837-1846, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34825321

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (CCRCC) is one of the most common types of renal cell carcinoma. Accumulating evidence indicates that homeobox D10 (HOXD10) acts as a tumor suppressor or oncogene in various carcinomas. However, the regulation and potential mechanisms of HOXD10 in CCRCC remain largely unknown. PURPOSE: To explore the effect and potential mechanism of HOXD10 on the invasion and migration of CCRCC cells. METHODS: The expression of HOXD10, E-cadherin and other epithelial mesenchymal transition (EMT)-related proteins was assessed by reverse transcription-quantitative real-time PCR (qRT-PCR) and Western blots. A series of functional assays were performed in RCC cell lines to explore the function of HOXD10 in CCRCC progression. Bioinformatics analysis, ChIP assays, and dual luciferase reporter assays were utilized to identify the interaction between HOXD10 and E-cadherin. RESULTS: Low expression of HOXD10 and E-cadherin was observed in CCRCC tissues and ACHN and 786-O cells. Downregulation of HOXD10 expression was correlated with the TNM stage of CCRCC patients. Functional experiments demonstrated that malignant biological ability was significantly inhibited by HOXD10 overexpression in RCC cells. Moreover, E-cadherin was a potential target gene of HOXD10, as evidenced by a series of assays. In addition, overexpression of HOXD10 inhibited the progression of CCRCC by regulating the expression of E-cadherin, vimentin, and ß-catenin in vitro. CONCLUSION: HOXD10 acts as a tumor suppressor and suppresses invasion and migration of CCRCC cells by regulating E-cadherin and EMT processes. Thus, targeting HOXD10 may be a therapeutic strategy for CCRCC treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Homeobox , Proteínas de Homeodomínio , Humanos , Neoplasias Renais/metabolismo , Fatores de Transcrição , Regulação para Cima/genética
9.
Onco Targets Ther ; 14: 5183-5195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737577

RESUMO

PURPOSE: HOXD10 is a tumor modulator that can either be a tumor-suppressor or a tumor-promoting gene. However, the role of HOXD10 in glioblastoma multiforme (GBM) remains unclear. METHODS: Immunohistochemistry (IHC) was applied to detect protein expression of HOXD10 in GBM and normal brain tissue patients. Clinicopathological characteristics with GBM were recorded, and a Kaplan-Meier curve was plotted. Additionally, the mRNA expression of HOXD10 and its effect on prognosis were analyzed using the online tool GEPIA and the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and the Gene Expression Omnibus (GEO) databases. Based on the mRNA expression of HOXD10, GBM patients from TCGA database were divided into low- and high-HOXD10 expression groups to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and construct a lncRNA-miRNA-mRNA network and a protein-protein interaction (PPI) network. RESULTS: The mRNA expression of HOXD10 was up-regulated in GBM according to GEPIA, while the protein expression of HOXD10 in GBM was down-regulated according to IHC analysis of samples from patients collected from our hospital. Correlation analysis showed that HOXD10 expression was significantly related to IDH1 status. Univariate analysis revealed that low HOXD10 expression, complete surgical resection, postoperative radiotherapy, postoperative temozolomide chemotherapy and IDH1 mutation were all beneficial prognostic factors. Further multivariate analysis revealed that only complete surgical resection and postoperative radiotherapy were independent prognostic factors. GO and KEGG enrichment analyses indicated that HOXD10 expression is mainly involved in cytokine-cytokine receptor interactions. In the ceRNA network, 89 nodes, containing 45 mRNAs, 39 miRNAs and five lncRNAs associated with prognosis were involved. The PPI network revealed a tight interaction between HOXD10 and HOXD8, HOXD9, HOXD11, HOXD13 and HOXB3. CONCLUSION: Based on our experimental data, although HOXD10 expression is low in GBM compared with normal brain tissue, GBM patients with high HOXD10 expression have a worse prognosis. HOXD10 may play different or even opposite roles in different stages of GBM occurrence and development. For patients with GBM, HOXD10 may be a valid predictor of prognosis.

10.
Front Oncol ; 11: 771528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790580

RESUMO

Emerging evidence suggests that hypermethylation of HOXD10 plays an important role in human cancers. However, the biological and clinical impacts of HOXD10 overmethylation and its downstream targets in colorectal cancer remain unknown. We evaluated the methylation level of HOXD10 in paired cancer and normal tissues (n = 42) by using pyrosequencing, followed by validation of the methylation status of HOXD10 from The Cancer Genome Atlas (TCGA) datasets with 302 cancer tissues and 38 normal tissues. The biological function of HOXD10 was characterized in cell lines. We further evaluated the effects of HOXD10 and its targets on chemoresistance in our established resistant cell lines and clinical cohort (n = 66). HOXD10 was found frequently methylated in colorectal cancer, and its hypermethylation correlates with its low expression level, advanced disease, and lymph node metastasis. Functionally, HOXD10 acts as a tumor suppressor gene, in which HOXD10-expressing cells showed suppressed cell proliferation, colony formation ability, and migration and invasion capacity. Mechanistically, DNMT1, DNMT3B, and MeCP2 were recruited in the HOXD10 promoter, and demethylation by 5-Aza-2'-deoxycytidine (5-Aza-CdR) treatment or MeCP2 knockdown can sufficiently induce HOXD10 expression. HOXD10 regulates the expressions of miR-7 and IGFBP3 in a promoter-dependent manner. Restoration of the expression of HOXD10 in 5-fluorouracil (5-FU)-resistant cells significantly upregulates the expressions of miR-7 and IGFBP3 and enhances chemosensitivity to 5-FU. In conclusion, we provide novel evidence that HOXD10 is frequently methylated, silenced, and contributes to the development of colorectal cancers. Restoration of HOXD10 activates the expressions of miR-7 and IGFBP3 and results in an inhibited phenotype biologically, suggesting its potential therapeutic relevance in colorectal cancer (CRC).

11.
Kaohsiung J Med Sci ; 37(11): 951-963, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34292663

RESUMO

Circular RNAs (circRNAs) are a class of noncoding RNAs that are widely expressed in cancer tissues and play a pro- or anticancer role in modulating cancer progression. This work is aimed to probe the biological role of circ_0000317 in colorectal cancer (CRC) and its underlying mechanism. Circ_0000317 was selected from the circRNA microarray datasets (GSE121895). Quantitative real-time polymerase chain reaction was utilized to examine circ_0000317, microRNA (miR)-520g, and homeobox D10 (HOXD10) mRNA expression in CRC. Cell Counting Kit-8 and Transwell experiments were conducted to examine the effects of circ_0000317 on proliferation, migration, and invasion of CRC cells. Bioinformatic analysis and dual-luciferase reporter gene experiments were implemented to predict and validate the targeting relationship between circ_0000317 and miR-520g, miR-520g, and HOXD10. Western blot was employed to examine HOXD10 expression at protein level in CRC cells. Circ_0000317 and HOXD10 mRNA expression were unveiled to be down-modulated and miR-520g expression was up-modulated in CRC. Functionally, circ_0000317 overexpression repressed CRC cell proliferation, migration, and invasion. Mechanistically, miR-520g was a direct target of circ_0000317 and miR-520g specifically modulated HOXD10 expression. Furthermore, miR-520g mimics partially counteracted the suppressing effect of circ_0000317 on malignant phenotype of CRC cells. Circ_0000317 represses CRC progression by targeting miR-520g and modulating HOXD10 expression. Hence, circ_0000317 may be a promising diagnostic biomarker and a therapeutic target for CRC.


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , RNA Circular/genética , Fatores de Transcrição/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Pareamento de Bases , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Células HT29 , Proteínas de Homeodomínio/metabolismo , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , RNA Circular/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
12.
Cell Mol Biol Lett ; 26(1): 20, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022794

RESUMO

BACKGROUND: Several studies have shown the crucial role of miR-501 in regulating cellular pathology in various cancers. However, the function and expression of miR-501 in endometrial cancer (EC) remain obscure. METHODS: The expression of miR-501 was determined using quantitative real-time PCR. MTT assay, colony formation assay and cell cycle analysis were used to evaluate the proliferation ability. Migration and invasion were assessed using transwell assay. Tumor formation in nude mice was used to observe the effects of miR-501 on cell proliferation and migration in vivo. Luciferase assay, quantitative real-time PCR and western blot were applied to determine that HOXD10 was the target gene of miR-501. RESULTS: In this study, we observed significantly up-regulated expression of miR-501 in endometrial cancer, which correlated with higher pelvic lymph node metastasis and shorter overall survival in high-grade endometrial cancer. High expression of miR-501 was also found in the copy-number-high group than other groups. Moreover, in vitro and in vivo assay showed that overexpression of miR-501 can promote proliferation and metastasis. Mechanistically, we found that miR-501 promotes tumor progression by directly targeting HOXD10. Further study also indicated that miR-501 overexpression can activate the AKT/mTOR pathway. CONCLUSIONS: MiR-501, which functions as an oncomir in endometrial cancer, might be a potential therapeutic target in high grade endometrial cancer.


Assuntos
Proliferação de Células , Neoplasias do Endométrio/patologia , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antagomirs/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/mortalidade , Feminino , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Regulação para Cima
13.
Transl Cancer Res ; 10(7): 3317-3325, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35116638

RESUMO

BACKGROUND: The homebox superfamily play an important role in tumorigenesis. HOXC9 and HOXD10 were reported playing critical roles in tumor progression in many malignant tumors. This study aimed to research the expression of HOXC9 and HOXD10 in papillary thyroid cancer, and to verify the prognostic and clinical significance of HOXC9 and HOXD10. METHODS: Immunohistochemistry was used to determine the expression of HOXC9 and HOXD10 in 98 pairs of papillary thyroid cancer and paracancer tissues. Clinicopathologic data were collected and analyzed to verify the prognostic and clinical significance of HOXC9 and HOXD10. RESULTS: The expression of HOXC9 and HOXD10 decreased in papillary thyroid cancer. The low expression of HOXC9 was associated with Hashimoto's thyroiditis and lymph node metastasis (P<0.05). The low expression of HOXD10 was associated with extrathyroidal extension and lymph node metastasis (P<0.05). The co-expression rates of HOXC9 and HOXD10 was 44.90%. The low expression of both HOXC9 and HOXD10 was associated with lymph node metastasis (P<0.05). CONCLUSIONS: The expression of HOXC9 and HOXD10 was downregulated in papillary thyroid cancer. Low expression of HOXC9 and HOXD10 might be related to the malignancy of papillary thyroid cancer. HOXC9 and HOXD10 may be used as diagnostic and prognostic biomarkers in the future.

14.
Gland Surg ; 9(2): 385-391, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32420263

RESUMO

BACKGROUND: To determine the role of HOXD10 in pancreatic cancer. METHODS: A stable HOXD10-expressing PANC-1 cell line was established. Proliferation rates were detected by 5-Ethynyl-2'-deoxyuridine (Edu) staining while invasion was evaluated by Transwell assay. The expression levels of different proteins were analyzed by Western blotting. A subcutaneous xenograft of pancreatic cancer was established in nude mice, and the tumor weight and body weight were monitored. The in-situ expression of relevant markers in the tumor tissues was detected by immunohistochemistry. RESULTS: HOXD10 overexpression significantly decreased the proliferation rates of PANC-1 cells, and down-regulated Ki67 and Survivin (P<0.05). In addition, the invasive capacity (P<0.05) and the levels of vascular endothelial growth factor (VEGF) and MMP-14 were also significantly decreased (P<0.05) in the cells overexpressing HOXD10. Consistent with this, high levels of HOXD10 were associated with an increase in E-cadherin (P<0.05) and a decrease in N-cadherin (P<0.05) expression. Furthermore, the HOXD10-overexpressing xenografts were significantly smaller (P<0.05) and had fewer Ki67, VEGF, and N-cadherin-positive cells (P<0.05). CONCLUSIONS: HOXD10 acts as a tumor suppressor in pancreatic cancer, and inhibits the proliferation, invasion, and epithelial-mesenchymal transition of the tumor cells.

15.
Oncol Lett ; 19(5): 3602-3608, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32269635

RESUMO

Homeobox D 10 (HOXD10) is important in cell differentiation and morphogenesis and serves as a tumor suppressor gene (TSG) in a number of malignancies. The present study investigated its promoter methylation status and association with the clinicopathological features of endometrial cancer (EC), and measured HOXD10 protein expression levels. EC samples (n=62), including 50 endometroid adenocarcinoma (EA) and 12 mucinous endometrial carcinoma samples (EC) and 70 non-cancerous samples were collected. All samples were evaluated for the methylation status of several TSGs, including HOXD10, using methylation-specific PCR. HOXD10 expression level was evaluated using immunohistochemistry. 5-Aza-2-deoxycytidine treatment was performed in the EC cell line Ishikawa to observe the change in HOXD10 expression levels. HOXD10 promoter methylation was more frequent in cancer samples (P<0.001). Downregulation of HOXD10 in EC samples was confirmed at the protein level using immunohistochemistry (P<0.001) and immunohistochemical staining was negatively associated with methylation status (P<0.05). Less HOXD10 protein was expressed in MEC compared with EA samples (P<0.001). The HOXD10 promoter was hypermethylated in both EA and MEC, causing decreased HOXD10 protein expression levels in EC cells. HOXD10 expression levels were partially reversed by 5-Aza-2-deoxycytidine treatment. The results of the present study demonstrated that epigenetic silencing of HOXD10 putatively contributed to the tumorigenesis of EA. Although there was no significant difference in HOXD10 methylation between EA and MEC, HOXD10 protein expression levels differed between these two diseases, indicating that it may be a useful protein biomarker for distinguishing between these two lesions.

16.
Am J Transl Res ; 11(4): 2439-2446, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105850

RESUMO

MicroRNAs (miRNAs) are often abnormally expressed in human cancers to act as either oncogenes or tumor suppressor genes. MiRNA-501 (miR-501) has been found to be abnormally expressed in certain types of cancer, but its expression and biological role in hemangioma remain to be fully elucidated. In this study, the expression of miR-501 in hemangioma cell lines was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The TargetScan algorithm, luciferase activity reporter assay, and Western blot analysis were conducted to validate homeobox D10 (HOXD10) as a direct target of miR-501. The results revealed that miR-501 expression was upregulated in hemangioma cell lines. Downregulation of miR-501 inhibited hemangioma cell proliferation, cell cycle progression, colony formation, migration, and invasion in vitro. Bioinformatics analysis indicated that HOXD10 was a putative target of miR-501. In addition, in a luciferase reporter system, it was confirmed that HOXD10 is a direct target of miR-501. It was also demonstrated HOXD10 downregulation reversed the effects of the miR-501 inhibitor on hemangioma cell activities. These findings indicated that miR-501 targeted HOXD10 to promote hemangioma cell processes, suggesting that miR-501 has an oncogenic role in the pathogenesis of hemangioma.

17.
J Cell Biochem ; 120(10): 17405-17412, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106881

RESUMO

To investigate the effect and mechanism of microRNA-92b-3p (miR-92b-3p) targeting Homeobox D10 (HOXD10) on proliferation, migration, and invasion of gastric cancer, we detected the expression of miR-92b-3p and HOXD10 in SGC-7901 cells. The effects of miR-92b-3p or HOXD10 on proliferation, migration, invasion, and matrix metalloproteinase (MMP)-2/9 expression in SGC-7901 cells were measured by the Cell Counting Kit-8 assay, Transwell assay, and Western blot, respectively. The results showed that miR-92b-3p expression was increased, and HOXD10 expression was decreased in SGC-7901 cells, compared with human normal gastric epithelial cells GES-1. Functional experiments demonstrated that cell proliferation, migration, invasion, and expression of MMP-2/9 in SGC-7901 cells were significantly inhibited by miR-92b-3p silencing and HOXD10 overexpression. Moreover, HOXD10 was a potential target gene of miR-92b-3p as evidenced by the TargetScan software and double luciferase reporter assay. In the rescue experiment, knockdown of HOXD10, accompanied by higher expression of MMP-2/9, could significantly eliminate the inhibitory effects of miR-92b-3p silencing on cell proliferation, migration, and invasion. In conclusion, miR-92b-3p is highly expressed in gastric cancer SGC-7901 cells, and interfering with its expression might inhibit SGC-7901 cell proliferation, migration, and invasion via downregulating MMP-2/9 expression and targeting HOXD10.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Proteínas de Homeodomínio/genética , Humanos , Invasividade Neoplásica , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/genética , Células Tumorais Cultivadas
18.
J Cell Biochem ; 120(8): 13717-13725, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938888

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common types of esophageal cancer, which is the sixth leading cause of cancer death globally. Homeobox D10 (HOXD10) is a member of the homeobox (HOX) gene family and has been reported to act as a tumor suppressor. However, the potential role of HOXD10 in ESCC has not been reported. Thus, the aim of this study was to examine the expression and function of HOXD10 in ESCC. The expressions of HOXD10 in human ESCC tissues and cell lines were detected by quantitative reverse transcription polymerase chain reaction and Western blot. The HOXD10 overexpressing cell lines were established, then CCK-8 and Transwell assays were performed to examine cell proliferation, migration, and invasion, respectively. The expression of EMT-related proteins and signaling pathway-related proteins were detected by Western blot. Our results showed that HOXD10 is lowly expressed in ESCC tissues as well as in ESCC cell lines. Ectopic overexpression of HOXD10 inhibited cell proliferation, migration, and invasion of ESCC cells (P < 0.05). HOXD10 overexpression repressed the epithelial-mesenchymal transition (EMT) process in ESCC cells. Besides, HOXD10 overexpression suppressed the activation of PI3K/AKT/mTOR signaling pathway. PI3K/Akt agonist, insulin-like growth factor-1, reversed the inhibitory effects of HOXD10 on cell proliferation and migration in ESCC cells. Additional in vivo study proved that ectopic expression of HOXD10 caused an obvious inhibitory effect on the tumor growth. These findings indicated that overexpression of HOXD10 suppressed the proliferation, migration, and invasion via regulating the PI3K/AKT/mTOR signaling pathway in ESCC cells. Thus, targeting HOXD10 may be considered as a therapeutic strategy for ESCC treatment.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas de Homeodomínio/genética , Humanos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
19.
Cell Commun Signal ; 17(1): 9, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683109

RESUMO

BACKGROUND: To examine the influence of HOXD10 on the metabolism and growth of colon carcinoma cells by suppressing the RHOC/AKT/MAPK pathway. METHODS: Thirty-seven paired colon cancer and its adjacent samples from The Cancer Genome Atlas (TCGA) were analyzed. Chip Analysis Methylation Pipeline (ChAMP) analysis was employed for differential methylated points (DMPs) and the differential methylation regions (DMRs) screening. The HOXD10 mRNA expression and DNA methylation levels were detected by RT-PCR. The Cell proliferation, migration, invasion and apoptosis were respectively measured by MTT assay, transwell assay, wound healing assay and flow cytometry assay in carcinoma cell lines after treated with 5-aza-2'-deoxycytidine (5-Aza-dC) or transfected with HOXD10-expressing plasmid. The expression of HOXD10 and RHOC was revealed by immunohistochemistry in disparate differentiation colon carcinoma tissues, and the dephosphorylation of AKT and MAPK pathways were detected by RT-PCR and western blot. RESULTS: The bioinformatics analysis demonstrated that HOXD10 was hypermethylated and low-expressed in colorectal cancer tissues. The detection of RT-PCR indicated the similar results in colorectal cancer cell lines and tissues. The induction of demethylation was recovered by treatment with 5-Aza-dC and the HOXD10 in colorectal cancer cell lines was re-expressed by transfection with a HOXD10 expression vector. The demethylation or overexpression of HOXD10 suppressed proliferation, migration, invasion and promoted apoptosis in colorectal cancer cells. HXOD10 suppressed the tumor growth and detected an opposite trend of protein RHOC. AKT and MAPK pathways were notably inactivated after the dephosphorylation due to the overexpression of HOXD10. CONCLUSIONS: HOXD10 was suppressed in colon adenocarcinoma cells, which down-regulated RHOC/AKT/MAPK pathway to enhance colon cancer cells apoptosis and constrain the proliferation, migration and invasion.


Assuntos
Neoplasias do Colo/genética , Epigênese Genética , Proteínas de Homeodomínio/genética , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Proteína de Ligação a GTP rhoC/metabolismo , Apoptose/efeitos dos fármacos , Azacitidina/farmacologia , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genoma Humano , Impressão Genômica , Proteínas de Homeodomínio/metabolismo , Humanos , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
20.
Oncol Lett ; 15(5): 7069-7075, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29731873

RESUMO

Increasing number of studies have indicated aberrant microRNA (miRNA) expression could affect normal biological progress in non-small cell lung cancer (NSCLC) cells. This study was performed to evaluate the biologic functions of microRNA-224 (miR-224) in NSCLC. Real-time PCR was performed to evaluate the expression of miR-224 and Homeobox D10 (HOXD10) in NSCLC cell lines and tissues. Transwell assays were performed to investigate the function of miR-224 on NSCLC cell migration and invasion. Moreover, western blotting and luciferase assays were used to investigate HOXD10 as miR-224 downstream targets. miR-224 is increased in NSCLC metastatic tissues and cell lines. Increased miR-224 expression promoted NSCLC cell migration and invasion, while low miR-224 expression suppressed NSCLC cell migration and invasion. Furthermore, HOXD10 was targeted directly by miR-224 in NSCLC cells. Moreover, we found that HOXD10 was a functional target and influenced tumour-inductive functions of miR-224 on progression of NSCLC. These findings suggest that miR-224 may be used in the treatment of NSCLC. Targeting this novel strategy, miR-224/HOXD10 axis may be helpful as promising biomarker and therapeutic method to control NSCLC cell metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA